Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Piezoceramic materials“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Piezoceramic materials" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Piezoceramic materials"
Yan, Shao Ze, Fu Xing Zhang und Yang Min Li. „Experimental Study on Damping Characteristics of Piezoceramic Materials Shunted by Passive Electrical Circuits“. Key Engineering Materials 280-283 (Februar 2007): 267–70. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.267.
Der volle Inhalt der QuelleSalowitz, Nathan Picchietti, Sang-Jong Kim, Fotis Kopsaftopoulos, Yu-Hung Li und Fu-Kuo Chang. „Design and analysis of radially polarized screen-printed piezoelectric transducers“. Journal of Intelligent Material Systems and Structures 28, Nr. 7 (02.10.2016): 934–46. http://dx.doi.org/10.1177/1045389x16666177.
Der volle Inhalt der QuelleKirilyuk, V. S., und O. I. Levchuk. „Wedging of piezoceramic materials“. International Applied Mechanics 46, Nr. 5 (November 2010): 529–39. http://dx.doi.org/10.1007/s10778-010-0337-x.
Der volle Inhalt der QuelleFang, Yun Mei, und Jun Tao Fei. „Transition Probability Analysis for Piezoceramic Materials“. Advanced Materials Research 452-453 (Januar 2012): 1286–90. http://dx.doi.org/10.4028/www.scientific.net/amr.452-453.1286.
Der volle Inhalt der QuelleAkça, Erdem, und Hüseyin Yılmaz. „Lead-free potassium sodium niobate piezoceramics for high-power ultrasonic cutting application: Modelling and prototyping“. Processing and Application of Ceramics 13, Nr. 1 (2019): 65–78. http://dx.doi.org/10.2298/pac1901065a.
Der volle Inhalt der QuelleAli, M. G. S., N. Z. Elsyed, A. M. Abdel Fattah und Gharieb A. Ali. „Loss mechanisms in piezoceramic materials“. Journal of Computational Electronics 11, Nr. 2 (14.03.2012): 196–202. http://dx.doi.org/10.1007/s10825-012-0399-6.
Der volle Inhalt der QuelleFang, Yun Mei, und Jun Tao Fei. „Transition Probability Analysis for Piezoceramic Materials“. Advanced Materials Research 452-453 (Januar 2012): 1286–90. http://dx.doi.org/10.4028/scientific5/amr.452-453.1286.
Der volle Inhalt der QuelleNasedkin, Andrey, und Mohamed Elsayed Nassar. „Effective properties of a porous inhomogeneously polarized by direction piezoceramic material with full metalized pore boundaries: Finite element analysis“. Journal of Advanced Dielectrics 10, Nr. 05 (23.09.2020): 2050018. http://dx.doi.org/10.1142/s2010135x20500186.
Der volle Inhalt der QuelleHimawan, Helmy Mukti. „SIMULATION AND ANALYSIS OF MICRO ELECTRO MECHANICAL SYSTEMS PIEZO CERAMIC TUBE FOR ULTRASONIC FLOW MEASUREMENT“. INVOTEK: Jurnal Inovasi Vokasional dan Teknologi 17, Nr. 1 (10.04.2017): 41–48. http://dx.doi.org/10.24036/invotek.v17i1.27.
Der volle Inhalt der QuelleRuan, Xiaoping, Stephen C. Danforth, Ahmad Safari und Tsu-Wei Chou. „Saint-Venant end effects in piezoceramic materials“. International Journal of Solids and Structures 37, Nr. 19 (Mai 2000): 2625–37. http://dx.doi.org/10.1016/s0020-7683(99)00034-7.
Der volle Inhalt der QuelleDissertationen zum Thema "Piezoceramic materials"
Millar, Caroline Elizabeth. „The fabrication and properties of piezoceramic-polymer composites“. Thesis, University of Leeds, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278261.
Der volle Inhalt der QuelleJeric, Kristina Marie. „An Experimental Evaluation of the Application of Smart Damping Materials for Reducing Structural Noise and Vibrations“. Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/31833.
Der volle Inhalt der QuelleMaster of Science
Mollenhauer, David Hilton. „Induced strain of actuation of surface bonded and embedded piezoceramic patches“. Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-07212009-040237/.
Der volle Inhalt der QuelleFeng, Jian-Huei. „Colloidal processing, tape casting and sintering of PLZT for development of piezoceramic/polymer interlayered composites /“. Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/10577.
Der volle Inhalt der QuelleZeman, Dominik. „Mechanické vlastnosti dopovaných piezokeramických materiálů na bázi BaTiO3“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-442597.
Der volle Inhalt der QuelleJenne, Kirk E. „Acoustic cymbal transducers-design, hydrostatic pressure compensation, and acoustic performance“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Mar%5FJenne.pdf.
Der volle Inhalt der QuelleThesis advisor(s): Thomas R. Howarth, Dehua Huang. Includes bibliographical references (p. 67-69). Also available online.
Hegewald, Thomas. „Vibration Suppression Using Smart Materials in the Presence of Temperature Changes“. Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/32068.
Der volle Inhalt der QuelleThis research uses a special vibration test rig for evaluating the performance of different vibration suppression systems on a representative aircraft panel. The test panel is clamped rigidly in a frame and can be excited in various frequencies with an electromagnetic shaker. To simulate temperature fluctuations the temperature on the panel can be increased up to 65°C (150°F). Smart material based sensors and actuators are used to interface the mechanical system with the electronic controller. The active controller utilizes three positive position feedback (PPF) filters implemented through a digital signal processor board. This research develops two different adaptation methods to perform vibration suppression in the presence of thermally induced frequency changes of the representative panel. To adjust the PPF filter parameters an open-loop adaptation method and an auto-tuning method are investigated. The open-loop adaptation method uses a measurement of the plate temperature and a look-up table with pre-determined parameters to update the filters accordingly. The auto-tuning methods identifies the frequencies of the poles and zeros in the structure's collocated transfer function. From the knowledge of the pole and zero locations the optimal PPF parameters are calculated online.
The results show that both adaptation methods are capable of reducing the vibration levels of the test specimen over the temperature range of interest. Three PPF filters with parameter adaptation through temperature measurement achieve magnitude reductions of the resonance peaks as high as 13.6 decibel. Using the auto-tuning method resonance peak reductions up to 17.4 decibel are possible. The pole/zero identification routine proves to detect the frequencies correctly. The average identification error remained at around one percent even in the presence of external disturbances.
Master of Science
Arockiarajan, Arunachalakasi [Verfasser]. „Computational modeling of domain switching effects in piezoceramic materials : a micro-macro mechanical approach / von Arunachalakasi Arockiarajan“. 2005. http://d-nb.info/977856496/34.
Der volle Inhalt der QuelleLalitha, K. V. „Correlation Between Structure, Microstructure and Enhanced Piezoresponse Around the Morphotropic Phase Boundary of Bismuth Scandate-Lead Titanate Piezoceramic“. Thesis, 2015. http://etd.iisc.ernet.in/2005/3524.
Der volle Inhalt der QuelleBharathi, P. „Investigations into the Synthesis, Structural and Multifunctional Aspects of Ba0.85Ca0.15Zr0.1Ti0.9O3 and K0.5Na0.5NbO3 Ceramics“. Thesis, 2016. http://etd.iisc.ernet.in/2005/3747.
Der volle Inhalt der QuelleBücher zum Thema "Piezoceramic materials"
A, Parinov Ivan, Hrsg. Piezoceramic materials and devices. Hauppauge, N.Y: Nova Science Publishers, 2009.
Den vollen Inhalt der Quelle findenAkopyan, Vladimir A. Definition of constants for piezoceramic materials. New York: Nova Science Publishers, 2010.
Den vollen Inhalt der Quelle findenZoubeida, Ounaies, und Langley Research Center, Hrsg. A hysteresis model for piezoceramic materials. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenA, Akopyan Vladimir, Hrsg. Definition of constants for piezoceramic materials. Hauppauge, N.Y: Nova Science Publishers, 2009.
Den vollen Inhalt der Quelle findenZoubeida, Ounaies, und Institute for Computer Applications in Science and Engineering., Hrsg. A model for asymmetric hysteresis in piezoceramic materials. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 2000.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Piezoceramic materials"
Panda, P. K. „Piezoceramic Materials and Devices for Aerospace Applications“. In Aerospace Materials and Material Technologies, 501–18. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2134-3_23.
Der volle Inhalt der QuelleSachau, D., P. Wierach, H. P. Monner und A. Schönecker. „Smart Structures Based on Thin Piezoceramic Plates“. In Functional Materials, 520–24. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607420.ch85.
Der volle Inhalt der QuelleKarpinsky, D. N., und I. A. Parinov. „Computer Simulation of Piezoceramic Fracture“. In Fracture of Engineering Materials and Structures, 327–31. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3650-1_47.
Der volle Inhalt der QuelleGrigorenko, Alexander Ya, Wolfgang H. Müller und Igor A. Loza. „Electroelastic Vibrations of Heterogeneous Piezoceramic Hollow Spheres“. In Advanced Structured Materials, 165–223. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74199-0_4.
Der volle Inhalt der QuelleJänker, Peter, Frank Hermle, Thomas Lorkowski, Stefan Storm und Markus Christmann. „Piezoceramic Materials - Potential of a new Actuator Technology“. In Functional Materials, 554–59. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607420.ch91.
Der volle Inhalt der QuelleGrigorenko, Alexander Ya, Wolfgang H. Müller und Igor A. Loza. „Electric Elastic Waves in Layered Inhomogeneous and Continuously Inhomogeneous Piezoceramic Cylinders“. In Advanced Structured Materials, 111–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74199-0_3.
Der volle Inhalt der QuelleWang, Gao Ping, Yong Hong, Jae Jung Lee, Dong Pyo Hong, Young Moon Kim und Jae Yeol Kim. „Quantitative Estimation of the Fastening Condition of a Bolt with Using Piezoceramic (PZT) Sensors“. In Key Engineering Materials, 2436–40. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-456-1.2436.
Der volle Inhalt der QuelleBenjeddou, Ayech, und Mohammed Al-Ajmi. „Analytical Homogenizations of Piezoceramic d15 Shear Macro-fibre Composites“. In IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials, 229–42. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9887-0_22.
Der volle Inhalt der QuelleGrigorenko, Alexander Ya, Wolfgang H. Müller und Igor A. Loza. „Free Axisymmetric and Nonaxisymmetric Vibrations of Hollow Homogeneous and Inhomogeneous Piezoceramic Cylinders of Finite Length with Different Polarization“. In Advanced Structured Materials, 53–110. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74199-0_2.
Der volle Inhalt der QuelleBabich, D., O. Bezverkhyi und T. Dorodnykh. „Structural Probabilistic Modeling of Fatigue Fracture for Piezoceramic Materials Under Cyclic Loading“. In Springer Proceedings in Mathematics & Statistics, 11–26. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42402-6_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Piezoceramic materials"
Zhong, Jinghua, Stefan Seelecke, Ralph C. Smith und Christof Bueskens. „Optimal control of piezoceramic actuators“. In Smart Structures and Materials, herausgegeben von Ralph C. Smith. SPIE, 2003. http://dx.doi.org/10.1117/12.484049.
Der volle Inhalt der QuelleRupitsch, Stefan J. „Simulation-based characterization of piezoceramic materials“. In 2016 IEEE SENSORS. IEEE, 2016. http://dx.doi.org/10.1109/icsens.2016.7808757.
Der volle Inhalt der QuelleSmith, Ralph C., Stefan Seelecke und Zoubeida Ounaies. „Free energy model for piezoceramic materials“. In SPIE's 9th Annual International Symposium on Smart Structures and Materials, herausgegeben von Vittal S. Rao. SPIE, 2002. http://dx.doi.org/10.1117/12.475214.
Der volle Inhalt der QuelleZareian Jahromi, Seyed Abdolali, und Qiao Sun. „Modeling Creep and Hysteresis in Piezoceramics Using Domain Switching Simulation“. In ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2009. http://dx.doi.org/10.1115/smasis2009-1475.
Der volle Inhalt der QuelleHorner, Garnett C., und Barmac K. Taleghani. „Single-axis piezoceramic gimbal“. In 1999 Symposium on Smart Structures and Materials, herausgegeben von Jack H. Jacobs. SPIE, 1999. http://dx.doi.org/10.1117/12.351574.
Der volle Inhalt der QuelleYoon, Hwan-Sik, und Gregory N. Washington. „Piezoceramic actuated aperture antennas“. In 5th Annual International Symposium on Smart Structures and Materials, herausgegeben von Vijay K. Varadan, Paul J. McWhorter, Richard A. Singer und Michael J. Vellekoop. SPIE, 1998. http://dx.doi.org/10.1117/12.320165.
Der volle Inhalt der QuelleWierach, Peter, Stefan Muehle und Bjoern Nagel. „Smart composites based on piezoceramic tubes“. In Smart Structures and Materials, herausgegeben von Amr M. Baz. SPIE, 2003. http://dx.doi.org/10.1117/12.483459.
Der volle Inhalt der QuelleAsckler, Craig, George A. Lesieutre, Gary H. Koopmann und Christopher L. Davis. „Inertial piezoceramic actuators for smart structures“. In Smart Structures & Materials '95, herausgegeben von C. Robert Crowe und Gary L. Anderson. SPIE, 1995. http://dx.doi.org/10.1117/12.209333.
Der volle Inhalt der QuelleTaylor, Chris J., und Gregory N. Washington. „Comprehensive piezoceramic actuator review“. In SPIE's 9th Annual International Symposium on Smart Structures and Materials, herausgegeben von L. Porter Davis. SPIE, 2002. http://dx.doi.org/10.1117/12.474681.
Der volle Inhalt der QuelleWood, Clifford T., Garnett C. Horner und William W. Clark. „Active piezoceramic-driven flexure actuator“. In 1999 Symposium on Smart Structures and Materials, herausgegeben von Jack H. Jacobs. SPIE, 1999. http://dx.doi.org/10.1117/12.351556.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Piezoceramic materials"
Smith, Ralph C., und Zoubeida Ounaies. A Hysteresis Model for Piezoceramic Materials. Fort Belvoir, VA: Defense Technical Information Center, Januar 1999. http://dx.doi.org/10.21236/ada446005.
Der volle Inhalt der QuelleSmith, Ralph C., und Zoubeida Ounaies. A Model for Asymmetric Hysteresis in Piezoceramic Materials. Fort Belvoir, VA: Defense Technical Information Center, Januar 2000. http://dx.doi.org/10.21236/ada373567.
Der volle Inhalt der Quelle