Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Physics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Physics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Physics"
Smith, Cyril W. „Physicks and Physics“. Journal of Alternative and Complementary Medicine 5, Nr. 2 (April 1999): 191–93. http://dx.doi.org/10.1089/acm.1999.5.191.
Der volle Inhalt der QuelleCommissariat, Tushna. „From physica to physics“. Physics World 31, Nr. 3 (März 2018): 47. http://dx.doi.org/10.1088/2058-7058/31/3/35.
Der volle Inhalt der QuelleArabatzis, Theodore. „How Physica Became Physics“. Science & Education 27, Nr. 1-2 (05.12.2017): 211–18. http://dx.doi.org/10.1007/s11191-017-9946-7.
Der volle Inhalt der QuelleSytsma, David S. „Calvin, Daneau, and Physica Mosaica“. Church History and Religious Culture 95, Nr. 4 (2015): 457–76. http://dx.doi.org/10.1163/18712428-09504005.
Der volle Inhalt der QuelleKim, Hong-Jeong, und Sungmin Im. „Pre-service Physics Teachers’ Beliefs about Learning Physics and Their Learning Achievement in Physics“. Asia-Pacific Science Education 7, Nr. 2 (09.12.2021): 500–521. http://dx.doi.org/10.1163/23641177-bja10038.
Der volle Inhalt der QuelleWarner, Benjamin. „PhysiCL: An OpenCL-Accelerated Python Physics Simulator“. Journal of Undergraduate Reports in Physics 31, Nr. 1 (Januar 2021): 100012. http://dx.doi.org/10.1063/10.0006351.
Der volle Inhalt der QuelleRoss, S. M., und J. P. R. Bolton. „Physica: A Computer Environment for Physics Problem-Solving“. Interactive Learning Environments 10, Nr. 2 (August 2002): 157–75. http://dx.doi.org/10.1076/ilee.10.2.157.7445.
Der volle Inhalt der QuelleHofmann, Tobias, Jacob Hamar, Marcel Rogge, Christoph Zoerr, Simon Erhard und Jan Philipp Schmidt. „Physics-Informed Neural Networks for State of Health Estimation in Lithium-Ion Batteries“. Journal of The Electrochemical Society 170, Nr. 9 (01.09.2023): 090524. http://dx.doi.org/10.1149/1945-7111/acf0ef.
Der volle Inhalt der QuelleAnisa, Latifatu, Nyoto Suseno und M. Barkah Salim. „PERAN LABORATORIUM PENDIDIKAN FISIKA UNIVERSITAS MUHAMMADIYAH METRO DALAM PENYELENGGARAAN PENELITIAN“. JURNAL FIRNAS 3, Nr. 1 (27.05.2022): 1–8. http://dx.doi.org/10.24127/firnas.v3i1.3408.
Der volle Inhalt der QuelleNurmasyitah, Nur Azizah Lubis, Hendri Saputra und Derlina. „Impact of Basic Physics E-Module Using Problem Oriented on Critical Thinking Skilss of Physics Teacher Candidate Student“. Jurnal Penelitian Pendidikan IPA 9, Nr. 9 (25.09.2023): 7346–53. http://dx.doi.org/10.29303/jppipa.v9i9.5002.
Der volle Inhalt der QuelleDissertationen zum Thema "Physics"
Ahmed, Zubair. „Rock Physics Characterization using Physical Methods on Powders“. Thesis, Curtin University, 2018. http://hdl.handle.net/20.500.11937/75690.
Der volle Inhalt der QuelleAmos, Nathaniel. „Connecting Symbolic Integrals to Physical Meaning in Introductory Physics“. The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492617581975923.
Der volle Inhalt der QuelleSumensari, Olcyr. „Search of new physics through flavor physics observables“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS315/document.
Der volle Inhalt der QuelleIndirect searches of physics beyond the Standard Model through flavor physics processes at low energies are complementary to the ongoing efforts at the LHC to observe the New Physic phenomena directly. In this thesis we discuss several scenarios of physics beyond the Standard Model by (a) reusing the effective field theory approach and (b) by considering explicit extensions of the Standard Model, namely the two-Higgs doublet models and the scenarios involving the low energy scalar leptoquark states. Particular emphasis is devoted to the issue of the lepton flavor universality violation in the exclusive decays based on b → sℓℓ and b → cτν, and to the possibility of searching for signs of lepton flavor violation through similar decay modes. A proposal for testing the presence of the light CP-odd Higgs through quarkonia decays is also made
Kapucu, Serkan. „Physics Teachers“. Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614422/index.pdf.
Der volle Inhalt der Quellebeliefs related to Turkish High School Physics Curriculum (THSPC) and to what extent these beliefs are reflected in their instructional practices. Data were collected through interviews, classroom observations and an open-ended questionnaire. Teachers&rsquo
responses to interview questions showed that they believed that teaching physics according to the THSPC helped students use their skills, become interested in physics lessons, relate physics to their daily life and have a permanent knowledge. Besides, teachers believe that they can teach physics according to the THSPC generally by giving examples from daily life and creating a discussion environment. The data obtained from classroom observations showed that the beliefs of teachers about how to teach physics according to the THSPC were reflected in their instructional practices. Teachers&rsquo
responses to open-ended questionnaire showed that teachers believed the necessity of attainment of majority of the skill objectives in the THSPC by students. However, they do not consider that students can attain many of the problem solving and information and communication skills. The data obtained from classroom observations showed that they seldom attempted to help students attain them or they never attempted. The data gathered from interviews and an open questionnaire showed that there were some factors that influence teachers&rsquo
instructional practices according to the THSPC. For example, they believe that students&rsquo
interest in physics lessons and teacher&rsquo
s opportunity to give more examples about daily life made their teaching physics according to the THSPC easy. However, they believe that university entrance exam, inadequacy of laboratory environment and lesson hours, students&rsquo
low economic status and lack of information and communication technologies affected their teaching physics according to the THSPC negatively.
Drechsel, Dieter. „Evolution Physics“. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-175494.
Der volle Inhalt der QuelleNewton, Harry. „B Physics“. Thesis, University of Edinburgh, 1999. http://hdl.handle.net/1842/11871.
Der volle Inhalt der QuelleDrechsel, Dieter. „Evolution Physics“. Dieter Drechsel, 2018. https://slub.qucosa.de/id/qucosa%3A21175.
Der volle Inhalt der QuelleDrechsel, Dieter. „Evolution Physics“. Dieter Drechsel, 2016. https://slub.qucosa.de/id/qucosa%3A7666.
Der volle Inhalt der QuelleThompson, Travis W. „Tuning the Photochemical Reactivity of Electrocyclic Reactions| A Non-adiabatic Molecular Dynamics Study“. Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10839950.
Der volle Inhalt der QuelleWe use non-adiabatic ab initio molecular dynamics to study the influence of substituent side groups on the photoactive unit (Z)-hexa-1,3,5-triene (HT). The Time-Dependent Density Functional Theory Surface Hopping method (TDDFT-SH) is used to investigate the influence of substituted isopropyl and methyl groups on the excited state dynamics. The 1,4 and 2,5-substituted molecules are simulated: 2,5-dimethylhexa-1,3,5-triene (DMHT), 2-isopropyl-5-methyl-1,3,5-hexatriene (2,5-IMHT), 3,7-dimethylocta-1,3,5-triene (1,4-IMHT), and 2,5-diisopropyl-1,3,5-hexatriene (DIHT). We find that HT and 1,4-IMHT have the lowest ring-closing branching ratios of 5.3% and 1.0%, respectively. For the 2,5-substituted derivatives, the branching ratio increases with increasing size of the substituents, exhibiting yields of 9.78%, 19%, and 24% for DMHT, 2,5-IMHT, and DIHT, respectively. The reaction channels are shown to prefer certain conformation configurations at excitation, where the ring-closing reaction tends to originate from the gauche-Z-gauche (gZg) rotamer almost exclusively. In addition, there is a conformational dependency on absorption, gZg conformers have on average lower S1 ← S0 excitation energies that the other rotamers. Furthermore, we develop a method to calculate a predicted quantum yield that is in agreement with the wavelength-dependence observed in experiment for DMHT. In addition, the quantum yield method also predicts DIHT to have the highest CHD yield of 0.176 at 254 nm and 0.390 at 290 nm.
Additionally, we study the vitamin D derivative Tachysterol (Tachy) which exhibits similar photochemical properties as HT and its derivatives. We find the reaction channels of Tachy also have a conformation dependency, where the reactive products toxisterol-D1 (2.3%), previtamin D (1.4%) and cyclobutene toxisterol (0.7%) prefer cEc, cEt, and tEc configurations at excitation, leaving the tEt completely non-reactive. The rotamers similarly have a dependence on absorption as well, where the cEc configuration has the lowest energy S 1 ← S0 excitation of the rotamers. The wavelength dependence of the rotamers should lead to selective properties of these molecules at excitation. An excitation to the red-shifted side of the maximum absorption peak will on average lead to excitations of the gZg rotamers more exclusively.
Pfeiffer, Benoite Jeanne Françoise. „Soft physics: healing the mind/body split in physics education“. Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/43278.
Der volle Inhalt der QuelleBücher zum Thema "Physics"
Pearce, Eli M., und G. E. Zaikov. New steps in physical chemistry, chemical physics, and biochemical physics. Herausgegeben von Kirshenbaum Gerald S. Hauppauge, N.Y: Nova Science Publishers, 2012.
Den vollen Inhalt der Quelle findenRoyal Society of Chemistry (Great Britain). Physical chemistry chemical physics: PCCP. Cambridge, England: Royal Society of Chemistry, 1999.
Den vollen Inhalt der Quelle findenHewitt, Paul G. Conceptual physics: Practicing physics. San Francisco: Addison-Wesley, 2006.
Den vollen Inhalt der Quelle findenHewitt, Paul G. Conceptual physics: Practicing physics. 9. Aufl. San Francisco: Addison-Wesley, 2002.
Den vollen Inhalt der Quelle findenS, Shaffer Peter, Rosenquist Mark L und University of Washington. Physics Education Group., Hrsg. Physics by inquiry: An introduction to physics and the physical sciences. New York: J. Wiley, 1996.
Den vollen Inhalt der Quelle findenCanada, Atomic Energy of. Progress report: Physical sciences : physics division. Chalk River, Ont: Chalk River Laboratories, 1992.
Den vollen Inhalt der Quelle findenLazar, Miriam A. Let's review: Physics-- the physical setting. 2. Aufl. Hauppauge, NY: Barron's Educational Series, 2002.
Den vollen Inhalt der Quelle findenBedrit͡skiĭ, Anatoliĭ. New theoretical physics: Global physical theory. Netania, Israel: A. Bedritsky, 1994.
Den vollen Inhalt der Quelle findenHalliday, David. Physics. 4. Aufl. New York: Wiley, 1992.
Den vollen Inhalt der Quelle findenBreithaupt, Jim. Physics. London: Macmillan Education UK, 1999. http://dx.doi.org/10.1007/978-1-349-14825-7.
Der volle Inhalt der QuelleBuchteile zum Thema "Physics"
Varvoglis, Harry. „Physical Sciences and Physics“. In History and Evolution of Concepts in Physics, 3–10. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04292-3_1.
Der volle Inhalt der QuelleKapuścik, Edward. „Physics Without Physical Constants“. In Frontiers of Fundamental Physics, 387–91. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2560-8_46.
Der volle Inhalt der QuelleJost, Jürgen. „Physics“. In Geometry and Physics, 97–207. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00541-1_2.
Der volle Inhalt der Quellede Haas, W. J., und P. M. van Alphen. „Physics“. In Quantum Hall Effect: A Perspective, 72–84. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-010-9709-3_5.
Der volle Inhalt der QuelleSchubnikow, L., und W. J. de Haas. „Physics“. In Quantum Hall Effect: A Perspective, 85–88. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-010-9709-3_6.
Der volle Inhalt der QuelleReid, Constance. „Physics“. In Hilbert, 125–36. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-0739-9_16.
Der volle Inhalt der QuelleRuder, Hanns. „Physics“. In High Performance Computing in Science and Engineering ’98, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58600-2_1.
Der volle Inhalt der QuelleEscudé, Lluis, David Ortiz de Urbina und Enrico Tangco. „Physics“. In Intraoperative Radiotherapy, 11–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84183-5_2.
Der volle Inhalt der QuelleGreene, D., und S. K. Stephenson. „Physics“. In The Radiotherapy of Malignant Disease, 1–32. London: Springer London, 1985. http://dx.doi.org/10.1007/978-1-4471-3322-3_1.
Der volle Inhalt der QuelleNishio, Teiji. „Physics“. In Stereotactic Body Radiation Therapy, 27–43. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54883-6_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Physics"
MCLERRAN, L. „SMALL X PHYSICS: A PHYSICAL PICTURE“. In Fifth Rio de Janeiro International Workshop. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814528917_0011.
Der volle Inhalt der QuelleLi, Jiatong, Ryo Suzuki und Ken Nakagaki. „Physica: Interactive Tangible Physics Simulation based on Tabletop Mobile Robots Towards Explorable Physics Education“. In DIS '23: Designing Interactive Systems Conference. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3563657.3596037.
Der volle Inhalt der QuelleFeiner, Louis Felix. „Orbital Physics versus Spin Physics“. In HIGHLIGHTS IN CONDENSED MATTER PHYSICS. AIP, 2003. http://dx.doi.org/10.1063/1.1639589.
Der volle Inhalt der QuellePark, Youngah. „Korean Physical Society’s Physics Camp for High School Girls“. In WOMEN IN PHYSICS: 2nd IUPAP International Conference on Women in Physics. AIP, 2005. http://dx.doi.org/10.1063/1.2128385.
Der volle Inhalt der QuelleHamann, Fred. „The physics and physical properties of quasar outflows“. In Nuclei of Seyfert galaxies and QSOs - Central engine & conditions of star formation. Trieste, Italy: Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.169.0020.
Der volle Inhalt der QuelleHu, Haoyu, Xinyu Yi, Hao Zhang, Jun-Hai Yong und Feng Xu. „Physical Interaction: Reconstructing Hand-object Interactions with Physics“. In SA '22: SIGGRAPH Asia 2022. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3550469.3555421.
Der volle Inhalt der QuelleRafiqah, Santih Anggereni, Andi Ferawati Jafar, Muh Syihab Ikbal, Andi Hasrianti und Hasmawati. „Developing Physical Learning Multimedia Based on Physics Edutainment“. In 3rd International Conference on Education, Science, and Technology (ICEST 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/assehr.k.201027.001.
Der volle Inhalt der QuelleCROCA, JOSE R. „From Nonlinear Quantum Physics to Eurhythmic Physics“. In Unified Field Mechanics II: Preliminary Formulations and Empirical Tests, 10th International Symposium Honouring Mathematical Physicist Jean-Pierre Vigier. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813232044_0028.
Der volle Inhalt der QuelleKirby, Kate P. „Atmospheric physics, collision physics, and global change“. In The eighteenth international conference on the physics of electronic and atomic collisions. AIP, 1993. http://dx.doi.org/10.1063/1.45264.
Der volle Inhalt der QuelleVelarde, Manuel G., und Francisco Cuadros. „Thermodynamics and Statistical Physics; Teaching Modern Physics“. In 4th IUPAP Teaching Modern Physics Conference. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814532211.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Physics"
Petersson, N., F. Garcia, S. Guenther, Y. Choi und R. Vogt. Quantum Physics without the Physics. Office of Scientific and Technical Information (OSTI), Dezember 2020. http://dx.doi.org/10.2172/1729745.
Der volle Inhalt der QuelleUmarova, G. A., R. N. Suleymanov und R. A. Nabiullin. Virtual Physics Labs: Quantum Physics. SIB-Expertise, März 2022. http://dx.doi.org/10.12731/er0542.17032022.
Der volle Inhalt der QuelleHurth, Tobias. New Physics Search in Flavour Physics. Office of Scientific and Technical Information (OSTI), Januar 2006. http://dx.doi.org/10.2172/878000.
Der volle Inhalt der QuelleHinchliffe, I. Old physics, new physics and colliders. Office of Scientific and Technical Information (OSTI), Januar 1987. http://dx.doi.org/10.2172/6687496.
Der volle Inhalt der QuelleGrinkrug, M. S., N. A. Novgorodov und YU I. Tkacheva. Physics course: Mechanics. Molecular physics and thermodynamics. OFERNIO, Juli 2021. http://dx.doi.org/10.12731/ofernio.2021.24875.
Der volle Inhalt der QuelleGreen, D. Particle physics. Office of Scientific and Technical Information (OSTI), Mai 1994. http://dx.doi.org/10.2172/10156370.
Der volle Inhalt der QuelleSeidel, Sally. Collider Physics. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1647331.
Der volle Inhalt der QuelleNefkens, B. M. K. Particle physics. Office of Scientific and Technical Information (OSTI), Oktober 1991. http://dx.doi.org/10.2172/6137538.
Der volle Inhalt der QuelleHardis, Jonathan E., Jonathan E. Hardis und William R. Ott. Physics Laboratory. Gaithersburg, MD: National Institute of Standards and Technology, 2008. http://dx.doi.org/10.6028/nist.sp.1075.
Der volle Inhalt der QuelleSeidel, Sally. Collider Physics. Office of Scientific and Technical Information (OSTI), Mai 2017. http://dx.doi.org/10.2172/1357015.
Der volle Inhalt der Quelle