Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Physicochemical Approach“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Physicochemical Approach" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Physicochemical Approach"
HAMAGUCHI, Hiroo. „Physicochemical Approach to Life“. TRENDS IN THE SCIENCES 14, Nr. 3 (2009): 22–24. http://dx.doi.org/10.5363/tits.14.3_22.
Der volle Inhalt der QuelleDefoort, Françoise, Matthieu Campargue, Gilles Ratel, Hélène Miller und Capucine Dupont. „Physicochemical Approach To Blend Biomass“. Energy & Fuels 33, Nr. 7 (07.03.2019): 5820–28. http://dx.doi.org/10.1021/acs.energyfuels.8b04169.
Der volle Inhalt der Quellevan Loosdrecht, Mark C. M., Johannes Lyklema, Willem Norde und Alexander J. B. Zehnder. „Bacterial adhesion: A physicochemical approach“. Microbial Ecology 17, Nr. 1 (Januar 1989): 1–15. http://dx.doi.org/10.1007/bf02025589.
Der volle Inhalt der QuelleOhgaki, Kazunari, Nguyen Quoc Khanh, Yasuhiro Joden, Atsushi Tsuji und Takaharu Nakagawa. „Physicochemical approach to nanobubble solutions“. Chemical Engineering Science 65, Nr. 3 (Februar 2010): 1296–300. http://dx.doi.org/10.1016/j.ces.2009.10.003.
Der volle Inhalt der QuelleGreenbaum, Jonathan, und Mahesh Nirmalan. „Acid–base balance: Stewart's physicochemical approach“. Current Anaesthesia & Critical Care 16, Nr. 3 (Juni 2005): 133–35. http://dx.doi.org/10.1016/j.cacc.2005.03.010.
Der volle Inhalt der QuelleIritani, Eiji, und Yasuhito Mukai. „Approach from physicochemical aspects in membrane filtration“. Korean Journal of Chemical Engineering 14, Nr. 5 (September 1997): 347–53. http://dx.doi.org/10.1007/bf02707050.
Der volle Inhalt der QuelleLutfiyah, Dhea Sultana, Lili Fitriani, Muhammad Taher und Erizal Zaini. „Crystal Engineering Approach in Physicochemical Properties Modifications of Phytochemical“. Science and Technology Indonesia 7, Nr. 3 (28.07.2022): 353–71. http://dx.doi.org/10.26554/sti.2022.7.3.353-371.
Der volle Inhalt der QuelleKocherginsky, Nikolai, und Martin Gruebele. „Mechanical approach to chemical transport“. Proceedings of the National Academy of Sciences 113, Nr. 40 (19.09.2016): 11116–21. http://dx.doi.org/10.1073/pnas.1600866113.
Der volle Inhalt der QuelleDiaztagle-Fernández, José Diaztagle, Ingrid Juliana Moreno-Ladino, Jorge Alfredo Morcillo-Muñoz, Andrés Felipe Morcillo-Muñoz, Luis Alejandro Marcelo-Pinilla und Luis Eduardo Cruz-Martínez. „Comparative analysis of acid-base balance in patients with severe sepsis and septic shock: traditional approach vs. physicochemical approach“. Revista de la Facultad de Medicina 67, Nr. 4 (01.10.2019): 441–46. http://dx.doi.org/10.15446/revfacmed.v67n4.65448.
Der volle Inhalt der QuelleRodríguez-García, J., A. Puig, A. Salvador und I. Hernando. „Funcionality of several cake ingredients: A comprehensive approach“. Czech Journal of Food Sciences 31, No. 4 (19.07.2013): 355–60. http://dx.doi.org/10.17221/412/2012-cjfs.
Der volle Inhalt der QuelleDissertationen zum Thema "Physicochemical Approach"
Chhetri, Esmita. „Synthesis, characterization and inclusion complexation of some isoxazolidine and isoxazoline derivatives for advanced applications explored by physicochemical approach“. Thesis, University of North Bengal, 2021. http://ir.nbu.ac.in/handle/123456789/4343.
Der volle Inhalt der QuelleRay, Tanusree. „Exploration of assortment of interfaces of some lonik liquids in solvent system by physicochemical approach“. Thesis, University of North Bengal, 2016. http://ir.nbu.ac.in/handle/123456789/2743.
Der volle Inhalt der QuelleMazaud, Agathe. „Aqueous plant extraction using glycerol and sugarbased hydrotropes : physicochemical approach and application to rosemary“. Electronic Thesis or Diss., Université de Lille (2018-2021), 2020. http://www.theses.fr/2020LILUR055.
Der volle Inhalt der QuelleThe growing concerns for health and environment makes the demand for natural ingredients ever higher. At the same time, natural ingredients manufacturers are trying to design effective, safer and less energy-costly extraction processes while avoiding the use of non-renewable resources. Hydrotropes are able to solubilize hydrophobic compounds in water, and constitute a promising alternative to organic solvents, which are often derived from petroleum, potentially explosives and producers of volatile organic compounds. To design a new effective hydrotropic extraction process using biobased amphiphiles, we investigated the physical chemical and kinetic phenomena governing the extraction of carnosic acid (CA), a powerful phenolic antioxidant that occurs in rosemary and sage. The CA extraction using alkyl polyethylene glycols ethers as model hydrotropes demonstrated the efficiency and the competitiveness of hydrotropic extractions compared to conventional solvent extractions. Quantitative Structure/properties relationship (QSPR) studies were established and generalized to biobased hydrotropes including butyl or pentyl glycerol ethers, and sugar-based hydrotropes such as amyl xyloside, which was further selected for its efficiency, biodegradability and commercial availability. The optimization of the extraction conditions led to double the CA recovered in the dry extract. Finally, different techniques have been investigated to precipitate CA from a hydrotropic solution. Among them, the addition of water as an anti-solvent appears as the more effective for precipitating CA from rosemary extract. Finally, the comparison of the precipitate composition and aspect obtained using various precipitation conditions led us to establish a mechanism explaining the different steps of the hydrotropic precipitation
Moczko, Ewa. „New approach in multipurpose optical diagnostics : fluorescence based assay for simultaneous determination of physicochemical parameters“. Thesis, Cranfield University, 2009. http://dspace.lib.cranfield.ac.uk/handle/1826/4573.
Der volle Inhalt der QuelleRoy, Aditi. „Study to explore molecular inclusion complexes of cyclic hosts with vital guests in various environments“. Thesis, University of North Bengal, 2018. http://ir.nbu.ac.in/handle/123456789/2633.
Der volle Inhalt der QuelleKierczak, Marcin. „From Physicochemical Features to Interdependency Networks : A Monte Carlo Approach to Modeling HIV-1 Resistome and Post-translational Modifications“. Doctoral thesis, Uppsala universitet, Centrum för bioinformatik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-109873.
Der volle Inhalt der QuelleRumpf, Katharina [Verfasser], Andreas [Akademischer Betreuer] Jossen, Andreas [Gutachter] Jossen und Kai-Peter [Gutachter] Birke. „Causes and effects of inhomogeneity in lithium-ion battery modules: A physicochemical modelling approach / Katharina Rumpf ; Gutachter: Andreas Jossen, Kai-Peter Birke ; Betreuer: Andreas Jossen“. München : Universitätsbibliothek der TU München, 2018. http://d-nb.info/1176701835/34.
Der volle Inhalt der QuelleDib, Omar. „Implementation of a physio-chemical approach coupled with a data fingerprinting methodology for the characterization of the Lebanese extra-virgin olive oils“. Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASB004.
Der volle Inhalt der QuelleOlive oil is a vital component of the Mediterranean diet, hence Lebanese, owed to its well-known economic and nutritional value. Several environmental, agricultural, and technological factors play an essential role in defining olive oil's quality. In Lebanon, preliminary studies on the quality of extra virgin olive oil have shown that certain quality criteria exceed the International Olive Council's (IOC) standards. However, the causes of such non-conformities have not been clearly identified. Accordingly, ninety-six olive oil samples have been harvested from two seasons, processed using different extraction methods, and collected from eight locations (Akkar, Chouf, Hasbaya, Koura, Tyr, Nabatiyeh, Zgharta, and Hermel). These locations are identified by the European Union to have potentials for Protected Geographical Indications (PGI). In this perspective, and to meet the European framework's requirements, the analyzed oil will be subjected to conventional chemical analysis as suggested by the IOC and to ultra-fast analysis using 3D-front face spectroscopy (3D-FFFS) and ultra-flash gas chromatography (Ultra-FGC).A correlation between the fatty acid profile and the pedoclimatic conditions of the main olive growing regions in Lebanon was noticed. Three main pedoclimatic conditions, altitude, temperature, and relative humidity, were the major influencers and the reason for the distinctive fatty acid profile of the Lebanese olive oil. Lebanese areas with high altitudes, low average temperature, and low relative humidity have high oleic acid content. As for areas with lower altitudes, higher average temperature, and higher relative humidity, the fatty acid profile was characterized by linoleic, linolenic, palmitoleic, and palmitic acids. In addition to the environmental factors, agricultural ones, particularly the harvest date, had affected the chemical constituents of olive oil. The results obtained showed that the harvest date strongly influenced acidity and total polyphenols. A change in the fatty acid profile characterized by a higher linoleic and lower oleic content, an increase in ∆^7-stigmastenol exceeding the limit set by the IOC standards, and a dominating off-flavor compound (ethanol) was noticed as a result of delaying the harvesting time. Besides, two technological factors, particularly improper fruit storage, and bad hygienic practices, significantly affected olive oil’s quality parameters and fatty acid content.3D-FFFS and Ultra-FGC were used in-line with conventional analysis, and they both showed an undeniable performance. 3D-FFFS coupled with chemometric tools, namely multiple linear regression (MLR) applied on parallel factor (PARAFAC) scores and partial least squares (PLS), was tested on inconsistent qualities of olive oil samples to predict quality parameters. Twenty-two MLR models were generated, the majority of which showed a good correlation coefficient (R>0.7). A second model using PLS on the unfolded emission-excitation matrices was also conducted to improve the regression and assess whether the variability can be handled successfully. However, similar results, with a slight improvement over the MLR model, were obtained. As for Ultra Flash GC, it made it possible to identify, in only a few minutes (< 2 min), ethanol, (E,E)-2,4-decadienal (organoleptic defect), and 1-hexanol (fruity, grassy) as the main volatiles characterizing the Soury variety.This study offers the potential to disseminate an analytical control plan that links environmental aspects in Lebanon and cultivation/harvesting techniques to olive oil's resulting physicochemical characteristics. Such a matrix incorporating rapid analysis techniques will facilitate governance over the end product's final quality and, subsequently, conformity to IOC standards. Furthermore, this work will set the ground through a detailed identification fiche for PGI
Dorji, Kinzang. „Utility of an existing biotic score method in assessing the stream health in Bhutan“. Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/97993/1/Kinzang_Dorji_Thesis.pdf.
Der volle Inhalt der QuelleDutta, Ashutosh. „Exploration of diversified interactions of some significant compounds prevalent in several environments by physicochemical contrivance“. Thesis, University of North Bengal, 2018. http://ir.nbu.ac.in/handle/123456789/2787.
Der volle Inhalt der QuelleBücher zum Thema "Physicochemical Approach"
Singh, Man. Innovative Approach to Physicochemical Analysis. I.K. International Publishing House Pvt. Ltd, 2020.
Den vollen Inhalt der Quelle findenPeralta-Videa, Jose, und Guadalupe De La Rosa. Physicochemical Interactions of Engineered Nanoparticles and Plants : : A Systemic Approach. Elsevier Science & Technology Books, 2022.
Den vollen Inhalt der Quelle findenPeralta-Videa, Jose, und Guadalupe De La Rosa. Physicochemical Interactions of Engineered Nanoparticles and Plants: A Systemic Approach. Elsevier Science & Technology, 2022.
Den vollen Inhalt der Quelle findenGrassi, Gabriele, Mario Grassi, Nicola De Zordi, Ireneo Kikic, Mariarosa Moneghini und Stefano Antonio Mezzasalma. Physicochemical Approaches to the Characterization of Pharmaceutical Systems. Elsevier, 2023.
Den vollen Inhalt der Quelle findenGrassi, Gabriele, Mario Grassi, Nicola De Zordi, Ireneo Kikic und Mariarosa Moneghini. Physicochemical Approaches to the Characterization of Pharmaceutical Systems. Elsevier, 2019.
Den vollen Inhalt der Quelle findenPhysicoChemical and Computational Approaches to Drug Discovery Rsc Drug Discovery. Royal Society of Chemistry, 2012.
Den vollen Inhalt der Quelle findenMcGuiness, C. L., R. K. Smith, M. E. Anderson, P. S. Weiss und D. L. Allara. Nanolithography using molecular films and processing. Herausgegeben von A. V. Narlikar und Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.23.
Der volle Inhalt der QuelleMaysinger, Dusica, P. Kujawa und Jasmina Lovrić. Nanoparticles in medicine. Herausgegeben von A. V. Narlikar und Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.14.
Der volle Inhalt der QuelleBuchteile zum Thema "Physicochemical Approach"
Chaari, Moufida, und Slim Smaoui. „Physicochemical Properties of Citrus Fruits: Analytical Approach for Physicochemical Parameters of Citrus Fruit and Juice“. In Citrus Fruits and Juice, 69–87. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8699-6_4.
Der volle Inhalt der QuelleOsaki, Shigeyoshi. „Physicochemical Properties of Spider Silk-An Approach to Nanostructure“. In Macromolecular Nanostructured Materials, 297–320. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08439-7_19.
Der volle Inhalt der QuelleRytting, J. Howard. „Prediction of Physicochemical Properties Using a Semi-Empirical Group Contribution Approach“. In Physical Property Prediction in Organic Chemistry, 449–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-74140-1_26.
Der volle Inhalt der QuelleLemarchand, Eric, Luc Dormieux und Franz-Josef Ulm. „A Micromechanics Approach to the Mechanically-Induced Dissolution in Porous Media“. In IUTAM Symposium on Physicochemical and Electromechanical Interactions in Porous Media, 321–27. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3865-8_37.
Der volle Inhalt der QuelleKienzl, E., P. Riederer, K. Jellinger und N. Noller. „A Physicochemical Approach to Characterize [3H] -Tryptamine-Binding-Sites in Human Brain“. In Neuropsychopharmacology of the Trace Amines, 469–85. Totowa, NJ: Humana Press, 1985. http://dx.doi.org/10.1007/978-1-4612-5010-4_47.
Der volle Inhalt der QuelleJain, Gaurav, Sunil Kumar und Rajesh Kumar. „A Brief Review on ANN Approach towards the Physicochemical Properties of Biodiesel“. In Manufacturing Technologies and Production Systems, 97–108. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003367161-9.
Der volle Inhalt der QuelleVelazquez-Ruiz, Leonardo, Graciela Ramirez-Alonso, Fernando Gaxiola, Javier Camarillo-Cisneros, Daniel Espinobarro und Alain Manzo-Martinez. „Approximation of Physicochemical Properties Based on a Message Passing Neural Network Approach“. In Hybrid Intelligent Systems Based on Extensions of Fuzzy Logic, Neural Networks and Metaheuristics, 15–26. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-28999-6_2.
Der volle Inhalt der QuelleGhosh, Supradip. „Acid Base Homeostasis: Stewart Approach at the Bedside“. In Rational Use of Intravenous Fluids in Critically Ill Patients, 153–65. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-42205-8_7.
Der volle Inhalt der QuelleRoy, Malabika Biswas, Pankaj Kumar Roy, Sudipa Halder, Gourab Banerjee und Asis Mazumdar. „Assessment of Stream Flow Impact on Physicochemical Properties of Water and Soil in Forest Hydrology Through Statistical Approach“. In Springer Climate, 207–25. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67865-4_9.
Der volle Inhalt der QuellePraveena, B., M. Pramod Kumar, T. Lakshmi Prasad und N. Jayaraju. „Evaluation of Physicochemical Parameters of Coastal Water from Pennar River Estuary, East Coast of India: An Integrated Approach“. In Coasts, Estuaries and Lakes, 77–91. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21644-2_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Physicochemical Approach"
Maharani, Nabilla Adiya, Romario Dion, Meitri Putri Damayanti, Alchibalt Bima Putra Dzufakar, Candra Wahyuningsih, Muhammad Iskandar Zulkarnain, Amalia Kharisma Putri et al. „Bacterial diversity and physicochemical profiles in Pekalongan waters, Indonesia“. In ADVANCES IN INTELLIGENT APPLICATIONS AND INNOVATIVE APPROACH. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0140202.
Der volle Inhalt der QuelleFathy, Ahmed, Muhammad Arif, Clement Afagwu, MD Motiur Rahman, Mujahid Ali, Stefan Iglauer, Nevin Mathew und Mohamed Mahmoud. „Wettability of Shale/Oil/Brine Systems: A New Physicochemical and Imaging Approach“. In International Petroleum Technology Conference. IPTC, 2022. http://dx.doi.org/10.2523/iptc-22177-ms.
Der volle Inhalt der QuelleMiftakhov, Eldar, Tatyana Mikhailova und Svetlana Mustafina. „Methods and Algorithms for Implementation of Imitation Approach to Modeling of Physicochemical Processes“. In 2024 International Russian Smart Industry Conference (SmartIndustryCon). IEEE, 2024. http://dx.doi.org/10.1109/smartindustrycon61328.2024.10515621.
Der volle Inhalt der QuelleIshola, K., O. Bamidele, K. Oyedele und L. Adeoti. „A Combined Approach of Electrical Resistivity and Physicochemical Methods for Mapping of Hydrocarbon Contaminated Site“. In 24th European Meeting of Environmental and Engineering Geophysics. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201802496.
Der volle Inhalt der QuelleHernandez, B., J. Salazar, S. Castilla, J. Borjas und G. Jimenez. „Title Physicochemical Water Control: A Sustainable and Practical Approach to Avoid Deferred Production Related to Chemical Problems and Consumption Management“. In SPE Water Lifecycle Management Conference and Exhibition. SPE, 2024. http://dx.doi.org/10.2118/219073-ms.
Der volle Inhalt der QuelleOliveira, Wanderley Pereira, Victor Oloruntoba Bankole und Claudia Regina F. Souza. „Spray dried proliposomes of Rosmarinus officinalis polyphenols: a quality by design approach“. In 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7859.
Der volle Inhalt der QuelleShqair, M., Z. Khatir, A. Ibrahim, M. Berkani, A. Halouani und T. Hamieh. „Physicochemical-microstructural approach for modeling the crack passage at topside metallic parts in IGBT semiconductor power electronics“. In 2022 23rd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2022. http://dx.doi.org/10.1109/eurosime54907.2022.9758895.
Der volle Inhalt der QuelleQu, M. „Mechanisms of Nanofluid Based Modification MoS2 Nanosheet for Enhanced Oil Recovery“. In Indonesian Petroleum Association 44th Annual Convention and Exhibition. Indonesian Petroleum Association, 2021. http://dx.doi.org/10.29118/ipa21-e-162.
Der volle Inhalt der QuelleShah, Shreyas, Quoc Mac, John Kim und Michael S. Eggleston. „Aptamer-Based Microparticles for Biochemical Sensing Using Optical Coherence Tomography“. In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fio.2022.jw4b.48.
Der volle Inhalt der QuelleRioja Diez, Y., C. Fernández Martínez-Llamazares, S. Manrique Rodriguez, MDP Montero Antón, A. Carrillo Burdallo, D. Gomez, A. Prieto Romero et al. „4CPS-195 Characterisation of injectable formulations and optimisation of their delivery by enteral tube: a physicochemical and physiological approach“. In 28th EAHP Congress, Bordeaux, France, 20-21-22 March 2024. British Medical Journal Publishing Group, 2024. http://dx.doi.org/10.1136/ejhpharm-2024-eahp.299.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Physicochemical Approach"
Tuller, Markus, Asher Bar-Tal, Hadar Heller und Michal Amichai. Optimization of advanced greenhouse substrates based on physicochemical characterization, numerical simulations, and tomato growth experiments. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7600009.bard.
Der volle Inhalt der QuelleBaxter, W., Amanda Barker, Samuel Beal, Lauren Bosche, Ryan Busby, Zoe Courville, Elias Deeb et al. A comprehensive approach to data collection, management, and visualization for terrain characterization in cold regions. Engineer Research and Development Center (U.S.), Februar 2024. http://dx.doi.org/10.21079/11681/48212.
Der volle Inhalt der Quelle