Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Physical properties of fault zones“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Physical properties of fault zones" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Physical properties of fault zones"
Verberne, Berend A., Oliver Plümper und Christopher J. Spiers. „Nanocrystalline Principal Slip Zones and Their Role in Controlling Crustal Fault Rheology“. Minerals 9, Nr. 6 (28.05.2019): 328. http://dx.doi.org/10.3390/min9060328.
Der volle Inhalt der QuelleGibson, Richard G. „Physical character and fluid-flow properties of sandstone-derived fault zones“. Geological Society, London, Special Publications 127, Nr. 1 (1998): 83–97. http://dx.doi.org/10.1144/gsl.sp.1998.127.01.07.
Der volle Inhalt der QuelleGuillou-Frottier, Laurent, Hugo Duwiquet, Gaëtan Launay, Audrey Taillefer, Vincent Roche und Gaétan Link. „On the morphology and amplitude of 2D and 3D thermal anomalies induced by buoyancy-driven flow within and around fault zones“. Solid Earth 11, Nr. 4 (26.08.2020): 1571–95. http://dx.doi.org/10.5194/se-11-1571-2020.
Der volle Inhalt der QuelleZoback, M., S. Hickman und W. Ellsworth. „Scientific Drilling Into the San Andreas Fault Zone – An Overview of SAFOD's First Five Years“. Scientific Drilling 11 (01.03.2011): 14–28. http://dx.doi.org/10.5194/sd-11-14-2011.
Der volle Inhalt der QuellePampillón, Pedro, David Santillán, Juan Carlos Mosquera und Luis Cueto-Felgueroso. „Geomechanical Constraints on Hydro-Seismicity: Tidal Forcing and Reservoir Operation“. Water 12, Nr. 10 (29.09.2020): 2724. http://dx.doi.org/10.3390/w12102724.
Der volle Inhalt der QuelleFagereng, Å., und A. Beall. „Is complex fault zone behaviour a reflection of rheological heterogeneity?“ Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, Nr. 2193 (Februar 2021): 20190421. http://dx.doi.org/10.1098/rsta.2019.0421.
Der volle Inhalt der QuelleBarnes, Philip M., Laura M. Wallace, Demian M. Saffer, Rebecca E. Bell, Michael B. Underwood, Ake Fagereng, Francesca Meneghini et al. „Slow slip source characterized by lithological and geometric heterogeneity“. Science Advances 6, Nr. 13 (März 2020): eaay3314. http://dx.doi.org/10.1126/sciadv.aay3314.
Der volle Inhalt der QuelleSeo, Yong Seok, Chang Yong Kim, Kwang Yeom Kim und Kyoung Mi Lee. „Geomechanical Characterization of Faulted Rock Materials in Korea“. Key Engineering Materials 321-323 (Oktober 2006): 328–31. http://dx.doi.org/10.4028/www.scientific.net/kem.321-323.328.
Der volle Inhalt der QuelleKassym, A. E., V. S. Portnov, M. B. Mynbayev, N. S. Askarova und А. N. Yessendossova. „Criteria and signs of lead-zinc mineralization within the Maityubinsky anticlinorium“. Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik Shikisattardy Keshendi Paidalanu 330, Nr. 3 (07.12.2023): 68–75. http://dx.doi.org/10.31643/2024/6445.30.
Der volle Inhalt der QuelleZhu, Danping, Xuewei Liu und Shaobin Guo. „Reservoir Formation Model and Main Controlling Factors of the Carboniferous Volcanic Reservoir in the Hong-Che Fault Zone, Junggar Basin“. Energies 13, Nr. 22 (21.11.2020): 6114. http://dx.doi.org/10.3390/en13226114.
Der volle Inhalt der QuelleDissertationen zum Thema "Physical properties of fault zones"
Heermance, Richard V. „Geometry and Physical Properties of the Chelungpu Fault, Taiwan, and Their Effect on Fault Rupture“. DigitalCommons@USU, 2002. https://digitalcommons.usu.edu/etd/6720.
Der volle Inhalt der QuelleTadokoro, Keiichi. „Physical Properties of Fault Zone in the Postseismic Stage and its Temporal Change“. 京都大学 (Kyoto University), 2000. http://hdl.handle.net/2433/181125.
Der volle Inhalt der QuelleFlores, Cuba Joseph M. „Earthquake rupture around stepovers in a brittle damage medium“. Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS301.pdf.
Der volle Inhalt der QuelleStrike-slip fault systems consist of a variety of geometrical complexities like branches, kinks and step-overs. Especially, the presence of a step-over structure can strongly determine the final size of the earthquake rupture. Thus understanding the dynamics of a rupture through such a complexity is crucial for seismic hazard assessment. A few studies have looked at this question within the context of a linear elastic medium. However, during an earthquake off-fault damage is generated, especially at the ends of a fault, which significantly changes the overall dynamics of a rupture. Using a micromechanical model, that accounts for crack growth and opening and its impact on the dynamic evolution of elastic moduli, we evaluate how dynamic off-fault damage can affect the capability of a rupture to navigate through step-over fault structures. We show that, sometimes, accounting for this energy sink, off-damage suppresses the ability of the rupture to jump from one fault to another. Whereas, in some specific cases, the dynamically created low-velocity zone may aid the rupture to jump on the secondary fault. Combing this numerical study with an analytical analysis we set the contours for a systematic approach useful for earthquake hazard assessments
Lefèvre, Mélody. „Propriétés structurales, pétro-physiques et circulations de fluides au sein d'une zone de failles dans les argiles“. Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4320/document.
Der volle Inhalt der QuelleFault zones concentrate fluids migration and deformations in the upper crust. The shale hydraulic properties make them excellent storage sites and hydrocarbon reservoirs/source rocks. Fault zones can play two roles in the fluid circulation; drains or barriers, in general, both roles are combined within the same fault zone. What are the conditions that promote the fluid circulation along the fault zones in shales and what are the fault zone impacts on the formation properties are relatively poorly explored key questions. This study focused on characterizing the relationships between fault architecture, paleo-fluid as well as current fluid circulations through the analysis of fault calcite mineralization, injection tests and petrophysical properties conducted on a fault zone outcropping underground in the Tournemire research laboratory nested in the Toarcian shale. The fault zone structure was characterized using boreholes data and reconstructed in 3D through modeling to define different deformation facies. No clear facies organization is observed, a fault core and a fault damage zone being difficult to define as it is in hard rocks. The intact, fractured and breccia facies are characterized by a porosity of 9.5-13.5, 10-15 and 13-21%. Large fluid flowrate concentrated along a few “channels” located at the breccia boundaries and in the secondary fault zones that displayed fractured facies and limited breccia fillings. Detailed microstructural and geochemical analysis at the breccia/fractured zones interface revealed that fluids circulated out of the main shear zones, in micro-more or less inherited fractures highlighting a decoupling between fault slip and fluid migrations
Kelly, Christina. „Understanding seismic properties of fault zones“. Thesis, University of Liverpool, 2014. http://livrepository.liverpool.ac.uk/17861/.
Der volle Inhalt der QuelleMitchell, Thomas Matthew. „The fluid flow properties of fault damage zones“. Thesis, University of Liverpool, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.485852.
Der volle Inhalt der QuelleChilds, Conrad James. „The structure and hydraulic properties of fault zones“. Thesis, University of Liverpool, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367208.
Der volle Inhalt der QuelleFondriest, Michele. „Structure and mechanical properties of seismogenic fault zones in carbonates“. Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3424540.
Der volle Inhalt der QuelleIn molte regioni sismiche dell’area Mediterranea, tra cui l’Italia e la Grecia, gran parte dei terremoti, anche distruttivi, enucleano e propagano in sequenze di rocce carbonatiche della crosta superiore (terremoto dell’Aquila, 2009, Mw 6.1). Questo è vero soprattutto per le sequenze di foreshock e aftershock. Le indagini sismologiche, geofisiche e geodetiche forniscono dei parametri fondamentali per la caratterizzazione delle sorgenti sismiche (momento sismico, caduta di sforzo statico, energia elastica irradiata) ma non hanno risoluzione spaziale sufficiente per descrivere in maniera dettagliata la geometria delle sorgenti sismiche e i processi chimico-fisici attivi nelle zone di faglia durante un terremoto. Questi aspetti limitano fortemente la nostra conoscenza della fisica dei terremoti. In questa tesi la struttura interna e le proprietà meccaniche di zone di faglia sismogenetiche in rocce carbonatiche sono state studiate utilizzando un approccio multidisciplinare e complementare rispetto a quello classico basato su dati sismologici principalmente ricavati dall’inversione delle onde sismiche. I metodi utilizzati sono: (i) il rilevamento strutturale di dettaglio di zone di faglia esumate in carbonati con tecniche di terreno e di telerilevamento (ad es. utilizzo di un drone per ottenere immagini ad alta risoluzione di grandi affioramenti), (ii) la realizzazione di prove meccaniche su roccia (e polveri di roccia) in condizioni di deformazione rilevanti per il ciclo sismico (utilizzo di apparati di tipo rotary, pressa uniassiale e Split Hopkinson Pressure Bar), (iii) lo studio mineralogico-microstrutturale (microscopia ottica e a scansione elettronica, microsonda elettronica, diffrazione a raggi X su polveri, catodoluminescenza, microtomografia a raggi X, interferometria in luce bianca, analisi di immagine) di rocce di faglia naturali e sperimentali per vincolare i processi chimico-fisici attivi in carbonati durante un terremoto. Sono state selezionate due zone di faglia in dolomie: la zona di faglia del Passo della Borcola (BPFZ) e la zona di faglia di Foiana (FFZ). Entrambe le zone di faglia sono esumate da profondità < 3 km e affiorano nel settore delle Alpi Meridionali (Italia). L’architettura interna delle due zone di faglia è fortemente controllata dalla riattivazione di strutture ereditate come sistemi di giunti a scala regionale e superfici di strato. La BPFZ è una faglia secondaria trascorrente appartenente al sistema della Linea Schio-Vicenza. La presenza all’interno della BPFZ di zone di scivolamento estremamente localizzate e spesso organizzate in livelli cataclastici ed ultracataclastici con bordi irregolari (a lobi e cuspidi), iniettati lungo fratture estensionali e caratterizzati da una forte selezione granulometrica ha suggerito l’attivazione di fenomeni di fluidizzazione durante la propagazione di rotture sismiche in un ambiente ricco in fluidi. La FFZ è una faglia transpressiva sinistra a scala regionale che presenta sistematiche variazioni nella propria struttura interna (e.g. spessore della zona di faglia, orientazione e cinematica delle faglie minori) lungo la direzione e l’immersione della faglia. La zona di faglia esposta è caratterizzata dalla presenza di dolomie frantumate senza evidenze significative di deformazione per taglio (dolomie frantumate in-situ) associate a faglie con piccoli rigetti (< 0.5 m) e superfici a specchio con clasti troncati. L’assenza di vene o fratture sigillate indica che la fagliazione è avvenuta in un ambiente povero in fluidi. L’origine delle faglie con superfici a specchio e delle dolomie frantumate in-situ della FFZ è stata investigata attraverso esperimenti eseguiti (1) con un apparato di tipo rotary imponendo basse ed alte velocità (0.0001-1 m/s) di scivolamento su polveri di dolomia e (2) con un pressa uniassiale e una Split Hopkinson Pressure Bar imponendo basse ed alte velocità di deformazione (quasi-statiche 10-3 s-1, dinamiche > 50 s-1) su cilindri di dolomia. Applicando le condizioni di sforzo normale e rigetto stimate per le faglie della FFZ, superfici a specchio simili a quelle naturali in termini di rugosità delle superfici e di microstrutture (presenza di clasti troncati lungo le superfici di faglia), sono state prodotte negli esperimenti di tipo rotary solo a velocità di scivolamento cosismiche (v ≥ 0.1 m/s). Inoltre dolomie frantumate in-situ con microstrutture simili a quelle descritte lungo la FFZ (frammenti di roccia con dimensioni fino a qualche millimetro allungati nella direzione di applicazione del carico e zone di microfratturazione incipiente) sono state prodotte negli esperimenti con la Split Hopkinson Pressure Bar solo a ratei di deformazione > 200 s-1 : tali ratei di deformazione sono in genere associati alle perturbazioni di sforzo dovute al passaggio di una rottura sismica. Pertanto l’associazione di dolomie frantumate in-situ tagliate da faglie discrete con superfici a specchio è stata interpretata come il risultato della propagazione di rotture sismiche nelle porzioni superficiali della FFZ. Infine, a livello qualitativo, la complessità strutturale delle due zone di faglia studiate in termini di geometria del network di faglie e fratture, distribuzione spaziale delle rocce di faglia, orientazione e cinematica delle faglie, è confrontabile sia con la distribuzione del danneggiamento di faglia predetta da simulazioni di rotture sismiche, sia con la struttura di sorgenti sismogenetiche attuali in carbonati desunta da osservazioni sismologiche
Haines, Thomas J. „The evolution of petrophysical properties across carbonate hosted normal fault zones“. Thesis, University of Aberdeen, 2014. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=225315.
Der volle Inhalt der QuelleJeanne, Pierre. „Architectural, petrophysical and hydromechanical properties of fault zones in fractured-porous rocks : compared studies of a moderate and a mature fault zones (France)“. Nice, 2012. http://www.theses.fr/2012NICE4016.
Der volle Inhalt der QuelleAlthough fault zones represent a very small volume of the crust, they highly influence the crust’s mechanical and fluid flows properties. This work compares high definition trans-disciplinary analyses of two fault zones with highly contrasted properties. One is a mature fault zone of plurikilometer length, and the other is a small fault zone of a few hundred meters length. We have characterized the architectural, hydromechanical and strength properties of these faults to improve the understanding of the coupling between fault zones hydromechanical properties and their potential activation. A protocol to characterize in the field (on outcropping segments) the faults hydraulic and mechanical properties has been conducted through the coupling of micro-structural analyses, detailed rock physical descriptions at the rock mass several scales. The two studied fault zones despite their different sizes display some similarities. Both show a strong coupling between the fault zone diagenetic history, the initial properties of the sedimentary layers and the fault zone current hydraulic and mechanical properties. We show that the most important parameter governing the hydromechanical behaviors of fault zones is the continuity of the damage zones. A mature fault zone will have a relatively continuous damage zone while a small fault zone will contain a more heterogeneous damage zone characterized by an alternation of fractured and un-fractured layers. These architectural contrasts of damage zones also depend on the initial intact rock properties of the sedimentary series. Contrasted initial intact rock strengths (σc) induce contrasted strain accommodation mechanisms in the fault zone compartments, and an associated fault zone architecture that displays large thickness variations, characterized by alternate high-permeable-low-stiff and low-permeable-high-stiff layers in the damage zone
Bücher zum Thema "Physical properties of fault zones"
Minor, Scott A. Regional survey of structural properties and cementation patterns of fault zones in the northern part of the Albuquerque basin, New Mexico--implications for ground-water flow. Reston, Va: U.S. Geological Survey, 2006.
Den vollen Inhalt der Quelle finden(Editor), David D. Bruhn, und Luigi Burlini (Editor), Hrsg. High-Strain Zones: Structure and Physical Properties. Geological Society of London, 2005.
Den vollen Inhalt der Quelle findenJ, Wibberley C. A., Hrsg. The internal structure of fault zones: Implications for mechanical and fluid-flow properties. London: Geological Society, 2008.
Den vollen Inhalt der Quelle findenBen-Zion, Yehuda, und Antonio Rovelli. Properties and Processes of Crustal Fault Zones: Volume I. Birkhäuser, 2014.
Den vollen Inhalt der Quelle findenBen-Zion, Yehuda, und Antonio Rovelli. Properties and Processes of Crustal Fault Zones: Volume II. Springer, 2015.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Physical properties of fault zones"
Yamashita, Teruo, und Akito Tsutsumi. „Fluid-Flow Properties of Fault Zones“. In Involvement of Fluids in Earthquake Ruptures, 51–71. Tokyo: Springer Japan, 2017. http://dx.doi.org/10.1007/978-4-431-56562-8_3.
Der volle Inhalt der QuelleRácz, Zoltán. „Continuum Description of Active Zones“. In Fractals’ Physical Origin and Properties, 193–203. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-3499-4_8.
Der volle Inhalt der QuelleFinzi, Yaron, Elizabeth H. Hearn, Yehuda Ben-Zion und Vladimir Lyakhovsky. „Structural Properties and Deformation Patterns of Evolving Strike-slip Faults: Numerical Simulations Incorporating Damage Rheology“. In Mechanics, Structure and Evolution of Fault Zones, 1537–73. Basel: Birkhäuser Basel, 2009. http://dx.doi.org/10.1007/978-3-0346-0138-2_2.
Der volle Inhalt der QuelleRockwell, Thomas, Matthew Sisk, Gary Girty, Ory Dor, Neta Wechsler und Yehuda Ben-Zion. „Chemical and Physical Characteristics of Pulverized Tejon Lookout Granite Adjacent to the San Andreas and Garlock Faults: Implications for Earthquake Physics“. In Mechanics, Structure and Evolution of Fault Zones, 1725–46. Basel: Birkhäuser Basel, 2009. http://dx.doi.org/10.1007/978-3-0346-0138-2_9.
Der volle Inhalt der QuelleHsu, Ya-Ju, Jean-Philippe Avouac, Shui-Beih Yu, Chien-Hsin Chang, Yih-Min Wu und Jochen Woessner. „Spatio-temporal Slip, and Stress Level on the Faults within the Western Foothills of Taiwan: Implications for Fault Frictional Properties“. In Mechanics, Structure and Evolution of Fault Zones, 1853–84. Basel: Birkhäuser Basel, 2009. http://dx.doi.org/10.1007/978-3-0346-0138-2_14.
Der volle Inhalt der QuelleOgita, N., Y. Kito, T. Kimizu und R. Yatabe. „Physical properties of clay from landslides in large fracture zones“. In Slope Stability Engineering, 1229–32. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203739600-105.
Der volle Inhalt der QuelleBilek, Susan L., und Thorne Lay. „Comparison of Depth Dependent Fault Zone Properties in the Japan Trench and Middle America Trench“. In Seismogenic and Tsunamigenic Processes in Shallow Subduction Zones, 433–56. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8679-6_3.
Der volle Inhalt der QuelleBouckaert, L. P., R. Smoluchowski und E. P. Wigner. „Theory of the Brillouin Zones and Symmetry Properties of Wave Functions in Crystals“. In Part I: Physical Chemistry. Part II: Solid State Physics, 416–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59033-7_40.
Der volle Inhalt der QuelleRuzhich, Valery V., und Evgeny V. Shilko. „A New Method for Seismically Safe Managing of Seismotectonic Deformations in Fault Zones“. In Springer Tracts in Mechanical Engineering, 45–66. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60124-9_3.
Der volle Inhalt der QuelleHashimoto, Chihiro, und Mitsuhiro Matsu’ura. „3-D Simulation of Earthquake Generation Cycles and Evolution of Fault Constitutitve Properties“. In Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part II, 2175–99. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8197-5_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Physical properties of fault zones"
Vaas, Christian, Marc Roeschlin, Panos Papadimitratos und Ivan Martinovic. „Poster: Tracking Vehicles Through Encrypted Mix-Zones Using Physical Layer Properties“. In 2018 IEEE Vehicular Networking Conference (VNC). IEEE, 2018. http://dx.doi.org/10.1109/vnc.2018.8628387.
Der volle Inhalt der QuelleMichie, E. A. H., T. J. Haines, D. Healy, J. Neilson, G. I. Alsop und N. E. Timms. „Fracture Patterns in Carbonate Fault Zones and their Influence on Petrophysical Properties“. In 3rd EAGE International Conference on Fault and Top Seals. Netherlands: EAGE Publications BV, 2012. http://dx.doi.org/10.3997/2214-4609.20143034.
Der volle Inhalt der Quelleter Heege, J. H., B. B. T. Wassing, S. B. Giger und M. B. Clennell. „Numerical Modelling of the Mechanical and Fluid Flow Properties of Fault Zones – Implications for Fault Seal Analysis“. In 2nd EAGE International Conference on Fault and Top Seals - From Pore to Basin Scale 2009. European Association of Geoscientists & Engineers, 2009. http://dx.doi.org/10.3997/2214-4609.20147195.
Der volle Inhalt der QuelleAl-Jumah, Ali, Melih Gokmen, Ameera Harrasi, Ibrahim Abri, Salim Buwaiqi und Gerardo Urdaneta. „Field Application of the Autonomous Inflow Control Device AICD for Optimized Heavy Oil Production in South Sultanate of Oman“. In SPE Conference at Oman Petroleum & Energy Show. SPE, 2022. http://dx.doi.org/10.2118/200279-ms.
Der volle Inhalt der QuelleCamus, A. Sánchez, R. Ramos und L. Bianchi. „Latest Advances in 3-D and 4-D FEM Simulation for Comprehensive Geomechanical and Geophysical Analysis of Unconventional Reservoirs, from Field Data to Numerical Models: Case Study Fm. Vaca Muerta, Argentina“. In Offshore Technology Conference Brasil. OTC, 2023. http://dx.doi.org/10.4043/32775-ms.
Der volle Inhalt der QuelleAubert, I., P. Léonide, J. Lamarche und R. Salardon. „Diagenetic Impact on Polyphase Fault Zones Drain Properties in Micro-Porous Carbonates (Urgonian – SE France)“. In Fifth International Conference on Fault and Top Seals. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902326.
Der volle Inhalt der QuelleFeijoo Calle, Ernesto Patricio, Andrés Nicolás Aguirre Larriva und Bernardo Andrés Feijoo Guevara. „Influence zones generated by physical properties for the characterization of rock material in the field“. In VIII Congreso Internacional de Investigación REDU. Medwave, 2022. http://dx.doi.org/10.5867/medwave.2022.s1.ci29.
Der volle Inhalt der QuelleJoshi, Heet S., Tejas Turakhia, Mehul R. Pandya und Rajesh R. Iyer. „Investigation of Optical and Physical Properties of Aerosol Over Different Sub-Zones of Ahmedabad, India“. In 2023 IEEE India Geoscience and Remote Sensing Symposium (InGARSS). IEEE, 2023. http://dx.doi.org/10.1109/ingarss59135.2023.10490420.
Der volle Inhalt der QuelleZhang, Tiansheng, und Haiying Huang. „Physical Properties and Fracture Network Characteristics of Mafic and Ultramafic Rocks“. In 57th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/arma-2023-0951.
Der volle Inhalt der QuelleAgosta, Fabrizio, Manika Prasad und Atilla Aydin. „Rock physical properties of carbonate fault rocks, Fucino Basin (central Italy)“. In SEG Technical Program Expanded Abstracts 2004. Society of Exploration Geophysicists, 2004. http://dx.doi.org/10.1190/1.1845166.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Physical properties of fault zones"
Shroba, R. R., D. R. Muhs und J. N. Rosholt. Physical properties and radiometric age estimates of surficial and fracture-fill deposits along a portion of the Carpetbag fault system, Nevada Test Site, Nye County, Nevada. Office of Scientific and Technical Information (OSTI), Juli 1988. http://dx.doi.org/10.2172/6970125.
Der volle Inhalt der QuelleHayward, N., und V. Tschirhart. A comparison of 3-D inversion strategies in the investigation of the 3-D density and magnetic susceptibility distribution in the Great Bear Magmatic Zone, Northwest Territories. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331954.
Der volle Inhalt der QuelleDinovitzer, Aaron. PR-214-144500-R05 Weld Hydrogen Cracking Susceptibility Characterization. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juli 2018. http://dx.doi.org/10.55274/r0011495.
Der volle Inhalt der Quelle