Dissertationen zum Thema „Photovoltaics cell“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Photovoltaics cell" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Pérez, Boix Pablo. „Organic Photovoltaics: cell processing, device physics and electrical characterization“. Doctoral thesis, Universitat Jaume I, 2012. http://hdl.handle.net/10803/669172.
Der volle Inhalt der QuelleYandt, Mark. „Characterization and Performance Analysis of High Efficiency Solar Cells and Concentrating Photovoltaic Systems“. Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20535.
Der volle Inhalt der QuelleTaylor, Paul Alan. „Proton radiation effects on space solar cell structures and materials“. Thesis, University of Southampton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242506.
Der volle Inhalt der QuelleKang, Moon Hee. „Development of high-efficiency silicon solar cells and modeling the impact of system parameters on levelized cost of electricity“. Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47647.
Der volle Inhalt der QuelleWeber, Oliver. „Structural chemistry of hybrid halide perovskites for thin film photovoltaics“. Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761012.
Der volle Inhalt der QuellePark, Yoonseok. „Light trapping substrates and electrodes for flexible organic photovoltaics“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-219686.
Der volle Inhalt der QuelleOrganische Photovoltaik ist einer der vielversprechendsten Kandidaten für die zukünftige Solarstromgewinnung auf flexiblen Substraten. Um diese Flexibilität zu ermöglichen, sind herkömliche Glassubstrate mit ITO-Elektroden zu spröde. Ein vielversprechender Kandidat, um sowohl flexible Elektroden als auch flexible Substrate herzustellen, sind Polymere, da diese sehr biegsam und leicht zu verarbeiten sind. Deshalb wird in dieser Arbeit das hoch transparente, leitfähige Polymer PEDOT:PSS als Elektrode und PET (mit einer AlOx Verkapselungsschicht) als Substrat untersucht. Aufgrund der guten Prozessierbarkeit der Polymere konnten wir zusätzlich zu den eigentlichen Funktionen des Substrates und der Elektrode noch den Mechanismus des Lichteinfangs hinzufügen. Zusätzlich zu ihrer Flexibilität haben organische Solarzellen noch weitere Vorteile: sie sind dünn, leicht, skalierbar und verursachen vergleichsweise geringe Kosten für Herstellung und Installation. Ein Nachteil organischer Solarzellen ist die vergleichsweise geringe Ladungsträgerbeweglichkeit der Absorbermaterialien, welche oft die Schichtdicke der Absorbermaterialien begrenzt. Dies hat weniger absorbierte Photonen, weniger Stromdichte und somit einen geringeren Wirkungsgrad zur Folge. In den letzten Jahren wurden periodisch strukturierte Substrate und streuende Schichten als Lichteinfangelemente eingesetzt, um den Wirkungsgrad organischer Solarzellen mit dünnen Absorberschichten zu erhöhen. Gestaltungsregeln für solche Lichteinfangelemente sind noch weitestgehend unbekannt. Im Rahmen dieser Arbeit strukturieren wir PET Substrate mit einem direkten Laserinterferenzsystem, welches ein leistungsfähiges, skalierbares Einschrittverfahren zur Polymerstrukturierung ist. Da PEDOT:PSS aus der Lösung prozessiert wird, können wir weiterhin Nanopartikel hinzufügen, die der Elektrode zusätzlich noch lichtstreuende Eigenschaften geben. Außerdem können 2- bzw. 3-dimensionale Nanostrukturen leicht mithilfe einer Stempeltechnik eingeprägt werden. Um die Effekte des Lichteinfangs, welcher durch die oben genannten Methoden erzeugt wird, zu untersuchen, werden flexible organische Solarzellen mittels Vakuumverdampfung prozessiert. DCV5T-Me und C60 bilden dabei die photoaktive Schicht. Somit werden die Licht fangenden Eigenschaften dieser flexiblen Solarzellen ausgenutzt und ausführlich in der Arbeit diskutiert
Aronsson, Oscar, Daniel Nyqvist und Simon Robertsson. „Solar energy production at Heby Skola : A pilot study of a photovoltaic installation in Sweden“. Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-201894.
Der volle Inhalt der QuelleLee, Jae-Hyeong. „Studies on Coating Process for Organic/Inorganic Thin-Films for Photovoltaics“. Kyoto University, 2014. http://hdl.handle.net/2433/188819.
Der volle Inhalt der QuelleLee, Michael M. „Organic-inorganic hybrid photovoltaics based on organometal halide perovskites“. Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:9384fc54-30de-4f0d-86fc-71c22d350102.
Der volle Inhalt der QuellePatrick, Christopher Edward. „Photoemission spectra of nanostructured solar cell interfaces from first principles“. Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:fa2333ea-7016-4d6f-8d55-aee4178482a6.
Der volle Inhalt der QuelleMagubane, Siphesihle Siphamandla. „Metal assisted chemically etched silicon nanowires for application in a hybrid solar cell“. University of the Western Cape, 2018. http://hdl.handle.net/11394/6733.
Der volle Inhalt der QuellePhotovoltaic (PV) devices based on inorganic-organic hybrid active layers have been extensively studied for over a decade now. However, photoactive hybrid layers of material combinations such as rr-P3HT and SiNWs still require further exploration as candidates for solar cell (SC) fabrication, due to favourable optical absorption and charge carrier mobility associated with them respectively. The ultimate goal of the study is to fabricate ITO/PEDOT:PSS/rr-P3HT:SiNWs/Al SCs with different SiNWs content and investigate the different parameters or factors influencing the performance of these cells. The vertically aligned SiNW arrays on a Si wafer were synthesised via metal assisted chemical etching (MACE) and a method of chemically detaching these wires was developed. The average length and the diameter of the SiNWs obtained were 4.5 μm and 0.2 μm, respectively. Different weight ratios of as-synthesised SiNWs were then incorporated within rr-P3HT to form different hybrid solutions, i.e. rr-P3HT: 0.3 wt% SiNWs, rr-P3HT: 0.7 wt% SiNWs and rr-P3HT: 1.3 wt% SiNWs. In addition, a pure rr- P3HT solution was made for reference purposes. SEM characterisation shows that the SiNWs are randomly distributed across the active area, and that the film becomes progressively inhomogeneous upon addition of SiNWs, whereas the TEM characterisation revealed that there is no chemical interaction between the rr-P3HT and SiNWs. The UV-Vis and PL spectra suggest that there are changes in absorption and emission characteristics upon SiNW incorporation into the rr-P3HT matrix, which may have impacted the charge transfer .The electrical properties of the different hybrid films were probed using Hall Effect measurements, which revealed that the conductivity increases with the increase in the concentration of nanowires (NWs). The increase in conductivity upon the addition of SiNWs in the rr-P3HT matrix was related to an increase of the mobility (μ) of charge carriers in the hybrid films.
Pachoumi, Olympia. „Metal oxide/organic interface investigations for photovoltaic devices“. Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/246263.
Der volle Inhalt der QuelleAnselmo, Ana Sofia. „Materials aspects in spin-coated films for polymer photovoltaics“. Doctoral thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-16107.
Der volle Inhalt der QuelleTan, Xinxuan. „Applications of Multichannel Spectroscopic Ellipsometry for CdTe Photovoltaics: From Window Layers to Back Contacts“. University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1513371404463035.
Der volle Inhalt der QuelleAvachat, Upendra Sureshchandra. „DEVELOPMENT OF TRANSPARENT AND CONDUCTING BACK CONTACTS ON CdS/CdTe SOLAR CELLS FOR PHOTOELECTROCHEMICAL APPLICATION“. Master's thesis, University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2889.
Der volle Inhalt der QuelleM.S.M.S.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science and Engineering
Uhrich, Christian. „Strategien zur Optimierung organischer Solarzellen: Dotierte Transportschichten und neuartige Oligothiophene mit reduzierter Bandlücke“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1209113927393-76737.
Der volle Inhalt der QuelleOrganic solar cells have the potential for light weight and flexible applications. They can be manufactured cost-effectively and can thus contribute to the reduction of the emission of carbon dioxide, methane and nitric oxides. In order to manufacture organic solar cells, only small amounts of organic materials are required. They can be processed at comparably low temperatures. Therefore, the fabrication on substrates like plastic foil is possible. Three different types of organic solar cells exist. The first kinds are solar cells prepared from small molecules that are manufactured via sublimation of the material in a vacuum. The second kind are polymer solar cells manufactured from solution by spin coating techniques or ink jet printing. And thirdly, dye sensitized solar cells - also known as Grätzel cells - consisting of a porous layer of titanium dioxide and most commonly a liquid electrolyte for the charge transport. This work deals exclusively with small molecule solar cells. The highest power conversion efficiencies reached by small molecule organic photovoltaics are now in the range of 5 %. In order to increase the efficiencies of solar cells prepared from small molecules, two major aspects must be developed. The understanding of the physical processes within the organic devices must be improved. And secondly, new materials are required with physical properties optimized for organic photovoltaics. In this work, I followed two strategies for optimizing organic solar cells: • By optimizing the offset of energy levels between donor and acceptor material, the open circuit voltage could be increased. In the investigated model system, the origin of the open circuit voltage and the recombination dynamics of photo generated charge carriers were analyzed. Concerning the open circuit voltage, solar cells consisting of a donor acceptor double layer structure, show fundamental differences to solar cells consisting of a donor acceptor blend. • Furthermore, new thiophene derivatives used as photoactive materials were investigated. By the attachment of electron withdrawing end groups, the ionization potential of the oligothiophenes is increased and the optical band gap is reduced at the same time. The investigated thiophene derivative DCV3T acts as an acceptor in combination with the commonly used donor-materials. A back- and forth-transfer of excitation energy is observed in blends of DCV3T and fullerene C60. In these blends, excitons are not separated into free charge carriers. This back and forth transfer leads to an enhancement of the density of triplet excitons on DCV3T. These excitons have a potentially high diffusion length due to the long lifetime of triplet excitons. This effect was utilized in the organic solar cells
Ruankham, Pipat. „Studies on Morphological Effects and Surface Modification of Nanostructured Zinc Oxide for Hybrid Organic/Inorganic Photovoltaics“. Kyoto University, 2014. http://hdl.handle.net/2433/188820.
Der volle Inhalt der QuelleRobertson, Kyle. „Optoelectronic Device Modeling of GaAs Nanowire Solar Cells“. Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39710.
Der volle Inhalt der QuelleFlimel, Karol. „Využití nanomateriálů pro organickou elektroniku a fotovoltaiku“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2011. http://www.nusl.cz/ntk/nusl-216677.
Der volle Inhalt der QuelleSankaranarayanan, Harish. „Fabrication of CIGS absorber layers using a two-step process for thin film solar cell applications“. [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000366.
Der volle Inhalt der QuelleBhandari, Khagendra P. „Characterization and Application of Colloidal Nanocrystalline Materials for Advanced Photovoltaics“. University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1430327894.
Der volle Inhalt der QuelleNemitz, Ian R. „Synthesis of Nanoscale Semiconductor Heterostructures for Photovoltaic Applications“. Bowling Green State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1277087935.
Der volle Inhalt der QuelleMarčík, Silvestr. „Detekce defektů solárních článků pomocí systému využívajcího elektroluminiscenci“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-318496.
Der volle Inhalt der QuelleKim, Vincent Oteyi. „Ultrafast spectroscopy of organic semiconductors : singlet fission and nonfullerene acceptors for organic photovoltaics“. Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/283561.
Der volle Inhalt der QuelleSreng, Mengkoing. „Development of in-situ photoluminescence characterization tools for the study of semiconductors for photovoltaics application“. Thesis, Institut polytechnique de Paris, 2019. http://www.theses.fr/2019IPPAX003.
Der volle Inhalt der QuelleDuring the last few decades, the conversion efficiency of photovoltaic solar cell has been significantly improved, almost reaching the Shockley-Queisser theoretical limit. At this point, a profound understanding of material properties and its evolution during the solar cell fabrication processes become increasingly crucial to further improve the cell conversion efficiency. For this reason, my doctoral studies have been focused on the development of in-situ characterization tools, which allows the studies of material properties in real time during the processes. The tools were developed based on photoluminescence techniques, in which the sample (semiconductor materials) is optically excited and simultaneously emits photons with energy approximately equal to the band gap of materials. In this thesis, three in-situ characterization tools will be presented.In-situ SSPL, based on steady-state photoluminescence technique, is developed to study the properties of semiconductor materials during the processes by directly measuring the steady-state PL intensity. After the upgrade of optical acquisition system, the tool has been used extensively to study the evolution of surface properties of crystalline silicon wafer, passivated by aluminum oxide (Al2O3) grown by atomic layer deposition (ALD) and hydrogenated amorphous silicon (a-Si:H) grown by plasma-enhanced chemical vapor deposition (PECVD), under Ar/H2 plasma exposure at different conditions. From these experiments, the behavioral differences between Al2O3-passivated sample and a-Si:H-passivated sample was observed and discussed. In addition, thanks to the plasma exposure experiment through a magnesium fluoride optical window (MgF2), the root cause of plasma-induced degradation of surface passivation was pin-pointed. Last but not least, the relationship between the dynamic of plasma-induced degradation and the plasma parameters (e.g. applied RF power, chamber pressure, and temperature) was also studied.To go one step further, in-situ MPL, based on modulated photoluminescence technique, is built to quantitatively study the properties of semiconductor materials. This characterization tool employs an intensity-modulated laser to excite the sample, so the minority carrier lifetime can be measured. After the conceptualization and fabrication of a new optical acquisition system, the system calibration and the optimization of MPL parameters were conducted. Furthermore, a characterization method was also developed, so the in-situ MPL is able to measure the minority carrier lifetime at a defined minority carrier density (e.g. 1015 cm-3 for non-concentrated single junction solar cell). After a lot of work, the tool is now fully functional and has been used to measure the minority carrier lifetime of crystalline silicon wafer during the de position of a-Si:H passivation layer, the thermal treatment, and the deposition of hydrogenated amorphous silicon nitride (a-SiNx:H) anti-reflection coating. The experimental results show that the temperature at which the processes were conducted plays a major role in activation and modification of surface passivation properties provided by Al2O3.Finally, as the tendency toward tandem solar cell has been continuously growing, another in-situ characterization tool, known as in-situ PLt (in-situ photoluminescence for tandem solar cell), was built. This characterization tool results from a combination of steady-state photoluminescence and modulated photoluminescence technique and was designed to study in real time the properties of both sub-cells independently and simultaneously. The in-situ PLt can be a potential characterization tool for the research toward high efficiency tandem solar cell
De, Vecchi Sylvain. „Développement de cellules photovoltaïques à hétérojonction de silicium et contacts interdigités en face arrière“. Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0050/document.
Der volle Inhalt der QuelleThis thesis studies the fabrication and the optimization of a new structure to enhance the efficiency of crystalline silicon based solar cells. This new cell design uses a-Si:H/c-Si heterojunction (Si-HJ) technology applied on interdigitated back contact structures (IBC). With IBC Si-HJ solar cells, the efficiency potential is theoretically higher than 25%. Their fabrication requires to pattern doped a-Si:H and the associated metallization on the same side. The implementation of those process steps has been carefully studied. All processes used in this study are potentially industrial (PECVD, sputtering, screen-printing, and laser) and the obtained structure without buffer layer between the BSF and the emitter allows to reduce fabrication steps. Issues linked to this design have been investigated. Within the frame of this work, the maximum efficiency reached on reduced size devices (25cm²) with n-type substrate and is 19% which is the 3rd best result worldwide. The cell performances are still limited by the absorption of front surface passivating layer (a-Si:H) and by the low doped layer conductivity. Several optimization ways are explored in this study. An innovative metallization process is then elaborated to allow large area solar cell fabrication while limiting resistive losses and offering more flexibility on metallized pattern. The interconnection and the encapsulation of cells with this metallization design have been illustrated and a module with 4 cells has been fabricated
Lundin, Johan. „EROI of crystalline silicon photovoltaics : Variations under different assumptions regarding manufacturing energy inputs and energy output“. Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-199639.
Der volle Inhalt der QuelleYandt, Mark. „Characterization Techniques and Optimization Principles for Multi-Junction Solar Cells and Maximum Long Term Performance of CPV Systems“. Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/35870.
Der volle Inhalt der QuelleHub, Michal. „Návrh fotovoltaické elektrárny s bateriovým úložištěm pro rodinný dům“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442441.
Der volle Inhalt der QuelleAndersson, August. „Electrical performance study of organic photovoltaics for indoor applications : with potential in Internet of Things devices“. Thesis, Karlstads universitet, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-78104.
Der volle Inhalt der QuelleGonzalez, Maria. „Electronic Defects of III-V Compound Semiconductor Materials Grown on Metamorphic SiGe Substrates for Photovoltaic Applications“. The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1250703650.
Der volle Inhalt der QuelleVauche, Laura. „Process development and scale-up for low-cost high-efficiency kesterite thin film photovoltaics“. Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4355/document.
Der volle Inhalt der QuelleFacing growing energy demand and increasing concerns about climate change and finite energy sources, solar energy use should increase. The future of the different photovoltaic technologies obviously depends on their power conversion efficiency and cost (summarized by the ratio cost per watt), but also on the elements availability. Thin films of earth-abundant kesterite, Cu2ZnSnS4 (CZTS), Cu2ZnSnSe4 (CZTSe) or Cu2ZnSn(S,Se)4 (CZTSSe), which can be manufactured with low-cost processes, are promising candidates for solar energy conversion at large scale.In this thesis, a copper tin and zinc precursor of controllable composition and thickness is electrodeposited on 15 × 15 cm2 substrates. Electrodeposition is a process compatible with high throughput low-cost and safety industry requirements. The precursor is converted into a semiconductor by thermal treatments in presence of sulfur or selenium. The resulting Cu-Zn-Sn-S or Cu-Zn-Sn-Se layers should be uniform and have adequate properties (phases, composition and morphology) to produce high efficient solar cells. Full device processing, including the pn junction formation steps (wet chemical etching and buffer layer deposition) is also investigated in order to maximize device efficiency. The best CZTSe solar cell exhibits a 9.1% powerconversion efficiency, setting a new record for kesterite solar cells produced by electrodeposition
Lepík, Pavel. „Inovace systému pro detekci defektů solárních článků pomocí elektroluminiscence“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-318492.
Der volle Inhalt der QuelleStranks, Samuel David. „Investigating carbon nanotube - polymer blends for organic solar cell applications“. Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:3a65d509-1610-4517-b10d-c90d832134c3.
Der volle Inhalt der QuelleGabr, Ahmed. „Modelling and Characterization of Down-Conversion and Down-Shifting Processes for Photovoltaic Applications“. Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35048.
Der volle Inhalt der QuelleRo, Kyoungsoo. „Two-Loop Controller for Maximizing Performance of a Grid-Connected Photovoltaic-Fuel Cell Hybrid Power Plant“. Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/30378.
Der volle Inhalt der QuellePh. D.
Carlin, Andrew Michael. „Materials Integration and Metamorphic Substrate Engineering from Si to GaAs to InP for Advanced III-V/Si Photovoltaics“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354648645.
Der volle Inhalt der QuelleRanjan, Vikash. „Enhancement of the Deposition Processes of Cu(In,Ga)Se2 and CdS Thin Films via In-situ and Ex-situ Measurements for Solar Cell Application“. University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1300213130.
Der volle Inhalt der QuelleKaderka, Tomasz. „Automatické měřicí pracoviště U-I charakteristik solárních článků“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-219206.
Der volle Inhalt der QuelleHorváth, Radovan. „Návrh skladby zdrojů pro síťovou nezávislost“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254307.
Der volle Inhalt der QuelleOsorio, Ruy Sebastian Bonilla. „Surface passivation for silicon solar cells“. Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:46ebd390-8c47-4e4b-8c26-e843e8c12cc4.
Der volle Inhalt der QuelleLeal, Ronan. „Epitaxial growth of silicon by PECVD from SiF4/H2/Ar gas mixtures for photovoltaics“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX038.
Der volle Inhalt der QuelleThis doctoral work aimed to assess the potential of low-temperature (200-300°C) epitaxy by plasma-enhanced chemical vapor deposition (PECVD) using SiF4/H2/Ar gas mixtures for the emitter formation in nPERT solar cells. The first part of this PhD thesis concerned the identification and the optimization of the process conditions to perform lowly strained intrinsic epi-layers with a smooth epi/wafer interface. We also investigated the causes of epitaxy breakdown and found out that a twinning-induced mechanism was responsible. Subsequently we focused on the growth mechanisms by studying the initial stages of growth and a Volmer-Weber growth mode has been highlighted. Finally, the process conditions for intrinsic epitaxy were transferred from a researchPECVD reactor to a 6 inch semi-industrial one. Inhomogeneity and growth rate issues have been tackled by fluid dynamics simulations resulting in the design of a new shower head. Boron-doped epi-layers grown at 300°C with an as-deposited hole concentration of 4.1019 cm-3 and a doping efficiency up to 70 % have been achieved keeping a low mosaicity and a low variation of the lattice parameter. The growth rate in these conditions reached 1.1 Å/s, i.e 15 times higher than what obtained at the beginning of this PhD for boron-doped epi-layers. Finally, the passivation of epitaxial layers has been investigated and lifetimes up to 160 μs for a 200 nm thick intrinsic layer passivated with
Nylund, Sophie, und Zahra Barbari. „Study of defects in PV modules : UV fluorescence and Thermographic photography for Photovoltaics (PV) Field Application“. Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-44120.
Der volle Inhalt der QuelleSun, Leizhi. „Improved Thin Film Solar Cells Made by Vapor Deposition of Earth-Abundant Tin(II) Sulfide“. Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11539.
Der volle Inhalt der QuelleEngineering and Applied Sciences
Mohammadi, Farid. „A Meta-Analysis on Solar Cell Technologies“. Thesis, Mittuniversitetet, Avdelningen för elektronikkonstruktion, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-32584.
Der volle Inhalt der QuelleAl, Kadi Jazairli Mohamad. „Growth of Zinc Oxide Nanoparticles on Top of Polymers and Organic Small Molecules as a Transparent Cathode in Tandem Photovoltaic Device“. Thesis, Linköping University, Department of Science and Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11391.
Der volle Inhalt der QuelleOrganic solar cells have caught considerable attention in the past few years due to their potential for providing environmentally safe, flexible, lightweight, inexpensive, and roll-to-roll feasible production solar cells. However, the efficiency achieved in current organic solar cells is quite low, yet quick and successive improvements render it as a promising alternative. A hopeful approach to improve the efficiency is by exploiting the tandem concept which consists of stacking two or more organic solar cells in series.
One important constituent in tandem solar cells is the middle electrode layer which is transparent and functions as a cathode for the first cell and an anode for the second cell. Most studies done so far have employed noble metals such as gold or silver as the middle electrode layer; however, they suffered from several shortcomings especially with respect to reproducibility.
This thesis focuses on studying a new trend which employs an oxide material based on nano-particles as a transparent cathode (such as Zinc-oxide-nano-particles) along with a transparent anode so as to replace the middle electrode.
Thus, this work presents a study on solution processable zinc oxide (ZnO) nanostructures, their proper handling techniques, and their potential as a middle electrode material in Tandem solar cells in many different configurations involving both polymer and small molecule materials. Moreover, the ZnO-np potential as a candidate for acceptor material is also investigated.
Kirsanova, Maria. „Engineering of Semiconductor Nanocomposites for Harvesting and Routing of Optical Energy“. Bowling Green State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1308104239.
Der volle Inhalt der QuelleSaliba, Michael. „Plasmonic nanostructures and film crystallization in perovskite solar cells“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:fdb36a9e-ddf5-4d27-a8dc-23fffe32a2c5.
Der volle Inhalt der QuelleHansson, Rickard. „Morphology and material stability in polymer solar cells“. Licentiate thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-37843.
Der volle Inhalt der QuelleThe performance of polymer solar cells depends strongly on the distribution of electron donor and acceptor material in the active layer. Understanding the connection between morphology and performance as well as how to control the morphology, is therefore of great importance. Furthermore, improving the lifetime has become at least as important as improving the efficiency for polymer solar cells to become a viable technology. In this work, the relation between morphology and solar cell performance is studied as well as the material stability for polymer:fullerene blend films. A combination of microscopic and spectroscopic methods is used to investigate the lateral and vertical morphology as well as the surface composition. Lateral phase-separated domains are observed whose size is correlated to the solar cell performance, while the observed surface enrichment of polymer does not affect the performance. Changes to the unoccupied molecular states as a result of illumination in ambient air are observed for the fullerene, but not for the polymer, and fullerenes in a blend change more than pristine fullerenes. Solar cells in which the active layer has been illuminated exhibit greatly reduced electrical performance, mainly attributed to fullerene degradation at the active layer surface.
Paper 2 ingick som manuskript i avhandlingen. Nu publicerad.
Hřešil, Tomáš. „Analýza chlazení koncentrátorového fotovoltaického článku“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-220330.
Der volle Inhalt der Quelle