Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Photovoltaic nanostructures“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Photovoltaic nanostructures" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Photovoltaic nanostructures"
Xiu, Fei, Hao Lin, Ming Fang, Guofa Dong, Senpo Yip und Johnny C. Ho. „Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications“. Pure and Applied Chemistry 86, Nr. 5 (19.05.2014): 557–73. http://dx.doi.org/10.1515/pac-2013-1119.
Der volle Inhalt der QuelleLiu, Sheng Jun. „The Plasmonic Nanostructures Applied in the Photovoltaic Cell“. Advanced Materials Research 893 (Februar 2014): 186–89. http://dx.doi.org/10.4028/www.scientific.net/amr.893.186.
Der volle Inhalt der QuelleDinh Lam, Nguyen, Youngjo Kim, Kangho Kim und Jaejin Lee. „Influences of InGaP Conical Frustum Nanostructures on the Characteristics of GaAs Solar Cells“. Journal of Nanomaterials 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/785359.
Der volle Inhalt der QuelleCaruana, Liam, Thomas Nommensen, Toan Dinh, Dennis Tran und Robert McCormick. „Photovoltaic Cell: Optimum Photon Utilisation“. PAM Review Energy Science & Technology 3 (07.06.2016): 64–85. http://dx.doi.org/10.5130/pamr.v3i0.1409.
Der volle Inhalt der QuelleAseev, Aleksander Leonidovich, Alexander Vasilevich Latyshev und Anatoliy Vasilevich Dvurechenskii. „Semiconductor Nanostructures for Modern Electronics“. Solid State Phenomena 310 (September 2020): 65–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.310.65.
Der volle Inhalt der QuelleGonfa, Belete A., A. F. da Cunha und Ana B. Timmons. „ZnO nanostructures for photovoltaic cells“. physica status solidi (b) 247, Nr. 7 (23.04.2010): 1633–36. http://dx.doi.org/10.1002/pssb.200983684.
Der volle Inhalt der QuelleGupta, N., G. F. Alapatt, R. Podila, R. Singh und K. F. Poole. „Prospects of Nanostructure-Based Solar Cells for Manufacturing Future Generations of Photovoltaic Modules“. International Journal of Photoenergy 2009 (2009): 1–13. http://dx.doi.org/10.1155/2009/154059.
Der volle Inhalt der QuelleMauricio Ramírez, Andrés, Linda Cattin, Jean-Christian Bernède, Fernando Raúl Díaz, Manuel Alejandro Gacitúa und María Angélica del Valle. „Nanostructured TiO2 and PEDOT Electrodes with Photovoltaic Application“. Nanomaterials 11, Nr. 1 (04.01.2021): 107. http://dx.doi.org/10.3390/nano11010107.
Der volle Inhalt der QuelleChen, Cheng-Ying, Ming-Wei Chen, Jr-Jian Ke, Chin-An Lin, José R. D. Retamal und Jr-Hau He. „Surface effects on optical and electrical properties of ZnO nanostructures“. Pure and Applied Chemistry 82, Nr. 11 (06.08.2010): 2055–73. http://dx.doi.org/10.1351/pac-con-09-12-05.
Der volle Inhalt der QuelleZhang, Bo, Wenxu Xie und Yong Xiang. „Development and Prospect of Nanoarchitectured Solar Cells“. International Journal of Photoenergy 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/382389.
Der volle Inhalt der QuelleDissertationen zum Thema "Photovoltaic nanostructures"
Lin, Keng-Chu. „NOVEL TITANIA NANOSTRUCTURES FOR PHOTOVOLTAIC APPLICATIONS“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1372856925.
Der volle Inhalt der QuelleMohseni, Kiasari Nima. „ZnO nanostructures for sensing and photovoltaic devices“. Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/46367.
Der volle Inhalt der QuelleLim, Swee Hoe. „Metallic nanostructures for optoelectronic and photovoltaic applications“. Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3365871.
Der volle Inhalt der QuelleTitle from first page of PDF file (viewed August 20, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Kulakci, Mustafa. „Silicon Nanostructures For Electro-optical And Photovoltaic Applications“. Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614225/index.pdf.
Der volle Inhalt der QuelleDorval, Courchesne Noémie-Manuelle. „Biologically-templated metal oxide and metal nanostructures for photovoltaic applications“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98705.
Der volle Inhalt der QuelleCataloged from PDF version of thesis. Vita. Page 296 blank.
Includes bibliographical references.
In several electronic, electrochemical and photonic systems, the organization of materials at the nanoscale is critical. Specifically, in nanostructured heterojunction solar cells, active materials with high surface area and continuous shapes tend to improve charge transport and collection, and to minimize recombination. Organizing nanoparticles, quantum dots or organic molecules intro three-dimensional structures can thus improve device efficiency. To do so, biotemplates with a wide variety of shapes and length scales can be used to nucleate nanoparticles and to organize them into complex structures. In this work, we have used microorganisms as templates to assemble metal oxide and metal nano- and microstructures that can enhance the performance of photovoltaic devices. First, we used M13 bacteriophages for their high aspect ratio and ability to bind noble metal nanoparticles, to create plasmonic nanowire arrays. We developed a novel process to assemble bacteriophages into nanoporous thin films via layer-by-layer assembly, and we mineralized the structure with titania. The resulting porous titania network was infiltrated with lead sulfide quantum dots to construct functional solar cells. We then used this system as a platform to study the effects of morphology and plasmonics on device performance, and observed significant improvements in photocurrent for devices containing bacteriophages. Next, we developed a process to magnesiothermally reduce biotemplated and solution-processed metal oxide structures into useful metallic materials that cannot be otherwise synthesized in solution. We applied the process to the synthesis of silicon nanostructures for use as semiconductors or photoactive materials. As starting materials, we obtained diatomaceous earth, a natural source of biotemplated silica, and we also mineralized M13 bacteriophages with silica to produce porous nanonetworks, and Spirulina major, a spiral-shaped algae, to produce micro-coils. We successfully reduced all silica structures to nanocrystalline silicon while preserving their shape. Overall, this work provides insights into incorporating biological materials in energy-related devices, doping materials to create semiconductors, characterizing their morphology and composition, and measuring their performance. The versatility and simplicity of the bottom-up assembly processes described here could contribute to the production of more accessible and inexpensive nanostructured energy conversion devices.
by Noémie-Manuelle Dorval Courchesne.
Ph. D.
Khoury, Rasha. „Nanometer scale point contacting techniques for silicon Photovoltaic devices“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX070/document.
Der volle Inhalt der QuelleThe use of point contacts has made the Passivated Emitter and Rear Cell design one of the most efficient monocrystalline-silicon photovoltaic cell designs in production. The main feature of such solar cell is that the rear surface is partially contacted by periodic openings in a dielectric film that provides surface passivation. However, a trade-off between ohmic losses and surface recombination is found. Due to the technology used to locally open the contacts in the passivation layer, the distance between neighboring contacts is on the order of hundreds of microns, introducing a significant series resistance.In this work, I explore the possibility and potential advantages of using nanoscale contact openings with a pitch between 300 nm to 10 µm. Analytic and numerical simulations done during the course of this thesis have shown that such nanoscale contacts would result in negligible ohmic losses while still keeping the surface recombination velocity Seff,rear at an acceptable level, as long as the recombination velocity at the contact (Scont) is in the range from 103-105 cm/s. To achieve such contacts in a potentially cost-reducing way, my experimental work has focused on the use of polystyrene nanospheres as a sacrificial mask.The thesis is therefore divided into three sections. The first section develops and explores processes to enable the formation of such contacts using various nanosphere dispersion, thin-film deposition, and layer etching processes. The second section describes a test device using a thin-film amorphous silicon NIP diode to explore the electrical properties of the point contacts. Finally, the third section considers the application of such point contacts on crystalline silicon by exploring localized doping through the nanoholes formed.In the first section, I have explored using polystyrene nanoparticles (NPs) as a patterning mask. The first two tested NPs deposition techniques (spray-coating, spin-coating) give poorly controlled distributions of nanospheres on the surface, but with very low values of coverage. The third tested NPs deposition technique (floating transfer technique) provided a closely-packed monolayer of NPs on the surface; this process was more repeatable but necessitated an additional O2 plasma step to reduce the coverage area of the sphere. This was performed using matrix distributed electron cyclotron resonance (MD-ECR) in order to etch the NPs by performing a detailed study.The NPs have been used in two ways; by using them as a direct deposition mask or by depositing a secondary etching mask layer on top of them.In the second section of this thesis, I have tested the nanoholes as electrical point-contacts in thin-film a-Si:H devices. For low-diffusion length technologies such as thin-film silicon, the distance between contacts must be in the order of few hundred nanometers. Using spin coated 100 nm NPs of polystyrene as a sacrificial deposition mask, I could form randomly spaced contacts with an average spacing of a few hundred nanometers. A set of NIP a-Si:H solar cells, using RF-PECVD, have been deposited on the back reflector substrates formed with metallic layers covered with dielectrics having nanoholes. Their electrical characteristics were compared to the same cells done with and without a complete dielectric layer. These structures allowed me to verify that good electrical contact through the nanoholes was possible, but no enhanced performance was observed.In the third section of this thesis, I investigate the use of such nanoholes in crystalline silicon technology by the formation of passivated contacts through the nanoholes. Boron doping by both thermal diffusion and ion implantation techniques were investigated. A thermally grown oxide layer with holes was used as the doping barrier. These samples were characterized, after removing the oxide layer, by secondary electron microscopy (SEM) and conductive probe atomic force microscopy (CP-AFM)
Prevost, Richard M. III. „Design and Fabrication of Nanostructures for the Enhancement of Photovoltaic Devices“. ScholarWorks@UNO, 2017. http://scholarworks.uno.edu/td/2353.
Der volle Inhalt der QuelleCheminal, Alexandre. „Ultrafast energy conversion processes in photosensitive proteins and organic nanostructures for photovoltaic applications“. Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAE012/document.
Der volle Inhalt der QuelleFemtosecond transient spectroscopies are used to investigate photonic energy conversion inorganic systems. These techniques allow to observe the ground and excited states of themolecules at the timescale of the photoreactions. It is used to understand the inter- andintramolecular energy and charge transfers leading to the desired photochemical process.The natural photoswiching retinal protein Anabaena sensory Rhodopsin is studied to understand the key parameters ruling the isomerisation quantum yield. We could determine the isomerisation quantum yield of both stable forms and their dynamics in the very same experimental conditions.Charge generation is investigated in small molecule bulk heterojunction active layers for organic solar cells made of PCBM and a BODIPY dye-derivative donor. The influence of the active layer morphology on charge generation is studied. The charge generation is limited by charge recombination but also by exciton diffusion to the donor-acceptor interface. The active layer morphology has to be improved to achieve more efficient organic solar cells with these materials
Aguinaldo, Ryan. „Modeling solutions and simulations for advanced III-V photovoltaics based on nanostructures /“. Online version of thesis, 2008. http://hdl.handle.net/1850/7912.
Der volle Inhalt der QuelleTurner, Carrina Jayne. „Electrochemical deposition, characterisation and photovoltaic application of undoped and aluminium doped zinc oxide nanostructures“. Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/7122.
Der volle Inhalt der QuelleBücher zum Thema "Photovoltaic nanostructures"
Skabara, Peter, und Mohammad Azad Malik, Hrsg. Nanostructured Materials for Type III Photovoltaics. Cambridge: Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781782626749.
Der volle Inhalt der QuelleVaseashta, A., D. Dimova-Malinovska und J. M. Marshall, Hrsg. Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3562-4.
Der volle Inhalt der Quelle1951-, Fthenakis Vasilis M., Dillon Anne (Anne Catherine) und Savage Nora F, Hrsg. Life-cycle analysis for new energy conversion and storage systems: Symposium held November 26-27, 2007, Boston, Massachusetts, USA. Warendale, Penn: MRS, 2008.
Den vollen Inhalt der Quelle findenKong, X. Y., Y. C. Wang, X. F. Fan, G. F. Guo und L. M. Tong. Free-standing grid-like nanostructures assembled into 3D open architectures for photovoltaic devices. Herausgegeben von A. V. Narlikar und Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.22.
Der volle Inhalt der QuelleRogers, John A., und Yugang Sun. Semiconductor Nanomaterials for Flexible Technologies: From Photovoltaics and Electronics to Sensors and Energy Storage. Elsevier Science & Technology Books, 2016.
Den vollen Inhalt der Quelle findenRevaprasadu, Neerish, Mohammad Azad Malik, Peter Skabara und David Binks. Nanostructured Materials for Type III Photovoltaics. Royal Society of Chemistry, The, 2017.
Den vollen Inhalt der Quelle findenNanostructured Energy Devices: Principles of Photovoltaics and Optoelectronics. Taylor & Francis Group, 2017.
Den vollen Inhalt der Quelle findenBashir, Sajid, Jingbo Louise Liu und Tulay Aygan Atesin. Nanostructured Materials for Next-Generation Energy Storage and Conversion: Photovoltaic and Solar Energy. Springer, 2019.
Den vollen Inhalt der Quelle findenMaterials for Solar Cell Technologies I. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901090.
Der volle Inhalt der QuelleVaseashta, A., D. Dimova-Malinovska und J. M. Marshall. Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology. Springer, 2008.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Photovoltaic nanostructures"
Luo, Jun, und Jing Zhu. „p-nJunction Silicon Nanowire Arrays for Photovoltaic Applications“. In One-Dimensional Nanostructures, 271–94. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118310342.ch12.
Der volle Inhalt der QuelleGatti, Teresa, und Enzo Menna. „Use of Carbon Nanostructures in Hybrid Photovoltaic Devices“. In Photoenergy and Thin Film Materials, 1–47. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119580546.ch1.
Der volle Inhalt der QuellePotlog, Tamara. „Thin-Film Photovoltaic Devices Based on A2B6 Compounds“. In Nanostructures and Thin Films for Multifunctional Applications, 143–86. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30198-3_5.
Der volle Inhalt der QuelleWang, Jun, Xukai Xin, Daniel Vennerberg und Zhiqun Lin. „Quantum Dot-Sensitized, Three-Dimensional Nanostructures for Photovoltaic Applications“. In Three-Dimensional Nanoarchitectures, 413–46. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9822-4_15.
Der volle Inhalt der QuelleWang, Yang, und Tsuyoshi Michinobu. „Effects of Polymer-Packing Orientation on the Performances of Thin Film Transistors and Photovoltaic Cells“. In Polymer-Engineered Nanostructures for Advanced Energy Applications, 607–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57003-7_16.
Der volle Inhalt der QuelleBisquert, Juan. „Photovoltaic, Photoelectronic, and Electrochemical Devices Based on Metal-Oxide Nanoparticles and Nanostructures“. In Synthesis, Properties, and Applications of Oxide Nanomaterials, 451–90. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470108970.ch16.
Der volle Inhalt der QuelleHilali, Mohamed M., und S. V. Sreenivasan. „Nanostructured Silicon-Based Photovoltaic Cells“. In High-Efficiency Solar Cells, 131–64. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01988-8_5.
Der volle Inhalt der QuelleAntohe, S., I. Enculescu, Cristina Besleaga, Iulia Arghir, V. A. Antohe, V. Covlea, A. Radu und L. Ion. „Hybrid Nanostructured Organic/Inorganic Photovoltaic Cells“. In Nanostructured Materials and Nanotechnology IV, 71–82. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470944042.ch9.
Der volle Inhalt der QuelleGourbilleaua, Fabrice, Pratibha R. Nalinib, Julien Cardina, Christian Dufoura, Odile Robbec, Yannick Lambertd, Di Zhoud, Tao Xud und Didier Stiévenardd. „Chapter 14 Silicon Nanostructures for Photovoltaics“. In Silicon Nanophotonics: Basic Principles, Present Status, and Perspectives, 2nd Ed, 429–56. Penthouse Level, Suntec Tower 3, 8 Temasek Boulevard, Singapore 038988: Pan Stanford Publishing Pte. Ltd., 2016. http://dx.doi.org/10.1201/9781315364797-15.
Der volle Inhalt der QuelleGoodnick, Stephen M. „Nanotechnology Pathways to Next-Generation Photovoltaics“. In Nanostructure Science and Technology, 1–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91896-9_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Photovoltaic nanostructures"
Seassal, Christian, Guillaume Gomard, Ounsi El Daif, Xianqin Meng, Emmanuel Drouard, Anne Kaminski, Alain Fave und Mustapha Lemiti. „Slow Light in Photonic Crystals for Photovoltaic Applications“. In Optical Nanostructures for Photovoltaics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/pv.2010.ptuc1.
Der volle Inhalt der QuelleRoberts, Brian, Nanditha Dissanayake und P. C. Ku. „Plasmonic nanostructures for transparent photovoltaic facades“. In 2011 37th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2011. http://dx.doi.org/10.1109/pvsc.2011.6186104.
Der volle Inhalt der QuelleYu, Xiaoqiang, Natalia Azarova, Saumil Joshi und Wounjhang Park. „Plasmonic Nanostructures for Organic Photovoltaic Devices“. In CLEO: Applications and Technology. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/cleo_at.2011.jwa97.
Der volle Inhalt der QuellePark, Wounjhang. „Plasmonic Nanostructures for Organic Photovoltaic Devices“. In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/pv.2014.pw5b.2.
Der volle Inhalt der QuelleHu, L., und G. Chen. „Thermal Radiative Heat Transfer Between Closely Spaced Nanostructures“. In ASME 4th Integrated Nanosystems Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/nano2005-87066.
Der volle Inhalt der QuelleBuencuerpo, Jeronimo, Lorena Torne, Raquel Alvaro, Jose Manuel Llorens, María Luisa Dotor und Jose Maria Ripalda. „Antireflective nanostructures for CPV“. In 13TH INTERNATIONAL CONFERENCE ON CONCENTRATOR PHOTOVOLTAIC SYSTEMS (CPV-13). Author(s), 2017. http://dx.doi.org/10.1063/1.5001413.
Der volle Inhalt der QuelleEl-kady, I., C. M. Reinke und M. F. Su. „Photonic Crystal-assisted High-efficiency Photovoltaic Generation: Harvesting the Ultra-long and Ultra-short Wavelength Photons.“ In Optical Nanostructures for Photovoltaics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/pv.2010.ptua2.
Der volle Inhalt der QuelleGoodnick, Stephen M., Fernando Ponce, William Alan Doolittle, Christiana Honsberg, Dragicia Vasileska, Srabanti Choudhry, Chantal Arena und Philip Gleckman. „A Hybrid Concentrating Solar Thermal/ Photovoltaic System Using a High Temperature III-nitride Photovoltaic Device“. In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/pv.2014.jth4b.4.
Der volle Inhalt der Quellede Freitas, Jilian N., João Paulo C. Alves, Lasantha Korala, Stephanie L. Brock und Ana F. Nogueira. „Hybrid photovoltaic devices based on chalcogenide nanostructures“. In SPIE Organic Photonics + Electronics, herausgegeben von Zakya H. Kafafi, Christoph J. Brabec und Paul A. Lane. SPIE, 2012. http://dx.doi.org/10.1117/12.928845.
Der volle Inhalt der QuelleTopic, Marko, Marko Jost, Milan Kovacic, Benjamin Lipovšek, Žiga Lokar, Franc Smole und Janez Krč. „Nanostructures and design challenges in photovoltaic devices“. In Physics, Simulation, and Photonic Engineering of Photovoltaic Devices IX, herausgegeben von Alexandre Freundlich, Masakazu Sugiyama und Stéphane Collin. SPIE, 2020. http://dx.doi.org/10.1117/12.2549175.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Photovoltaic nanostructures"
Wu, Zhigang. Quantum Mechanical Simulations of Complex Nanostructures for Photovoltaic Applications. Office of Scientific and Technical Information (OSTI), Mai 2017. http://dx.doi.org/10.2172/1406114.
Der volle Inhalt der QuelleYu, Paul K. L., Edward T. Yu und Deli Wang. High-efficiency photovoltaics based on semiconductor nanostructures. Office of Scientific and Technical Information (OSTI), Oktober 2011. http://dx.doi.org/10.2172/1083988.
Der volle Inhalt der QuelleHonsberg, Christiana, S. P. Bremner, G. M. Liu und K. Y. Ban. (Nanotechnology Iniatitive) Multicolor Nanostructured High Efficiency Photovoltaic Devices. Fort Belvoir, VA: Defense Technical Information Center, Juni 2007. http://dx.doi.org/10.21236/ada480645.
Der volle Inhalt der QuelleSalleo, Alberto. Nanostructured Materials for High Efficiency Low Cost Solution-Processed Photovoltaics. Office of Scientific and Technical Information (OSTI), Oktober 2012. http://dx.doi.org/10.2172/1353219.
Der volle Inhalt der QuelleHubbard, Seth. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1052851.
Der volle Inhalt der QuelleRUBY, DOUGLAS S., RICHARD J. BUSS, SHANALYN A. KEMME und SALEEM H. ZAIDI. Nanostructured Silicon Surfaces for Cost-Effective Photovoltaic Efficiency Improvements: LDRD Final Report. Office of Scientific and Technical Information (OSTI), Januar 2003. http://dx.doi.org/10.2172/808623.
Der volle Inhalt der QuelleLee, Kwang-Sup, Alex N. Cartwright, Paras N. Prasad und Sailing He. Hybrid Inorganic/Organic Photovoltaics: Translating Fundamental Nanostructure Research to Enhanced Solar Conversion Efficiency. Fort Belvoir, VA: Defense Technical Information Center, März 2010. http://dx.doi.org/10.21236/ada516366.
Der volle Inhalt der QuelleOlson, Dana. Carbon Nanosheets and Nanostructured Electrodes in Organic Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-321. Office of Scientific and Technical Information (OSTI), April 2012. http://dx.doi.org/10.2172/1039824.
Der volle Inhalt der QuelleNanostructured Transparent Conductors Have Potential for Thin-Film Photovoltaics (Fact Sheet). Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1049586.
Der volle Inhalt der Quelle