Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Photovoltaic diode“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Photovoltaic diode" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Photovoltaic diode"
Rajagukguk, Antonius, Dedet Candra Riawan und Mochamad Ashari. „Performance Characteristics of Miniature Photovoltaic Farm Under Dynamic Partial Shading“. Indonesian Journal of Electrical Engineering and Computer Science 11, Nr. 1 (01.07.2018): 400. http://dx.doi.org/10.11591/ijeecs.v11.i1.pp400-408.
Der volle Inhalt der QuelleAmin, Hajizadeh, und Warrier Anil Kumar Jishnu. „Parameter Identification and Effect of Partial Shading on a Photovoltaic System“. E3S Web of Conferences 64 (2018): 06006. http://dx.doi.org/10.1051/e3sconf/20186406006.
Der volle Inhalt der QuelleShin, Woo, Suk Ko, Hyung Song, Young Ju, Hye Hwang und Gi Kang. „Origin of Bypass Diode Fault in c-Si Photovoltaic Modules: Leakage Current under High Surrounding Temperature“. Energies 11, Nr. 9 (12.09.2018): 2416. http://dx.doi.org/10.3390/en11092416.
Der volle Inhalt der QuelleAftab, Sikandar, Samiya, Rabia, Saqlain Yousuf, Muhammad Usman Khan, Rafia Khawar, Ayesha Younus, Mumtaz Manzoor, Muhammad Waqas Iqbal und Muhammad Zahir Iqbal. „Carrier polarity modulation of molybdenum ditelluride (MoTe2) for phototransistor and switching photodiode applications“. Nanoscale 12, Nr. 29 (2020): 15687–96. http://dx.doi.org/10.1039/d0nr03904g.
Der volle Inhalt der QuelleVieira, Romênia G., Fábio M. U. de Araújo, Mahmoud Dhimish und Maria I. S. Guerra. „A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules“. Energies 13, Nr. 10 (14.05.2020): 2472. http://dx.doi.org/10.3390/en13102472.
Der volle Inhalt der QuelleÁlvarez-Tey, Germán, José Antonio Clavijo-Blanco, Álvaro Gil-García, Rafael Jiménez-Castañeda und Carmen García-López. „Electrical and Thermal Behaviour of Crystalline Photovoltaic Solar Modules in Shading Conditions“. Applied Sciences 9, Nr. 15 (27.07.2019): 3038. http://dx.doi.org/10.3390/app9153038.
Der volle Inhalt der QuelleUtami, Dwi Prima Putri, und Antonius Rajagukguk. „Analysis Of Power Generation Photovoltaic Array 9×10 Wp Under Shading Effect“. International Journal of Electrical, Energy and Power System Engineering 3, Nr. 1 (28.02.2020): 13–16. http://dx.doi.org/10.31258/ijeepse.3.1.13-16.
Der volle Inhalt der QuelleSawano, Naoki, Takuo Notohara, Yasuyuki Ota und Kensuke Nishioka. „Output Characteristic Analysis of Partially Shaded Back Surface of Bifacial Photovoltaic Solar Module“. Advanced Materials Research 893 (Februar 2014): 769–72. http://dx.doi.org/10.4028/www.scientific.net/amr.893.769.
Der volle Inhalt der QuelleCress, Cory D., Stephen J. Polly, Seth M. Hubbard, Ryne P. Raffaelle und Robert J. Walters. „Demonstration of a nipi -diode photovoltaic“. Progress in Photovoltaics: Research and Applications 19, Nr. 5 (02.01.2011): 552–59. http://dx.doi.org/10.1002/pip.1071.
Der volle Inhalt der QuelleCárdenas-Bravo, Carlos, Rodrigo Barraza, Antonio Sánchez-Squella, Patricio Valdivia-Lefort und Federico Castillo-Burns. „Estimation of Single-Diode Photovoltaic Model Using the Differential Evolution Algorithm with Adaptive Boundaries“. Energies 14, Nr. 13 (30.06.2021): 3925. http://dx.doi.org/10.3390/en14133925.
Der volle Inhalt der QuelleDissertationen zum Thema "Photovoltaic diode"
Banyamin, Ziad. „Novel photovoltaic solar power generating diode“. Thesis, Manchester Metropolitan University, 2014. http://e-space.mmu.ac.uk/550063/.
Der volle Inhalt der QuelleMa, Xi. „One-diode photovoltaic model parameter extraction based on Soft-Computing Approaches“. Thesis, Mittuniversitetet, Institutionen för elektronikkonstruktion, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-36302.
Der volle Inhalt der QuelleChocholáč, Jan. „Využití bypassových diod ve fotovoltaických panelech“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-218888.
Der volle Inhalt der QuelleGallardo, Saavedra Sara. „Analysis and simulation of shading effects on photovoltaic cells“. Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-21725.
Der volle Inhalt der QuellePendyala, Raghu Kishore. „Automated Simulation of Organic Photovoltaic Solar Cells“. Thesis, Linköping University, The Department of Physics, Chemistry and Biology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-15338.
Der volle Inhalt der QuelleThis project is an extension of a pre-existing simulation program (‘Simulation_2dioden’). This simulation program was first developed in Konarka Technologies. The main purpose of the project ‘Simulation_2dioden’ is to calibrate the values of different parameters like, Shunt resistance, Series resistance, Ideality factor, Diode current, epsilon, tau, contact probability, AbsCT, intensity, etc; This is one of the curve fitting procedure’s. This calibration is done by using different equations. Diode equation is one of the main equation’s used in calculating different currents and voltages, from the values generated by diode equation all the other parameters are calculated.
The reason for designing this simulation_2dioden is to calculate the values of different parameters of a device and the researcher would know which parameter effects more in the device efficiency, accordingly they change the composition of the materials used in the device to acquire a better efficiency. The platform used to design this project is ‘Microsoft Excel’, and the tool used to design the program is ‘Visual basics’. The program could be otherwise called as a ‘Virtual Solar cell’. The whole Virtual Solar cell is programmed in a single excel sheet.
An Automated working solution is suggested which could save a lot of time for the researchers, which is the main aim of this project. To calibrate the parameter values, one has to load the J-V characteristics and simulate the program by just clicking one button. And the parameters extracted by using this automated simulation are Parallel resistance, Series resistance, Diode ideality, Saturation current, Contact properties, and Charge carrier mobility.
Finally, a basic working solution has been initiated by automating the simulation program for calibrating the parameter values.
Alqahtani, Ayedh H. A. S. „Modeling and Control of Photovoltaic Systems for Microgrids“. The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1381786869.
Der volle Inhalt der QuelleValent, Adam. „Jednosměrná sériová komunikace laserem na větší vzdálenost“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442524.
Der volle Inhalt der QuelleSchalnat, Matthew Craig. „Spectroscopic Srudies of Model Organic Photovoltaic and Organic Light Emitting Diode Organic-Organic' and Metal-Organic Heterojunctions“. Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/194656.
Der volle Inhalt der QuelleJohn, Suru Vivian. „Next generation bulk Heterojunction organic Photovoltaic and light emitting diode sytems of Novel Polycyclic Aromatic Hydrocarbon, Polyfluorenes and Polythiophenes“. University of the Western Cape, 2017. http://hdl.handle.net/11394/6114.
Der volle Inhalt der QuelleIn these times of diminishing reserve of fossil fuel, the development of novel - green or renewable? technologies to meet the increasing worldwide demand for energy is of great importance. The sun is the largest carbon free source of energy and an infinite source of renewable energy. However, except for the expensive inorganic crystalline silicon photovoltaic cells, this source of energy has not been utilized. The field of organic photovoltaic cell has made impressive progress in the last few years with the tremendous efforts of researchers working tirelessly to develop organic materials for solar energy conversion. Organic conjugated materials have the advantage of low cost, light weight, process-ability and good flexibility over inorganic materials. They have attracted wide academic and industrial interest due to their promise as semiconductors for photovoltaic applications. Design of advanced organic conjugated materials with the ability to absorb light from the sun and convert it into useful and storable form has and still is one of the most important goals of researchers in the field of renewable energy. This work describes a number of novel exciting and promising materials based on polycyclic aromatic compounds (PACs) for organic photovoltaic cells and organic light emitting diodes.
Kozlowski, Fryderyk. „Numerical simulation and optimisation of organic light emitting diodes and photovoltaic cells“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2005. http://nbn-resolving.de/urn:nbn:de:swb:14-1134592504212-65990.
Der volle Inhalt der QuelleBücher zum Thema "Photovoltaic diode"
Mazer, Jeffrey A. Solar cells: An introduction to crystalline photovoltaic technology. Boston: Kluwer Academic Publishers, 1996.
Den vollen Inhalt der Quelle findenTai yang neng guang fu zhao ming ji shu yu ying yong: Taiyangneng guanfu zhaoming jishu yu yingyong. Beijing Shi: Hua xue gong ye chu ban she, 2009.
Den vollen Inhalt der Quelle findenJeon, Heonsu. Display, solid-state lighting, photovoltaics, and optoelectronics in energy: 2-6 November 2009, Shanghai, China. Herausgegeben von Optical Society of America, SPIE (Society) und Asia Communications and Photonics (2009 : Shanghai, China). Bellingham, Wash: SPIE, 2009.
Den vollen Inhalt der Quelle findenJeon, Heonsu. Display, solid-state lighting, photovoltaics, and optoelectronics in energy II: 8-12 December 2010, Shanghai, China. Herausgegeben von SPIE (Society), IEEE Photonics Society und Fu dan da xue (Shanghai, China). Bellingham, Wash: SPIE, 2010.
Den vollen Inhalt der Quelle findenQuantum Dots - Properties and Applications. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901250.
Der volle Inhalt der QuelleMazer, Jeffrey A. Solar Cells : an Introduction to Crystalline Photovoltaic Technology: An Introduction to Crystalline Photovoltaic Technology. Springer London, Limited, 2011.
Den vollen Inhalt der Quelle findenLaunay, Jean-Pierre, und Michel Verdaguer. The excited electron: photophysical properties. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0004.
Der volle Inhalt der QuelleYam, Vivian W. W. WOLEDs and Organic Photovoltaics: Recent Advances and Applications. Springer, 2012.
Den vollen Inhalt der Quelle findenLaunay, Jean-Pierre, und Michel Verdaguer. Electrons in Molecules. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.001.0001.
Der volle Inhalt der QuelleWoleds And Organic Photovoltaics Recent Advances And Applications. Springer, 2010.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Photovoltaic diode"
Hubbard, Seth. „PN Junctions and the Diode Equation“. In Photovoltaic Solar Energy, 54–66. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118927496.ch7.
Der volle Inhalt der QuelleIbrahim, K. „Diode Recovery Measurement of a-Si:C:H Diode using Different Silane-Propane Ratio for Tandem Solar Cells“. In Tenth E.C. Photovoltaic Solar Energy Conference, 228–29. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_59.
Der volle Inhalt der QuelleZogg, H., C. Maissen, J. Masek, T. Hoshino und S. Blunier. „Photovoltaic Infrared Sensor Arrays in Monolithic Lead Chalcogenides on Silicon“. In Monitoring of Gaseous Pollutants by Tunable Diode Lasers, 147. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2763-9_24.
Der volle Inhalt der QuelleMartí, A., G. L. Araújo, C. Algora, J. C. Maroto und C. Flores. „Analysis of the Diode Currents in Back Contacted Emitter GaAs Solar Cells“. In Tenth E.C. Photovoltaic Solar Energy Conference, 794–97. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_203.
Der volle Inhalt der QuelleNazerian, Vahdat, und Sogand Babaei. „Optimization of Exponential Double-Diode Model for Photovoltaic Solar Cells Using GA-PSO Algorithm“. In Lecture Notes in Electrical Engineering, 697–703. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8672-4_52.
Der volle Inhalt der QuelleZebiri, Mohamed, Mohamed Mediouni und Hicham Idadoub. „The Behavior of a Photovoltaic Module Under Shading, in the Presence of a Faulty Bypass Diode“. In Advances in Intelligent Systems and Computing, 71–80. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12065-8_8.
Der volle Inhalt der QuelleInganäs, Olle, und Lucimara Stolz Roman. „Organic Photodiodes: From Diodes to Blends“. In Organic Photovoltaics, 249–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05187-0_6.
Der volle Inhalt der QuelleKwok, Chi-Chung, Steven Chi Fai Kui, Siu-Wai Lai und Chi-Ming Che. „Phosphorescent Platinum(II) Complexes for White Organic Light-Emitting Diode Applications“. In WOLEDs and Organic Photovoltaics, 79–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14935-1_3.
Der volle Inhalt der QuelleMazer, Jeffrey A. „Solar Cells as Semiconductor Diodes“. In Solar Cells: An Introduction to Crystalline Photovoltaic Technology, 21–82. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4613-0475-3_2.
Der volle Inhalt der QuelleAbel, C. D., H. R. Paes und G. H. Bauer. „Stationary Primary Photocurrents for the Characterization of a-Si:H Pin-Diodes“. In Tenth E.C. Photovoltaic Solar Energy Conference, 161–64. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_42.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Photovoltaic diode"
Jung, D., C. A. Parker, J. Ramdani und S. M. Bedair. „AlGaAs/GaInP heterojunction tunnel diode“. In Photovoltaic advanced research and development project. AIP, 1992. http://dx.doi.org/10.1063/1.42886.
Der volle Inhalt der QuelleKaeonin, Ruchikon, Sumate Naetiladdanon und Anawach Sangswang. „A Photovoltaic Simulator Based on Diode Characteristics“. In 2019 7th International Electrical Engineering Congress (iEECON). IEEE, 2019. http://dx.doi.org/10.1109/ieecon45304.2019.8938943.
Der volle Inhalt der QuelleTheingi, San, William Nemeth, David L. Young, Paul Stradins und Benjamin G. Lee. „Measuring Diode Resistivity of Passivated Contacts“. In 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC). IEEE, 2017. http://dx.doi.org/10.1109/pvsc.2017.8366681.
Der volle Inhalt der QuelleHamada, Toshiyuki, Kenta Nakamoto, Ikuo Nanno, Norio Ishikura, Shinichiro Oke und Masayuki Fujii. „Fault Characteristics of Schottky Barrier Diode used as Bypass Diode in Photovoltaic Module against Repetitive Surges“. In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9301020.
Der volle Inhalt der QuelleIshihara, Abraham K., und Shahar Ben-Menahem. „Asymptotic Analysis of the Two-Diode Photovoltaic Model“. In Power and Energy Systems and Applications. Calgary,AB,Canada: ACTAPRESS, 2011. http://dx.doi.org/10.2316/p.2011.756-073.
Der volle Inhalt der QuelleAhmed, Md Tofael, Teresa Goncalves und Mouhaydine Tlemcani. „Single diode model parameters analysis of photovoltaic cell“. In 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, 2016. http://dx.doi.org/10.1109/icrera.2016.7884368.
Der volle Inhalt der QuelleIshihara, Abraham K., und Shahar Ben-Menahem. „Asymptotic Analysis of the Two-Diode Photovoltaic Model“. In Power and Energy Systems and Applications. Calgary,AB,Canada: ACTAPRESS, 2012. http://dx.doi.org/10.2316/p.2012.756-073.
Der volle Inhalt der QuelleGupta, Divya, Namrata Kumari und Akshit Samadhiya. „Photovoltaic Modeling using Single Diode Model in MATLAB“. In 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON). IEEE, 2020. http://dx.doi.org/10.1109/gucon48875.2020.9231165.
Der volle Inhalt der QuelleGalarza, Jose, und David Condezo. „Parameter Correction for the Photovoltaic One-Diode Model“. In 2020 IEEE International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC). IEEE, 2020. http://dx.doi.org/10.1109/isssc50941.2020.9358808.
Der volle Inhalt der QuelleLei, Bao, Hsin-Sheng Duan, Brion Bob, Wan-Ching Hsu und Yang Yang. „An improved diode modeling approach for solar cells“. In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE, 2013. http://dx.doi.org/10.1109/pvsc.2013.6744241.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Photovoltaic diode"
Hansen, Clifford. Parameter Estimation for Single Diode Models of Photovoltaic Modules. Office of Scientific and Technical Information (OSTI), März 2015. http://dx.doi.org/10.2172/1177157.
Der volle Inhalt der QuelleBower, Ward Isaac, Michael A. Quintana und Jay Johnson. Electrical and thermal finite element modeling of arc faults in photovoltaic bypass diodes. Office of Scientific and Technical Information (OSTI), Januar 2012. http://dx.doi.org/10.2172/1035329.
Der volle Inhalt der Quelle