Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Photopolymerization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Photopolymerization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Photopolymerization"
Peyrot, Fabienne, Sonia Lajnef und Davy-Louis Versace. „Electron Paramagnetic Resonance Spin Trapping (EPR–ST) Technique in Photopolymerization Processes“. Catalysts 12, Nr. 7 (12.07.2022): 772. http://dx.doi.org/10.3390/catal12070772.
Der volle Inhalt der QuelleJessop, Julie L. P. „A Practical Primer: Raman Spectroscopy for Monitoring of Photopolymerization Systems“. Polymers 15, Nr. 18 (20.09.2023): 3835. http://dx.doi.org/10.3390/polym15183835.
Der volle Inhalt der QuelleElian, Christine, Vlasta Brezová, Pauline Sautrot-Ba, Martin Breza und Davy-Louis Versace. „Lawsone Derivatives as Efficient Photopolymerizable Initiators for Free-Radical, Cationic Photopolymerizations, and Thiol—Ene Reactions“. Polymers 13, Nr. 12 (20.06.2021): 2015. http://dx.doi.org/10.3390/polym13122015.
Der volle Inhalt der QuelleLin, Jui-Teng, Jacques Lalevee und Da-Chun Cheng. „A Critical Review for Synergic Kinetics and Strategies for Enhanced Photopolymerizations for 3D-Printing and Additive Manufacturing“. Polymers 13, Nr. 14 (15.07.2021): 2325. http://dx.doi.org/10.3390/polym13142325.
Der volle Inhalt der QuelleLang, Margit, Stefan Hirner, Frank Wiesbrock und Peter Fuchs. „A Review on Modeling Cure Kinetics and Mechanisms of Photopolymerization“. Polymers 14, Nr. 10 (19.05.2022): 2074. http://dx.doi.org/10.3390/polym14102074.
Der volle Inhalt der QuelleZhang, Jing, Jacques Lalevée, Jiacheng Zhao, Bernadette Graff, Martina H. Stenzel und Pu Xiao. „Dihydroxyanthraquinone derivatives: natural dyes as blue-light-sensitive versatile photoinitiators of photopolymerization“. Polymer Chemistry 7, Nr. 47 (2016): 7316–24. http://dx.doi.org/10.1039/c6py01550f.
Der volle Inhalt der QuelleLin, De, Huiguang Kou, Wen-Fang Shi, Hui-Ya Yuan und Yong-Lie Chen. „Photopolymerizaton of hyperbranched aliphatic acrylated poly(amide ester). II. Photopolymerization kinetics“. Journal of Applied Polymer Science 82, Nr. 7 (2001): 1637–41. http://dx.doi.org/10.1002/app.2003.
Der volle Inhalt der QuelleHayase, Shuji. „Cationic photopolymerization.“ Kobunshi 35, Nr. 2 (1986): 116–19. http://dx.doi.org/10.1295/kobunshi.35.116.
Der volle Inhalt der QuelleXu, Rui Xin, Li Jie Wang und Ming Hui He. „Benzoylformamides as New Photocaged Bases for Free Radical Photopolymerization“. Applied Mechanics and Materials 731 (Januar 2015): 573–77. http://dx.doi.org/10.4028/www.scientific.net/amm.731.573.
Der volle Inhalt der QuelleZhou, Hua, Yugang Huang, Yun Zhang, Dandan Song, Hong Huang, Cheng Zhong und Guodong Ye. „Hydrogen abstraction of carbon/phosphorus-containing radicals in photoassisted polymerization“. RSC Advances 6, Nr. 73 (2016): 68952–59. http://dx.doi.org/10.1039/c6ra00156d.
Der volle Inhalt der QuelleDissertationen zum Thema "Photopolymerization"
Gunduz, Nazan. „Synthesis and Photopolymerization of Novel Dimethacrylates“. Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/37025.
Der volle Inhalt der QuelleThe effect of dilution on photopolymerization kinetics of BisGMA/triethyleneglycoldimethacrylate (TEGDMA) mixtures was also studied by isothermal photo-DSC. Dilution with TEGDMA significantly reduced the viscosity and glass transition temperatures of the mixtures due to the increase in the flexibility. The extent of polymerization increased with increasing TEGDMA and curing temperature. The calculation of ratio of rate constants (kt/kp) was also determined and the significance was discussed herein.
Master of Science
Bonneaud, Céline. „Synthesis and Photopolymerization of Novel Perfluoropolyalkylethers“. Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS063.
Der volle Inhalt der QuelleFor years, perfluoropolyalkylethers (PFPAEs) demonstrated to be useful for a plethora of applications in numerous fields and are still under investigation for advanced technology materials for medical imaging, microfluidic devices, vitrimers or also high-performance coatings. This PhD thesis was realized in the framework of the PhotoFluo European project. This project is divided into three research teams: Trinity Western University (Langley, Canada), Politecnico di Torino (Torino, Italy) and ENSCM. The aim of the project is to synthesize telechelic PFPAEs by anionic ring-opening. Then, these products were functionalized to obtain photocurable substituents. After a review of the synthesis, properties, functionalization and applications, we devoted to the synthesis and photopolymerization of α,β-unsaturated esters in copolymerization with vinyl ethers and the synthesis and photo-homopolymerization of maleimides as well as their copolymerization with vinyl ethers. Their photopolymerization neat or as additives, demonstrated that these novel PFPAEs were able to photopolymerize as fast as their already used methacrylates homologues and even without photoinitiator. Their thermal stability as well as their surface properties were investigated and revealed to similar or superior than previous systems. For example, maleimide PFPAEs displayed an excellent thermal stability to be employed as microfluidic devices for high temperature reactions. In the PhotoFluo project, we focused on the synthesis of monoepoxy and diepoxy for the photopolymerization by cationic processes, the purification by chromatography of photocurable PFPAEs and finally, the synthesis of multifunctional methacrylate in view of photolithographic processes. To explore new horizons for our previously synthesized maleimide PFPAEs, these ones have been tested as potential self-healable coatings
Slopek, Ryan Patrick. „In-situ Monitoring of Photopolymerization Using Microrheology“. Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7194.
Der volle Inhalt der QuelleKim, Young-Min MacGregor John Frederick. „Photopolymerization of cycloaliphatic epoxide and vinyl ether /“. *McMaster only, 2005.
Den vollen Inhalt der Quelle findenElisseeff, Jennifer Hartt 1973. „Transdermal photopolymerization of hydrogels for tissue engineering“. Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/84773.
Der volle Inhalt der QuelleFicek, Beth Ann Scranton Alec B. „The potential of cationic photopolymerization's long lived active centers“. Iowa City : University of Iowa, 2008. http://ir.uiowa.edu/etd/280.
Der volle Inhalt der QuelleBoddapati, Aparna. „Modeling cure depth during photopolymerization of multifunctional acrylates“. Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33934.
Der volle Inhalt der QuelleXu, Xiaolun. „Integrated Nanoemitters on Glass-based Waveguides by Photopolymerization“. Thesis, Troyes, 2020. http://www.theses.fr/2020TROY0026.
Der volle Inhalt der QuelleNanoemitters and nanosources of light are crucial elements for photonic devices. one of the key requirements is the ability to integrate nanoemitters onto specific optical chip locations. Many approaches have been explored for the practical realization of scalable photonic devices. However, these methods have some limitations such as complicated operations, high manufacturing costs, and multiple fabricating steps. This thesis aims to explore the feasibility of integrating nanoemitters based on quantum dots-polymer nanocomposites onto glass ion-exchanged waveguides-based optical substrates by photopolymerization process. We fabricated the size-controlled quantum dots-polymer ridges on top of waveguides by conducting the direct photopolymerization induced by the waveguide-coupled green laser with controlled laser power and exposure time. We succeeded in fabricating a single quantum dots-polymer nanocomposite directly on an ion-exchanged-waveguide by the developed laser printing technique based on two photon polymerization. The waveguide-coupled emission from the quantum dots inside the nanocomposite was demonstrated by our photoluminescence measurement results. This work provides primary experimental experience for our future work
Slopek, Ryan Patrick. „In-situ monitoring of the mechanical properties during the photopolymerization of acrylate resins using particle tracking microrheology“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22657.
Der volle Inhalt der QuelleCommittee Chair: Dr. Victor Breedveld; Committee Member: Dr. Clifford Henderson; Committee Member: Dr. David Rosen; Committee Member: Dr. Peter Ludovice; Committee Member: Dr. Sai Kumar.
Lam, Edward. „Synthesis and photochemistry of novel aromatic carbonyl photopolymerization initiators“. Thesis, Manchester Metropolitan University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254487.
Der volle Inhalt der QuelleBücher zum Thema "Photopolymerization"
Scranton, Alec B., Christopher N. Bowman und Robert W. Peiffer, Hrsg. Photopolymerization. Washington, DC: American Chemical Society, 1997. http://dx.doi.org/10.1021/bk-1997-0673.
Der volle Inhalt der Quelle1963-, Scranton Alec B., Bowman Christopher N. 1967-, Peiffer Robert W. 1942-, American Chemical Society. Division of Polymeric Materials: Science and Engineering. und American Chemical Society Meeting, Hrsg. Photopolymerization: Fundamentals and applications. Washington, DC: American Chemical Society, 1997.
Den vollen Inhalt der Quelle findenNail, Fatkullin, Hrsg. NMR, 3D analysis, photopolymerization. Berlin: Springer, 2004.
Den vollen Inhalt der Quelle findenCarr, N. A. Photopolymerization of dye-sensitized coatings by laser light. Manchester: UMIST, 1991.
Den vollen Inhalt der Quelle finden1960-, Belfield Kevin, und Crivello James V. 1940-, Hrsg. Photoinitiated polymerization. Washington, DC: American Chemical Society, 2003.
Den vollen Inhalt der Quelle findenS, Allen Norman, Hrsg. Photopolymerisation and photoimaging science and technology. London: Elsevier Applied Science, 1989.
Den vollen Inhalt der Quelle finden1947-, Fouassier Jean-Pierre, Hrsg. Photochemistry and UV curing: New trends 2006. Kerala, India: Research Signpost, 2006.
Den vollen Inhalt der Quelle findenCrawford, Gregory Philip. Cross-linked liquid crystalline systems: From rigid polymer networks to elastomers. Boca Raton: Taylor & Francis, 2011.
Den vollen Inhalt der Quelle findenKawata, Satoshi, Rainer Kimmich, Nail Fatkullin, Takayuki Ikehara und Hiroshi Jinnai. NMR · 3D Analysis · Photopolymerization. Springer, 2004.
Den vollen Inhalt der Quelle findenNMR 3D Analysis Photopolymerization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b12766.
Der volle Inhalt der QuelleBuchteile zum Thema "Photopolymerization"
Gooch, Jan W. „Photopolymerization“. In Encyclopedic Dictionary of Polymers, 534. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8687.
Der volle Inhalt der QuelleLin, Haiqing. „Photopolymerization“. In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_1831-1.
Der volle Inhalt der QuelleMishra, Munmaya, und Biao Duan. „Photopolymerization“. In The Essential Handbook of Polymer Terms and Attributes, 134–35. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003161318-131.
Der volle Inhalt der QuelleNassar, Raja, und Weizhong Dai. „Laser Photopolymerization“. In Modelling of Microfabrication Systems, 123–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-08792-3_4.
Der volle Inhalt der QuelleGibson, Ian, David Rosen, Brent Stucker und Mahyar Khorasani. „Vat Photopolymerization“. In Additive Manufacturing Technologies, 77–124. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56127-7_4.
Der volle Inhalt der QuelleGibson, Ian, David W. Rosen und Brent Stucker. „Photopolymerization Processes“. In Additive Manufacturing Technologies, 78–119. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1120-9_4.
Der volle Inhalt der QuelleBongiovanni, Roberta, und Alessandra Vitale. „Vat Photopolymerization“. In High Resolution Manufacturing from 2D to 3D/4D Printing, 17–46. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13779-2_2.
Der volle Inhalt der QuelleWare, Henry Oliver Tenadooah, Rihan Hai und Cheng Sun. „Vat Photopolymerization“. In Springer Handbook of Additive Manufacturing, 349–70. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20752-5_22.
Der volle Inhalt der QuelleKloosterboer, J. G., G. M. M. Van de Hei und G. F. C. M. Lijten. „Photopolymerization of Diacrylates“. In Integration of Fundamental Polymer Science and Technology, 198–203. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4185-4_25.
Der volle Inhalt der QuelleGibson, Ian, David Rosen und Brent Stucker. „Vat Photopolymerization Processes“. In Additive Manufacturing Technologies, 63–106. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2113-3_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Photopolymerization"
Shishido, Atsushi. „Two-dimensionally aligned liquid-crystalline polymer coatings designed by patterned photopolymerization“. In Liquid Crystals XXVIII, herausgegeben von Iam Choon Khoo, 4. SPIE, 2024. http://dx.doi.org/10.1117/12.3027528.
Der volle Inhalt der QuelleYang, Yizhe, Bingshan Liu, Kaixiang Zhang, Xiaodong Liu und Gong Wang. „Correction of manufacturability based on the slice for ceramic vat photopolymerization“. In 3rd International Conference on Advanced Manufacturing Technology and Manufacturing Systems (ICAMTMS 2024), herausgegeben von Dailin Zhang und Ke Zhang, 44. SPIE, 2024. http://dx.doi.org/10.1117/12.3038308.
Der volle Inhalt der QuelleYamaguchi, Katsumi, und Takeshi Nakamoto. „Microfabrication using laser-induced photopolymerization“. In Laser-Assisted Microtechnology 2000, herausgegeben von Vadim P. Veiko. SPIE, 2001. http://dx.doi.org/10.1117/12.413747.
Der volle Inhalt der QuelleHoyle, Charles E., Tsuyoshi Watanabe und Joe B. Whitehead, Jr. „Photopolymerization of oriented monomeric liquid crystals“. In SPIE/IS&T 1992 Symposium on Electronic Imaging: Science and Technology, herausgegeben von Paul S. Drzaic und Uzi Efron. SPIE, 1992. http://dx.doi.org/10.1117/12.60390.
Der volle Inhalt der QuelleKrongayz, Vadim V., und E. R. Schmelzer. „Peculiarities of anisotropic photopolymerization in films“. In San Diego, '91, San Diego, CA, herausgegeben von Roger A. Lessard. SPIE, 1991. http://dx.doi.org/10.1117/12.50685.
Der volle Inhalt der QuelleBaldacchini, Tommaso, Huzhen Chen, Richard Farrer, Michael Previte, Joel Moser, Michael Naughton und John T. Fourkas. „Multiphoton photopolymerization with a Ti:sapphire oscillator“. In High-Power Lasers and Applications, herausgegeben von Glenn S. Edwards, Joseph Neev, Andreas Ostendorf und John C. Sutherland. SPIE, 2002. http://dx.doi.org/10.1117/12.461373.
Der volle Inhalt der QuelleDiptanshu, Erik Young, Chao Ma, Suleiman Obeidat, Bo Pang und Nick Kang. „Ceramic Additive Manufacturing Using VAT Photopolymerization“. In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6389.
Der volle Inhalt der QuelleCroutxe-Barghorn, Celine, Olivier Soppera und Daniel-Joseph Lougnot. „Microlens array fabrication through crosslinking photopolymerization“. In Symposium on Micromachining and Microfabrication, herausgegeben von Sing H. Lee und J. Allen Cox. SPIE, 1999. http://dx.doi.org/10.1117/12.360531.
Der volle Inhalt der QuelleSubrahmanyan, Suchitra, Fang Chen und Hilary S. Lackritz. „Studies of Photopolymerization at Metal Surfaces“. In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.md.14.
Der volle Inhalt der QuelleHesami, L., C. Yang, N. Noginova und M. A. Noginov. „Control of Photopolymerization of BITh Thin Films with Plasmonic Metal/Dielectric Substrates“. In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_at.2023.jtu2a.125.
Der volle Inhalt der Quelle