Zeitschriftenartikel zum Thema „Photonic time-Stretch“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Photonic time-Stretch.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Photonic time-Stretch" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Wang, Guoqing, Yuan Zhou, Rui Min, E. Du und Chao Wang. „Principle and Recent Development in Photonic Time-Stretch Imaging“. Photonics 10, Nr. 7 (13.07.2023): 817. http://dx.doi.org/10.3390/photonics10070817.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Inspiring development in optical imaging enables great applications in the science and engineering industry, especially in the medical imaging area. Photonic time-stretch imaging is one emerging innovation that attracted a wide range of attention due to its principle of one-to-one-to-one mapping among space-wavelength-time using dispersive medium both in spatial and time domains. The ultrafast imaging speed of the photonics time-stretch imaging technique achieves an ultrahigh frame rate of tens of millions of frames per second, which exceeds the traditional imaging methods in several orders of magnitudes. Additionally, regarding ultrafast optical signal processing, it can combine several other optical technologies, such as compressive sensing, nonlinear processing, and deep learning. In this paper, we review the principle and recent development of photonic time-stretch imaging and discuss the future trends.
2

Mei, Yuan, Boyu Xu, Hao Chi, Tao Jin, Shilie Zheng, Xiaofeng Jin und Xianmin Zhang. „Harmonics analysis of the photonic time stretch system“. Applied Optics 55, Nr. 26 (06.09.2016): 7222. http://dx.doi.org/10.1364/ao.55.007222.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zlokazov, E. Yu, R. S. Starikov und V. A. Nebavskiy. „Mathematical modelling of microwave photonic time-stretch system“. Journal of Physics: Conference Series 737 (August 2016): 012001. http://dx.doi.org/10.1088/1742-6596/737/1/012001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zhang, Yaowen, Rongting Jin, Di Peng, Weiqiang Lyu, Zhenwei Fu, Zhiyao Zhang, Shangjian Zhang, Heping Li und Yong Liu. „Broadband Transient Waveform Digitizer Based on Photonic Time Stretch“. Journal of Lightwave Technology 39, Nr. 9 (01.05.2021): 2880–87. http://dx.doi.org/10.1109/jlt.2021.3061511.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Saltarelli, Francesco, Vikas Kumar, Daniele Viola, Francesco Crisafi, Fabrizio Preda, Giulio Cerullo und Dario Polli. „Photonic Time-Stretch Spectroscopy for Multiplex Stimulated Raman Scattering“. EPJ Web of Conferences 205 (2019): 03003. http://dx.doi.org/10.1051/epjconf/201920503003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Stimulated Raman scattering spectroscopy enables label-free molecular identification, but its broadband implementation is technically challenging. We experimentally demonstrate a novel approach to multiplex stimulated Raman scattering based on photonic time stretch. A telecom fiber stretches the broadband femtosecond Stokes pulse after the sample to ∼15ns, mapping its spectrum in time. The signal is sampled through a fast oscilloscope, providing single-shot spectra at 80-kHz rate. We demonstrate high sensitivity in detecting the Raman vibrational modes of various samples over the entire high-frequency C-H stretching region. Our results pave the way to high-speed broadband vibrational imaging for materials science and biophotonics.
6

Shu, Haowen, Lin Chang, Yuansheng Tao, Bitao Shen, Weiqiang Xie, Ming Jin, Andrew Netherton et al. „Microcomb-driven silicon photonic systems“. Nature 605, Nr. 7910 (18.05.2022): 457–63. http://dx.doi.org/10.1038/s41586-022-04579-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractMicrocombs have sparked a surge of applications over the past decade, ranging from optical communications to metrology1–4. Despite their diverse deployment, most microcomb-based systems rely on a large amount of bulky elements and equipment to fulfil their desired functions, which is complicated, expensive and power consuming. By contrast, foundry-based silicon photonics (SiPh) has had remarkable success in providing versatile functionality in a scalable and low-cost manner5–7, but its available chip-based light sources lack the capacity for parallelization, which limits the scope of SiPh applications. Here we combine these two technologies by using a power-efficient and operationally simple aluminium-gallium-arsenide-on-insulator microcomb source to drive complementary metal–oxide–semiconductor SiPh engines. We present two important chip-scale photonic systems for optical data transmission and microwave photonics, respectively. A microcomb-based integrated photonic data link is demonstrated, based on a pulse-amplitude four-level modulation scheme with a two-terabit-per-second aggregate rate, and a highly reconfigurable microwave photonic filter with a high level of integration is constructed using a time-stretch approach. Such synergy of a microcomb and SiPh integrated components is an essential step towards the next generation of fully integrated photonic systems.
7

Zhu, Qian, Leran Wang, Lei Yang, Hongbo Xie und Daoyin Yu. „Ultrafast photonic time-stretch imaging using an optically transparent medium“. Applied Physics Express 13, Nr. 10 (10.09.2020): 102001. http://dx.doi.org/10.35848/1882-0786/abb344.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Mei, Yuan, Yuxiao Xu, Hao Chi, Tao Jin, Shilie Zheng, Xiaofeng Jin und Xianmin Zhang. „Spurious-Free Dynamic Range of the Photonic Time-Stretch System“. IEEE Photonics Technology Letters 29, Nr. 10 (15.05.2017): 794–97. http://dx.doi.org/10.1109/lpt.2017.2685624.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Liu, Changqiao, Xiaofeng Jin, Boyu Xu, Xiangdong Jin, Xianmin Zhang, Shilie Zheng und Hao Chi. „Impact of 3rd-order dispersion on photonic time-stretch system“. Optics Communications 402 (November 2017): 206–10. http://dx.doi.org/10.1016/j.optcom.2017.05.079.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Xu, Yuxiao, Hao Chi, Tao Jin, Shilie Zheng, Xiaofeng Jin und Xianmin Zhang. „On the undesired frequency chirping in photonic time-stretch systems“. Optics Communications 405 (Dezember 2017): 192–96. http://dx.doi.org/10.1016/j.optcom.2017.08.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Yang, Lei, Hui Chen, Jun Ma, Qian Zhu, Tong Yang und Hongbo Xie. „Photonic Time-Stretch Technology with Prismatic Pulse Dispersion towards Fast Real-Time Measurements“. Photonics 6, Nr. 3 (09.09.2019): 99. http://dx.doi.org/10.3390/photonics6030099.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Photonic time-stretch (PTS) technology enables revolutionary technical breakthroughs in ultrafast electronic and optical systems. By means of employing large chromatic dispersion to map the spectrum of an ultrashort optical pulse into a stretched time-domain waveform (namely, using the dispersive Fourier transformation), PTS overcomes the fundamental speed limitations of conventional techniques. The chromatic dispersion utilized in PTS can be implemented using multiple optical prism arrays, which have the particular advantages of low loss in the extended spectrum outside of the specific telecommunication band, flexibility, and cost-effectiveness. In this article, we propose and demonstrate the PTS technology established for a pair of prisms, which works as a data acquisition approach in ultrafast digitizing, imaging, and measurement regimes.
12

Zhang, Yukang, und Hao Chi. „An Optical Front-End for Wideband Transceivers Based on Photonic Time Compression and Stretch“. Photonics 9, Nr. 9 (15.09.2022): 658. http://dx.doi.org/10.3390/photonics9090658.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This study proposes an optical front-end for wideband transceivers based on photonic time compression (PTC) and photonic time stretch (PTS) techniques. The PTC and PTS systems within a transceiver generate and receive wideband RF signals, respectively, which expand the processible signal bandwidth. We present analytical models for characterizing the optical front-end based on the PTC and PTS. The design of the front-end for signal generation and reception is also discussed, in which we emphasize the bandwidth match between the PTC-based transmitter and PTS-based receiver through an appropriate dispersion configuration. We conducted experiments on PTC and PTS systems with a single channel. Further simulation results for PTC and PTS systems with multiple channels for continuous-time operation are presented. The proposed front-end based on time compression/stretch can largely improve the signal bandwidth in systems using inexpensive low-speed analogue/digital converters.
13

Gupta, Shalabh, und Bahram Jalali. „Time-warp correction and calibration in photonic time-stretch analog-to-digital converter“. Optics Letters 33, Nr. 22 (14.11.2008): 2674. http://dx.doi.org/10.1364/ol.33.002674.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Fard, Ali M., Shalabh Gupta und Bahram Jalali. „Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging“. Laser & Photonics Reviews 7, Nr. 2 (15.01.2013): 207–63. http://dx.doi.org/10.1002/lpor.201200015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Han, Y., O. Boyraz und B. Jalali. „Ultrawide-band photonic time-stretch a/D converter employing phase diversity“. IEEE Transactions on Microwave Theory and Techniques 53, Nr. 4 (April 2005): 1404–8. http://dx.doi.org/10.1109/tmtt.2005.845757.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Szwaj, C., C. Evain, M. Le Parquier, P. Roy, L. Manceron, J. B. Brubach, M. A. Tordeux und S. Bielawski. „High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses“. Review of Scientific Instruments 87, Nr. 10 (Oktober 2016): 103111. http://dx.doi.org/10.1063/1.4964702.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Xu, Boyu, Changqiao Liu, Xiaofeng Jin, Xiangdong Jin, Xianbin Yu, Hao Chi, Shilie Zheng und Xianmin Zhang. „Frequency-dependent noise figure analysis of continuous photonic time-stretch system“. Applied Optics 56, Nr. 29 (09.10.2017): 8246. http://dx.doi.org/10.1364/ao.56.008246.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Coppinger, F., A. S. Bhushan und B. Jalali. „Photonic time stretch and its application to analog-to-digital conversion“. IEEE Transactions on Microwave Theory and Techniques 47, Nr. 7 (Juli 1999): 1309–14. http://dx.doi.org/10.1109/22.775471.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Xie, Xinggang, Xiaoli Yin, Sha Li, Li Li, Xiangjun Xin und Chongxiu Yu. „Photonic time-stretch analog-to-digital converter employing envelope removing technique“. Optik 125, Nr. 9 (Mai 2014): 2195–98. http://dx.doi.org/10.1016/j.ijleo.2013.10.027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Jalali, B., F. Coppinger und A. S. Bhushan. „Photonic Time-stretch Offers Solution to Ultrafast Analog-to-digital Conversion“. Optics and Photonics News 9, Nr. 12 (01.12.1998): 31. http://dx.doi.org/10.1364/opn.9.12.000031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Mididoddi, Chaitanya K., Fangliang Bai, Guoqing Wang, Jinchao Liu, Stuart Gibson und Chao Wang. „High-Throughput Photonic Time-Stretch Optical Coherence Tomography with Data Compression“. IEEE Photonics Journal 9, Nr. 4 (August 2017): 1–15. http://dx.doi.org/10.1109/jphot.2017.2716179.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Fuster, J. M., D. Novak, A. Nirmalathas und J. Marti. „Single-sideband modulation in photonic time-stretch analogue-to-digital conversion“. Electronics Letters 37, Nr. 1 (2001): 67. http://dx.doi.org/10.1049/el:20010046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Chi, Hao, Ying Chen, Yuan Mei, Xiaofeng Jin, Shilie Zheng und Xianmin Zhang. „Microwave spectrum sensing based on photonic time stretch and compressive sampling“. Optics Letters 38, Nr. 2 (08.01.2013): 136. http://dx.doi.org/10.1364/ol.38.000136.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Teng, Yun, Chong-xiu Yu, Jin-hui Yuan, Jing-xuan Chen, Cang Jin und Qian Xu. „Time-stretch analog-to-digital conversion with a photonic crystal fiber“. Optoelectronics Letters 7, Nr. 2 (März 2011): 143–46. http://dx.doi.org/10.1007/s11801-011-0149-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Yang, Shuna, Jian Wang, Bo Yang, Hao Chi, Jun Ou, Yanrong Zhai und Qiliang Li. „A serial digital-to-analog conversion based on photonic time-stretch technology“. Optics Communications 510 (Mai 2022): 127949. http://dx.doi.org/10.1016/j.optcom.2022.127949.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Bhushan, A. S., P. V. Kelkar, B. Jalali, O. Boyraz und M. Islam. „130-GSa/s photonic analog-to-digital converter with time stretch preprocessor“. IEEE Photonics Technology Letters 14, Nr. 5 (Mai 2002): 684–86. http://dx.doi.org/10.1109/68.998725.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Liu, Changqiao, Xiaofeng Jin, Xiangdong Jin, Xianbin Yu, Qinggui Tan und Guoyong Wang. „Signal Frequency Chirp of Photonic Time-Stretch System Due to Nonlinear Dispersion“. IEEE Photonics Technology Letters 31, Nr. 6 (15.03.2019): 443–46. http://dx.doi.org/10.1109/lpt.2019.2897723.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Zheng, Jian, Wei Feng und Sha Li. „Photonic time stretch preprocessor employing coherent detection in analog-to-digital converter“. Optik 124, Nr. 20 (Oktober 2013): 4647–50. http://dx.doi.org/10.1016/j.ijleo.2013.01.036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Yang, Bo, Qing Xu, Shuna Yang und Hao Chi. „Wideband sparse signal acquisition with ultrahigh sampling compression ratio based on continuous-time photonic time stretch and photonic compressive sampling“. Applied Optics 61, Nr. 6 (10.02.2022): 1344. http://dx.doi.org/10.1364/ao.450386.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Qian Aquan, 钱阿权, 邹卫文 Zou Weiwen, 吴龟灵 Wu Guiling und 陈建平 Chen Jianping. „Design and Implementation of Multi-Channel Photonic Time-Stretch Analog-to-Digital Converter“. Chinese Journal of Lasers 42, Nr. 5 (2015): 0505001. http://dx.doi.org/10.3788/cjl201542.0505001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Li, Sha, und Chong-Xiu Yu. „Ultrahigh sampling rate photonic time stretch analog-to-digital converter employing phase modulation“. Optik 124, Nr. 20 (Oktober 2013): 4539–43. http://dx.doi.org/10.1016/j.ijleo.2013.02.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Li, Bo, Shuqin Lou und José Azaña. „Implementation of the photonic time-stretch concept using an incoherent pulsed light source“. Applied Optics 54, Nr. 10 (25.03.2015): 2757. http://dx.doi.org/10.1364/ao.54.002757.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Mididoddi, Chaitanya K., und Chao Wang. „Adaptive non-uniform photonic time stretch for blind RF signal detection with compressed time-bandwidth product“. Optics Communications 396 (August 2017): 221–27. http://dx.doi.org/10.1016/j.optcom.2017.03.052.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Fard, Ali, Brandon Buckley und Bahram Jalali. „Spectral Efficiency Improvement in Photonic Time-Stretch Analog-to-Digital Converter via Polarization Multiplexing“. IEEE Photonics Technology Letters 23, Nr. 14 (Juli 2011): 947–49. http://dx.doi.org/10.1109/lpt.2011.2142414.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Fard, Ali M., Peter T. S. DeVore, Daniel R. Solli und Bahram Jalali. „Impact of Optical Nonlinearity on Performance of Photonic Time-Stretch Analog-to-Digital Converter“. Journal of Lightwave Technology 29, Nr. 13 (Juli 2011): 2025–30. http://dx.doi.org/10.1109/jlt.2011.2157304.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Fard, Ali, Shalabh Gupta und Bahram Jalali. „Digital broadband linearization technique and its application to photonic time-stretch analog-to-digital converter“. Optics Letters 36, Nr. 7 (18.03.2011): 1077. http://dx.doi.org/10.1364/ol.36.001077.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Stigwall, Johan, und Sheila Galt. „Signal Reconstruction by Phase Retrieval and Optical Backpropagation in Phase-Diverse Photonic Time-Stretch Systems“. Journal of Lightwave Technology 25, Nr. 10 (Oktober 2007): 3017–27. http://dx.doi.org/10.1109/jlt.2007.905893.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Xia Nan, 夏楠, 陈颖 Chen Ying, 陈向宁 Chen Xiangning, 邹卫文 Zou Weiwen, 吴龟灵 Wu Guiling und 陈建平 Chen Jianping. „Impact of Nonlinearity Effect on the Performance of Photonic Time-Stretch Analog-to-Digital Converter System“. Acta Optica Sinica 34, Nr. 6 (2014): 0606002. http://dx.doi.org/10.3788/aos201434.0606002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Peng, Di, Zhiyao Zhang, Zhen Zeng, Lingjie Zhang, Yanjia Lyu, Yong Liu und Kang Xie. „Single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser“. Optics Express 26, Nr. 6 (05.03.2018): 6519. http://dx.doi.org/10.1364/oe.26.006519.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Gee, Caroline M., George Sefler, Peter T. S. DeVore und George C. Valley. „Spurious‐Free dynamic range of a high‐resolution photonic time‐stretch analog‐to‐digital converter system“. Microwave and Optical Technology Letters 54, Nr. 11 (24.08.2012): 2558–63. http://dx.doi.org/10.1002/mop.27114.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Sefler, George A., und George C. Valley. „Mitigation of Group-Delay-Ripple Distortions for Use of Chirped Fiber-Bragg Gratings in Photonic Time-Stretch ADCs“. Journal of Lightwave Technology 31, Nr. 7 (April 2013): 1093–100. http://dx.doi.org/10.1109/jlt.2013.2243404.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Qian, Na, Weiwen Zou, Siteng Zhang und Jianping Chen. „Signal-to-noise ratio improvement of photonic time-stretch coherent radar enabling high-sensitivity ultrabroad W-band operation“. Optics Letters 43, Nr. 23 (29.11.2018): 5869. http://dx.doi.org/10.1364/ol.43.005869.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Peng, Di, Zhiyao Zhang, Yangxue Ma, Yali Zhang, Shangjian Zhang und Yong Liu. „Optimized Single-Shot Photonic Time-Stretch Digitizer Using Complementary Parallel Single-Sideband Modulation Architecture and Digital Signal Processing“. IEEE Photonics Journal 9, Nr. 3 (Juni 2017): 1–14. http://dx.doi.org/10.1109/jphot.2017.2694442.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Chen, Ying, Hao Chi, Tao Jin, Shilie Zheng, Xiaofeng Jin und Xianmin Zhang. „Sub-Nyquist Sampled Analog-to-Digital Conversion Based on Photonic Time Stretch and Compressive Sensing With Optical Random Mixing“. Journal of Lightwave Technology 31, Nr. 21 (November 2013): 3395–401. http://dx.doi.org/10.1109/jlt.2013.2282088.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Li, Caiyun, Jiangyong He, Yange Liu, Yang Yue, Luhe Zhang, Longfei Zhu, Mengjie Zhou, Congcong Liu, Kaiyan Zhu und Zhi Wang. „Comparing Performance of Deep Convolution Networks in Reconstructing Soliton Molecules Dynamics from Real-Time Spectral Interference“. Photonics 8, Nr. 2 (13.02.2021): 51. http://dx.doi.org/10.3390/photonics8020051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Deep neural networks have enabled the reconstruction of optical soliton molecules with more complex structures using the real-time spectral interferences obtained by photonic time-stretch dispersive Fourier transformation (TS-DFT) technology. In this paper, we propose to use three kinds of deep convolution networks (DCNs), including VGG, ResNets, and DenseNets, for revealing internal dynamics evolution of soliton molecules based on the real-time spectral interferences. When analyzing soliton molecules with equidistant composite structures, all three models are effective. The DenseNets with layers of 48 perform the best for extracting the dynamic information of complex five-soliton molecules from TS-DFT data. The mean Pearson correlation coefficient (MPCC) between the predicted results and the real results is about 0.9975. Further, the ResNets in which the MPCC achieves 0.9906 also has the better ability of phase extraction than VGG which the MPCC is about 0.9739. The general applicability is demonstrated for extracting internal information from complex soliton molecule structures with high accuracy. The presented DCNs-based techniques can be employed to explore undiscovered mechanisms underlying the distribution and evolution of large numbers of solitons in dissipative systems in experimental research.
46

Jiang, Xingyu, Shuaijian Yang und Leni Zhong. „(Invited) Stretchable and Biodegradable Sensors Based on Liquid Metal-Polymer Composites Encapsulated in Microfluidics“. ECS Meeting Abstracts MA2023-02, Nr. 63 (22.12.2023): 2975. http://dx.doi.org/10.1149/ma2023-02632975mtgabs.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Photolithography and related advances have made microfluidics, microelectromechanical systems and related systems accessible to many biomecial labs. These systems have found uses in biochemical assays, pharmaceutical screening and many fields of applications. Conductive inks made from lipid metal-polymer composites (MPC) can be encapsulated within elastomer-based microfluidic channels that serve as conducting wires that are flexible, stretchable and completely biodegradable. Such flexible devices have allow the introduction of electrical and photonic signals seamlessly into living tissues. These properties can dramatically expand the capability of stretch electronic devices as biomedical sensors, as well as sensors for electrophysiology, tissue engineering, regenerative medicine and gene therapy. MPC-based epidermal liquid metal-based electronics, such as blood oxygen sensors and sweat detection devices, allow real-time health monitoring. I will also discuss the idea of an “electronic blood vessel” that integrates sensing with regeneration. Eventually, these sensors can also harness the chemical energy within bodies to comprise self-power devices.
47

Peng, Di, Zhiyao Zhang, Yangxue Ma, Yali Zhang, Shangjian Zhang und Yong Liu. „Broadband linearization in photonic time-stretch analog-to-digital converters employing an asymmetrical dual-parallel Mach-Zehnder modulator and a balanced detector“. Optics Express 24, Nr. 11 (18.05.2016): 11546. http://dx.doi.org/10.1364/oe.24.011546.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Yin, Tenghao, Danming Zhong, Junjie Liu, Xiangjiang Liu, Honghui Yu und Shaoxing Qu. „Stretch tuning of the Debye ring for 2D photonic crystals on a dielectric elastomer membrane“. Soft Matter 14, Nr. 7 (2018): 1120–29. http://dx.doi.org/10.1039/c7sm02322g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Ugo, Cataldi, und Buergi Thomas. „Plasmonic coupling induced by growing processes of metal nanoparticles in wrinkled structures and driven by mechanical strain applied to a polidimethisiloxisilane template“. Photonics Letters of Poland 9, Nr. 2 (01.07.2017): 45. http://dx.doi.org/10.4302/plp.v9i2.702.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We report the mechanical control of plasmonic coupling between gold nanoparticles (GNPs) coated onto a large area wrinkled surface of an elastomeric template. Self-assembly and bottom-up procedures, were used to fabricate the sample and to increase the size of GNPs by exploiting the reduction of HAuCl4 with hydroxylamine. The elastic properties of template, the increase of nanostructure size joined with the particular grating configuration of the surface have been exploited to trigger and handle the coupling processes between the nanoparticles. Full Text: PDF ReferencesG. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen", Ann. Phys. 25, 377 (1908) CrossRef U. Kreibig and M. Vollmer, Optical properties of metal cluster, Berlin 1995 CrossRef S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, 2007 CrossRef L. A. Lane, X. Qian, and S. Nie, "SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging", Chem. Rev. 115, 10489-10529 (2015) CrossRef N. Pazos-Perez, W. Ni, A. Schweikart, R. A. Alvarez-Puebla, A. Fery and L. M. Liz-Marzan, "Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids", Chem. Sci. 1, 174-178P (2010) CrossRef M. Aioub and M. A. El-Sayed, "A Real-Time Surface Enhanced Raman Spectroscopy Study of Plasmonic Photothermal Cell Death Using Targeted Gold Nanoparticles", J. Am. Chem. Soc. 138, 1258-1264 (2016) CrossRef G. Baffou, and R. Quidant, "Thermo-plasmonics: using metallic nanostructures as nano-sources of heat", Laser Photonics Rev. 7, No. 2, 171-187 (2013) CrossRef G. Palermo, U. Cataldi, L. De Sio, T. Beurgi, N. Tabiryan, and C. Umeton, "Optical control of plasmonic heating effects using reversible photo-alignment of nematic liquid crystals", Applied Physics 109, 191906 (2016) CrossRef J. R. Dunklin, G. T. Forcherio, K. R. Berry, Jr., and D. K. Roper, "Gold Nanoparticle Polydimethylsiloxane Thin Films Enhance Thermoplasmonic Dissipation by Internal Reflection", J. Phys. Chem. 118, 7523-7531 (2014) CrossRef Y. Jin, "Engineering Plasmonic Gold Nanostructures and Metamaterials for Biosensing and Nanomedicine", Adv. Mater. 24, 5153-5165 (2012) CrossRef J. H. Lee, Q. Wu, and W. Park, "Metal nanocluster metamaterial fabricated by the colloidal self-assembly", Optics Letters 34, Issue 4, 443-445 (2009) CrossRef R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, "Tunable optical metamaterial based on liquid crystal-gold nanosphere composite", Optics Express 17, Issue 22, 19459-19469 (2009) CrossRef J. Dintinger, S. Mühlig, C. Rockstuhl, and T. Scharf, "A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles", Optical Materials Express 2, Issue 3, 269-278 (2012) CrossRef T. Maurer, J. Marae-Djouda, U. Cataldi, A. G., Guillaume Montay, Y. Madi, B. Panicaud, D. Macias, P.-M. Adam, G. Léveque, T. Buergi, and R. Caputo, "The beginnings of plasmomechanics: towards plasmonic strain sensors", Front. Mater. Sci. 9(2) (2015) CrossRef J. N. Anker W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. Van Duyne, "Biosensing with plasmonic nanosensors", Nature Materials 7, 442 - 453 (2008) CrossRef M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers,and R. G. Nuzzo, "Nanostructured Plasmonic Sensors", Chem. Rev. 108, 494-521 (2008) CrossRef P. K. Jain , M. A. El-Sayed, "Plasmonic coupling in noble metal nanostructures", Chemical Physics Letters 487, 153-164 (2010) CrossRef P. K. Jain, W. Huang and M. A. El-Sayed, "On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation", Nano Letters 7, 2080-2088 (2007) CrossRef U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton and T. Buergi, "Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling", Journal of Materials Chemistry C 2(37), 7927-7933 (2014). CrossRef S. K. Ghosh and T. Pal, "Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications", Chem. Rev. 107, 4797 (2007) CrossRef M. K. Kinnan and G. Chumanov, "Plasmon Coupling in Two-Dimensional Arrays of Silver Nanoparticles: II. Effect of the Particle Size and Interparticle Distance", J. Phys. Chem. C 114, 7496 (2010) CrossRef X. L. Zhu, S. S. Xiao, L. Shi, X. H. Liu, J. Zi, O. Hansen and N. A. Mortensen, "A stretch-tunable plasmonic structure with a polarization-dependent response", Opt. Express, 20, 5237 (2012) CrossRef K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith and S. Schultz, "Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles", Nano Lett. 3, 1087 (2003) CrossRef Y. L. Chiang, C. W. Chen, C. H. Wang, C. Y. Hsieh, Y. T. Chen, H. Y. Shih and Y. F. Chen, "Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite", Appl. Phys. Lett. 96, 041904 (2010) CrossRef N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, "The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer", Appl. Phys. Lett. 75(17) (1999) CrossRef R, A. Lawton, C. R. Price, A. F. Runge, Walter J. Doherty III, S. Scott Saavedra , "Air plasma treatment of submicron thick PDMS polymer films: effect of oxidation time and storage conditions", Colloids and Surfaces A: Physicochem. Eng. Aspects 253, 213-215 (2005). CrossRef A Schweikart, N. Pazos-Perez, R. A. Alvarez-Puebla and A. Fery, "Controlling inter-nanoparticle coupling by wrinkle-assisted assembly", Soft Matter 7, 4093 (2011) CrossRef K. R. Brown, L. A. Lyon, A. P. Fox, B. D. Reiss and M. J. Natan, "Hydroxylamine Seeding of Colloidal Au Nanoparticles. 3. Controlled Formation of Conductive Au Films", Chem. Mater. 12, 314 (2000) CrossRef
50

Asghari, Hossein, und Max Hushahn. „Multi-Probe Photonic Time-Stretch: Design and Applications“. SSRN Electronic Journal, 2023. http://dx.doi.org/10.2139/ssrn.4345360.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie