Auswahl der wissenschaftlichen Literatur zum Thema „Photonic time-Stretch“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Photonic time-Stretch" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Photonic time-Stretch":

1

Wang, Guoqing, Yuan Zhou, Rui Min, E. Du und Chao Wang. „Principle and Recent Development in Photonic Time-Stretch Imaging“. Photonics 10, Nr. 7 (13.07.2023): 817. http://dx.doi.org/10.3390/photonics10070817.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Inspiring development in optical imaging enables great applications in the science and engineering industry, especially in the medical imaging area. Photonic time-stretch imaging is one emerging innovation that attracted a wide range of attention due to its principle of one-to-one-to-one mapping among space-wavelength-time using dispersive medium both in spatial and time domains. The ultrafast imaging speed of the photonics time-stretch imaging technique achieves an ultrahigh frame rate of tens of millions of frames per second, which exceeds the traditional imaging methods in several orders of magnitudes. Additionally, regarding ultrafast optical signal processing, it can combine several other optical technologies, such as compressive sensing, nonlinear processing, and deep learning. In this paper, we review the principle and recent development of photonic time-stretch imaging and discuss the future trends.
2

Mei, Yuan, Boyu Xu, Hao Chi, Tao Jin, Shilie Zheng, Xiaofeng Jin und Xianmin Zhang. „Harmonics analysis of the photonic time stretch system“. Applied Optics 55, Nr. 26 (06.09.2016): 7222. http://dx.doi.org/10.1364/ao.55.007222.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zlokazov, E. Yu, R. S. Starikov und V. A. Nebavskiy. „Mathematical modelling of microwave photonic time-stretch system“. Journal of Physics: Conference Series 737 (August 2016): 012001. http://dx.doi.org/10.1088/1742-6596/737/1/012001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zhang, Yaowen, Rongting Jin, Di Peng, Weiqiang Lyu, Zhenwei Fu, Zhiyao Zhang, Shangjian Zhang, Heping Li und Yong Liu. „Broadband Transient Waveform Digitizer Based on Photonic Time Stretch“. Journal of Lightwave Technology 39, Nr. 9 (01.05.2021): 2880–87. http://dx.doi.org/10.1109/jlt.2021.3061511.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Saltarelli, Francesco, Vikas Kumar, Daniele Viola, Francesco Crisafi, Fabrizio Preda, Giulio Cerullo und Dario Polli. „Photonic Time-Stretch Spectroscopy for Multiplex Stimulated Raman Scattering“. EPJ Web of Conferences 205 (2019): 03003. http://dx.doi.org/10.1051/epjconf/201920503003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Stimulated Raman scattering spectroscopy enables label-free molecular identification, but its broadband implementation is technically challenging. We experimentally demonstrate a novel approach to multiplex stimulated Raman scattering based on photonic time stretch. A telecom fiber stretches the broadband femtosecond Stokes pulse after the sample to ∼15ns, mapping its spectrum in time. The signal is sampled through a fast oscilloscope, providing single-shot spectra at 80-kHz rate. We demonstrate high sensitivity in detecting the Raman vibrational modes of various samples over the entire high-frequency C-H stretching region. Our results pave the way to high-speed broadband vibrational imaging for materials science and biophotonics.
6

Shu, Haowen, Lin Chang, Yuansheng Tao, Bitao Shen, Weiqiang Xie, Ming Jin, Andrew Netherton et al. „Microcomb-driven silicon photonic systems“. Nature 605, Nr. 7910 (18.05.2022): 457–63. http://dx.doi.org/10.1038/s41586-022-04579-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractMicrocombs have sparked a surge of applications over the past decade, ranging from optical communications to metrology1–4. Despite their diverse deployment, most microcomb-based systems rely on a large amount of bulky elements and equipment to fulfil their desired functions, which is complicated, expensive and power consuming. By contrast, foundry-based silicon photonics (SiPh) has had remarkable success in providing versatile functionality in a scalable and low-cost manner5–7, but its available chip-based light sources lack the capacity for parallelization, which limits the scope of SiPh applications. Here we combine these two technologies by using a power-efficient and operationally simple aluminium-gallium-arsenide-on-insulator microcomb source to drive complementary metal–oxide–semiconductor SiPh engines. We present two important chip-scale photonic systems for optical data transmission and microwave photonics, respectively. A microcomb-based integrated photonic data link is demonstrated, based on a pulse-amplitude four-level modulation scheme with a two-terabit-per-second aggregate rate, and a highly reconfigurable microwave photonic filter with a high level of integration is constructed using a time-stretch approach. Such synergy of a microcomb and SiPh integrated components is an essential step towards the next generation of fully integrated photonic systems.
7

Zhu, Qian, Leran Wang, Lei Yang, Hongbo Xie und Daoyin Yu. „Ultrafast photonic time-stretch imaging using an optically transparent medium“. Applied Physics Express 13, Nr. 10 (10.09.2020): 102001. http://dx.doi.org/10.35848/1882-0786/abb344.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Mei, Yuan, Yuxiao Xu, Hao Chi, Tao Jin, Shilie Zheng, Xiaofeng Jin und Xianmin Zhang. „Spurious-Free Dynamic Range of the Photonic Time-Stretch System“. IEEE Photonics Technology Letters 29, Nr. 10 (15.05.2017): 794–97. http://dx.doi.org/10.1109/lpt.2017.2685624.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Liu, Changqiao, Xiaofeng Jin, Boyu Xu, Xiangdong Jin, Xianmin Zhang, Shilie Zheng und Hao Chi. „Impact of 3rd-order dispersion on photonic time-stretch system“. Optics Communications 402 (November 2017): 206–10. http://dx.doi.org/10.1016/j.optcom.2017.05.079.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Xu, Yuxiao, Hao Chi, Tao Jin, Shilie Zheng, Xiaofeng Jin und Xianmin Zhang. „On the undesired frequency chirping in photonic time-stretch systems“. Optics Communications 405 (Dezember 2017): 192–96. http://dx.doi.org/10.1016/j.optcom.2017.08.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Photonic time-Stretch":

1

Gupta, Shalabh. „Photonic time stretch analog-to-digital conversion for high resolution and real-time burst sampling of ultra-wideband signals“. Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=2026639441&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hanoun, Christelle. „Development of time-stretch terahertz waveform recorders for high repetition rate accelerator-based light sources“. Electronic Thesis or Diss., Université de Lille (2022-....), 2023. https://pepite-depot.univ-lille.fr/ToutIDP/EDSMRE/2023/2023ULILR072.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Le travail de Thèse concerne le développement de systèmes permettant l'enregistrement de signaux électriques, en single-shot, avec des bandes passantes allant jusqu'à plusieurs térahertz (THz). Ce travail est motivé par des besoins importants dans le développement et la recherche sur les sources de lumière basées sur des accélérateurs (les centres de rayonnement synchrotron et les lasers à électrons libres). Ce travail est également motivé par les besoins récents de spectroscopie THz avec des fréquences d'acquisition élevées. Cette thèse se focalise sur le développement de systèmes de mesure où les ondes THz à analyser sont sondées au moyen d'un laser femtoseconde. Plus spécifiquement, le travail porte sur le développement de la technique dite du photonic time-stretch, et vise à résoudre plusieurs problèmes ouverts. Jusque récemment, les techniques de time-stretch souffraient d'une limite fondamentale sur leurs durées d'enregistrement et/ou leurs résolutions temporelles à des valeurs incompatibles avec de nombreuses applications dans le domaine des accélérateurs. Dans une première partie, le travail a consisté à tenter de résoudre ce problème en développant, au laboratoire PhLAM, un système d'enregistrement THz monocoup associant la technique du photonic time-stretch et la technique dite du Diversity Electro-Optic Sampling (DEOS). Le système d'enregistrement, basé sur un laser de sonde à 1030 nm a ensuite été testé lors de deux séries d'expériences sur les sources THz intense basées sur l'accélérateur de ELBE, à Dresde. La première expérience s'est focalisée sur la source CDR (Coherent Diffraction Radiation) de ELBE - une source THz émettant des impulsions “single cycle”. Le succès de cette expérience nous a ensuite mené à réaliser des mesures du rayonnement émis par le laser à électrons libres (FEL) Térahertz de FELBE. Ceci nous a permis de démontrer la possibilité d'enregistrer de signaux THz à une fréquence - record - de 13 MHz. De plus, d'un point de vue plus fondamental, l'étude expérimentale du démarrage du laser à électrons libres a permis - pour la première fois - de visualiser de façon directe le démarrage d'un laser impulsionnel, en enregistrant complètement les impulsions émises (c'est-à-dire leur amplitude et leur porteuse). Finalement, cette thèse s'est focalisée sur un problème ouvert différent, concernant le coût - extrêmement élevé - des systèmes de mesures THz de type time-stretch. En effet, ces systèmes de mesures requièrent des oscilloscopes avec des bandes passantes élevées (généralement au-delà de 10 ou 20 GHz). À partir d'une étude comparative détaillée, et de mesures effectuées à SOLEIL, nous avons démontré la supériorité d'une stratégie basée sur des lasers de sonde à 1550 nm, au lieu des lasers (essentiellement à 1030 nm) usuellement employés dans la littérature. En permettant l'utilisation d'oscilloscopes avec des bandes passantes relativement faibles (de l'ordre du GHz), ceci nous a permis de réduire les coûts de façon importante, permettant d'envisager une popularisation beaucoup plus importante de ces méthodes de time-stretch dans le domaine des accélérateurs et en spectroscopie
Terahertz (THz) science lacks of non-destructive waveform recorders for single-shot measurements of ultrafast signals. Such recording systems are particularly needed in accelerator-based light sources, such as synchrotron radiation facilities and Free-Electron Lasers (FEL). Single-shot operation is required for monitoring the emission of THz FELs, as well as the emission by other novel coherent THz sources. Moreover, single-shot recording systems are also required for monitoring shot-to-shot fluctuations of relativistic electron bunch properties, either for fundamental research, and in routine accelerator operation. This Thesis focuses on the development of THz recorders, using laser probes, that can operate at high repetition rates, typically in the Megahertz range. A main point of the strategy consists of using the so-called photonic time-stretch technique, for imprinting the THz waveform under interest onto a chirped laser pulse, and then to stretch it in time, so that it can be recorded by an oscilloscope. Two main designs are presented. In a first time we present a time-stretch-based recorder that is able to record waveforms with unprecedented duration and/or time resolution, by associating the time-stretch technique, with the recently developed Diversity Electro-Optic Sampling method (DEOS). We then present the first tests of this method on the THz Coherent Diffraction Radiation beamline of the ELBE facility (at the Helmoltz Zentrum Dresden Rossendorf). Using this system, we then present the first measurements of the pulses emitted by a THz Free-Electron Laser, the FELBE FEL, operating at 13 MHz repetition rate. This represents the first complete recording of pulses (amplitude and carrier) not only in a Free-Electron Laser, but also in a mode locked laser in general. Finally, we address the open problem of costs in THz time stretch systems, which are dominated by the required high bandwidth oscilloscopes (several hundreds of k€ as of 2023). We show that, when using the 1550 nm wavelength for the laser probe, special designs of THz time-strech digitizers can lead to much lower costs. We finally show a proof-of concept test of this method at the THz AILES beamline of the SOLEIL facility

Konferenzberichte zum Thema "Photonic time-Stretch":

1

Gupta, Shalabh, und Bahram Jalali. „Photonic time stretch enhanced recording scope“. In LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2008). IEEE, 2008. http://dx.doi.org/10.1109/leos.2008.4688847.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Asghari, Hossein. „Absolute Wavelength Photonic Time Stretch Spectroscopy“. In 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC). IEEE, 2018. http://dx.doi.org/10.23919/ursi-at-rasc.2018.8471643.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yuan Mei, Yuxiao Xu, Hao Chi, Tao Jin, Shilie Zheng, Xiaofeng Jin und Xianmin Zhang. „Nonlinearity analysis of photonic time stretch system“. In 2016 25th Wireless and Optical Communication Conference (WOCC). IEEE, 2016. http://dx.doi.org/10.1109/wocc.2016.7506605.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chou, Jason, Jon Jacobson, Bahram Jalali, George Valley und George Sefler. „Intermodulation distortion in a photonic time-stretch ADC“. In 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4628356.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Chao. „Energy and Data Efficient Photonic Time Stretch Imaging“. In Optoelectronics and Communications Conference. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/oecc.2021.w4e.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Saltarelli, Francesco, Vikas Kumar, Daniele Viola, Francesco Crisafi, Fabrizio Preda, Giulio Cerullo und Dario Polli. „Photonic time stretch for broadband stimulated Raman scattering“. In 2017 Conference on Lasers and Electro-Optics Europe (CLEO/Europe) & European Quantum Electronics Conference (EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8086486.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Mididoddi, Chaitanya K., Guoqing Wang und Chao Wang. „Data compressed photonic time-stretch optical coherence tomography“. In 2016 IEEE Photonics Conference (IPC). IEEE, 2016. http://dx.doi.org/10.1109/ipcon.2016.7830959.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Asghari, Hossein, und Max Hushahn. „Multi-probe photonic time-stretch optical coherence tomography“. In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVI, herausgegeben von Joseph A. Izatt und James G. Fujimoto. SPIE, 2022. http://dx.doi.org/10.1117/12.2608916.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Xu, Boyu, Wulue Lv, Jiamu Ye, Feng Zhou, Jinhai Zhou, Xiaofeng Jin, Xianmin Zhang, Hao Chi und Shilie Zheng. „Microwave spectrum sensing based on photonic time stretch with a large stretch factor“. In 2013 12th International Conference on Optical Communications and Networks (ICOCN). IEEE, 2013. http://dx.doi.org/10.1109/icocn.2013.6617231.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gupta, Shalabh, und Bahram Jalali. „Time warps in photonic time stretch ADC and their mitigation“. In 2008 International Topical Meeting on Microwave Photonics (MWP 2008) jointly held with the 2008 Asia-Pacific Microwave Photonics Conference (APMP). IEEE, 2008. http://dx.doi.org/10.1109/mwp.2008.4666630.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie