Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Photonic computing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Photonic computing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Photonic computing"
Bocker, Richard P. „Photonic computing“. Applied Optics 25, Nr. 18 (15.09.1986): 3019. http://dx.doi.org/10.1364/ao.25.003019.
Der volle Inhalt der QuelleSun, Haoyang, Qifeng Qiao, Qingze Guan und Guangya Zhou. „Silicon Photonic Phase Shifters and Their Applications: A Review“. Micromachines 13, Nr. 9 (12.09.2022): 1509. http://dx.doi.org/10.3390/mi13091509.
Der volle Inhalt der QuelleXu, Zhihao, Tiankuang Zhou, Muzhou Ma, ChenChen Deng, Qionghai Dai und Lu Fang. „Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence“. Science 384, Nr. 6692 (12.04.2024): 202–9. http://dx.doi.org/10.1126/science.adl1203.
Der volle Inhalt der QuelleTanida, Jun, und Yusuke Ogura. „Photonic DNA computing“. Review of Laser Engineering 33, Supplement (2005): 239–40. http://dx.doi.org/10.2184/lsj.33.239.
Der volle Inhalt der QuelleKutluyarov, Ruslan V., Aida G. Zakoyan, Grigory S. Voronkov, Elizaveta P. Grakhova und Muhammad A. Butt. „Neuromorphic Photonics Circuits: Contemporary Review“. Nanomaterials 13, Nr. 24 (14.12.2023): 3139. http://dx.doi.org/10.3390/nano13243139.
Der volle Inhalt der QuelleLi, Jiang, Chaoyue Liu, Haitao Chen, Jingshu Guo, Ming Zhang und Daoxin Dai. „Hybrid silicon photonic devices with two-dimensional materials“. Nanophotonics 9, Nr. 8 (14.05.2020): 2295–314. http://dx.doi.org/10.1515/nanoph-2020-0093.
Der volle Inhalt der QuelleDong, Bowei, Frank Brückerhoff-Plückelmann, Lennart Meyer, Jelle Dijkstra, Ivonne Bente, Daniel Wendland, Akhil Varri et al. „Partial coherence enhances parallelized photonic computing“. Nature 632, Nr. 8023 (31.07.2024): 55–62. http://dx.doi.org/10.1038/s41586-024-07590-y.
Der volle Inhalt der QuelleChetan, Anjna. „Integration of Photonic Circuits in Electronics for Enhanced Data Processing and Transfer“. Journal for Research in Applied Sciences and Biotechnology 1, Nr. 2 (30.06.2022): 83–89. http://dx.doi.org/10.55544/jrasb.1.2.9.
Der volle Inhalt der QuelleArgyris, Apostolos. „Photonic neuromorphic technologies in optical communications“. Nanophotonics 11, Nr. 5 (19.01.2022): 897–916. http://dx.doi.org/10.1515/nanoph-2021-0578.
Der volle Inhalt der QuelleSun, Shuai, Mario Miscuglio, Xiaoxuan Ma, Zhizhen Ma, Chen Shen, Engin Kayraklioglu, Jeffery Anderson, Tarek El Ghazawi und Volker J. Sorger. „Induced homomorphism: Kirchhoff’s law in photonics“. Nanophotonics 10, Nr. 6 (22.03.2021): 1711–21. http://dx.doi.org/10.1515/nanoph-2020-0655.
Der volle Inhalt der QuelleDissertationen zum Thema "Photonic computing"
Cao, Yameng. „Semiconductor light sources for photonic quantum computing“. Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/56619.
Der volle Inhalt der QuelleBirchall, Patrick Matthew. „Fundamental advantages and practicalities of quantum-photonic metrology and computing“. Thesis, University of Bristol, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.752791.
Der volle Inhalt der QuelleVinckier, Quentin. „Analog bio-inspired photonic processors based on the reservoir computing paradigm“. Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/237069.
Der volle Inhalt der QuelleDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Denis-Le, Coarer Florian. „Neuromorphic computing using nonlinear ring resonators on a Silicon photonic chip“. Electronic Thesis or Diss., CentraleSupélec, 2020. http://www.theses.fr/2020CSUP0001.
Der volle Inhalt der QuelleWith the exponential volumes of digital data generated every day, there is a need for real-time, energy-efficient data processing. These challenges have motivated research on unconventional information processing. Among the existing techniques, machine learning is a very effective paradigm of cognitive computing. It provides, through many implementations including that of artificial neural networks, a set of techniques to teach a computer or physical system to perform complex tasks, such as classification, pattern recognition or signal generation. Reservoir computing was proposed about ten years ago to simplify the procedure for training the artificial neural network. Indeed, the network is kept fixed and only the connections between the reading layer and the output are driven by a simple linear regression. The internal architecture of a reservoir computer allows physical implementations, and several implementations have been proposed on different technological platforms, including photonic devices. On-chip reservoir computing is a very promising candidate to meet these challenges. The objective of this thesis work was to propose three different integrated reservoir architectures based on the use of resonant micro-rings. We have digitally studied its performance and highlighted data processing speeds of up to several tens of Gigabits per second with energy consumption of a few milliwatts
Mwamsojo, Nickson. „Neuromorphic photonic systems for information processing“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAS002.
Der volle Inhalt der QuelleArtificial Intelligence has revolutionized the scientific community thanks to the advent of a robust computation workforce and Artificial Neural Neural Networks. However, the current implementation trends introduce a rapidly growing demand for computational power surpassing the rates and limitations of Moore's and Koomey's Laws, which implies an eventual efficiency barricade. To respond to these demands, bio-inspired techniques, known as 'neuro-morphic' systems, are proposed using physical devices. Of these systems, we focus on 'Reservoir Computing' and 'Coherent Ising Machines' in our works.Reservoir Computing, for instance, demonstrated its computation power such as the state-of-the-art performance of up to 1 million words per second using photonic hardware in 2017. We propose an automatic hyperparameter tuning algorithm for Reservoir Computing and give a theoretical study of its convergence. Moreover, we propose Reservoir Computing for early-stage Alzheimer's disease detection with a thorough assessment of the energy costs versus performance compromise. Finally, we confront the noisy image restoration problem by maximum a posteriori using an optoelectronic implementation of a Coherent Ising Machine
Alipour, Motaallem Seyed Payam. „Reconfigurable integrated photonic circuits on silicon“. Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51792.
Der volle Inhalt der QuelleMohamed, Abdalla Mohab Sameh. „Reservoir computing in lithium niobate on insulator platforms“. Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2024. http://www.theses.fr/2024ECDL0051.
Der volle Inhalt der QuelleThis work concerns time-delay reservoir computing (TDRC) in integrated photonic platforms, specifically the Lithium Niobate on Insulator (LNOI) platform. We propose a novel all-optical integrated architecture, which has only one tunable parameter in the form of a phase-shifter, and which can achieve good performance on several reservoir computing benchmark tasks. We also investigate the design space of this architecture and the asynchronous operation, which represents a departure from the more common framework of envisioning time-delay reservoir computers as networks in the stricter sense. Additionally, we suggest to leverage the all-optical scheme to dispense with the input mask, which allows the bypassing of an O/E/O conversion, often necessary to apply the mask in TDRC architectures. In future work, this can allow the processing of real-time incoming signals, possibly for telecom/edge applications. The effects of the output electronic readout on this architecture are also investigated. Furthermore, it is suggested to use the Pearson correlation as a simple way to design a reservoir which can handle multiple tasks at the same time, on the same incoming signal (and possibly on signals in different channels). Initial experimental work carried out at RMIT University is also reported. The unifying theme of this work is to investigate the performance possibilities with minimum photonic hardware requirements, relying mainly on LNOI’s low losses which enables the integration of the feedback waveguide, and using only interference and subsequent intensity conversion (through a photodetector) as the nonlinearity. This provides a base for future work to compare against in terms of performance gains when additional nonlinearities are considered (such as those of the LNOI platform), and when overall system complexity is increased by means of introducing more tunable parameters. Thus, the scope of this work is about the exploration of one particular unconventional computing approach (reservoir computing), using one particular technology (photonics), on one particular platform (lithium niobate on insulator). This work builds on the increasing interest of exploring unconventional computing, since it has been shown over the years that digital computers can no longer be a `one-size-fits-all', especially for emerging applications like artificial intelligence (AI). The future landscape of computing will likely encompass a rich variety of computing paradigms, architectures, and hardware, to meet the needs of rising specialized applications, and all in coexistence with digital computers which remain --- at least for now --- better suited for general-purpose computing
Baylon, Fuentes Antonio. „Ring topology of an optical phase delayed nonlinear dynamics for neuromorphic photonic computing“. Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2047/document.
Der volle Inhalt der QuelleNowadays most of computers are still based on concepts developed more than 60 years ago by Alan Turing and John von Neumann. However, these digital computers have already begun to reach certain physical limits of their implementation via silicon microelectronics technology (dissipation, speed, integration limits, energy consumption). Alternative approaches, more powerful, more efficient and with less consume of energy, have constituted a major scientific issue for several years. Many of these approaches naturally attempt to get inspiration for the human brain, whose operating principles are still far from being understood. In this line of research, a surprising variation of recurrent neural network (RNN), simpler, and also even sometimes more efficient for features or processing cases, has appeared in the early 2000s, now known as Reservoir Computing (RC), which is currently emerging new brain-inspired computational paradigm. Its structure is quite similar to the classical RNN computing concepts, exhibiting generally three parts: an input layer to inject the information into a nonlinear dynamical system (Write-In), a second layer where the input information is projected in a space of high dimension called dynamical reservoir and an output layer from which the processed information is extracted through a so-called Read-Out function. In RC approach the learning procedure is performed in the output layer only, while the input and reservoir layer are randomly fixed, being the main originality of RC compared to the RNN methods. This feature allows to get more efficiency, rapidity and a learning convergence, as well as to provide an experimental implementation solution. This PhD thesis is dedicated to one of the first photonic RC implementation using telecommunication devices. Our experimental implementation is based on a nonlinear delayed dynamical system, which relies on an electro-optic (EO) oscillator with a differential phase modulation. This EO oscillator was extensively studied in the context of the optical chaos cryptography. Dynamics exhibited by such systems are indeed known to develop complex behaviors in an infinite dimensional phase space, and analogies with space-time dynamics (as neural network ones are a kind of) are also found in the literature. Such peculiarities of delay systems supported the idea of replacing the traditional RNN (usually difficult to design technologically) by a nonlinear EO delay architecture. In order to evaluate the computational power of our RC approach, we implement two spoken digit recognition tests (classification tests) taken from a standard databases in artificial intelligence TI-46 and AURORA-2, obtaining results very close to state-of-the-art performances and establishing state-of-the-art in classification speed. Our photonic RC approach allowed us to process around of 1 million of words per second, improving the information processing speed by a factor ~3
Thraskias, Christos A., Eythimios N. Lallas, Niels Neumann, Laurent Schares, Bert J. Offrein, Ronny Henker, Dirk Plettemeier, Frank Ellinger, Juerg Leuthold und Ioannis Tomkos. „Survey of Photonic and Plasmonic Interconnect Technologies for Intra-Datacenter and High-Performance Computing Communications“. Institute of Electrical and Electronics Engineers (IEEE), 2018. https://tud.qucosa.de/id/qucosa%3A35391.
Der volle Inhalt der QuelleMarquez, Alfonzo Bicky. „Reservoir computing photonique et méthodes non-linéaires de représentation de signaux complexes : Application à la prédiction de séries temporelles“. Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCD042/document.
Der volle Inhalt der QuelleArtificial neural networks are systems prominently used in computation and investigations of biological neural systems. They provide state-of-the-art performance in challenging problems like the prediction of chaotic signals. Yet, the understanding of how neural networks actually solve problems like prediction remains vague; the black-box analogy is often employed. Merging nonlinear dynamical systems theory with machine learning, we develop a new concept which describes neural networks and prediction within the same framework. Taking profit of the obtained insight, we a-priori design a hybrid computer, which extends a neural network by an external memory. Furthermore, we identify mechanisms based on spatio-temporal synchronization with which random recurrent neural networks operated beyond their fixed point could reduce the negative impact of regular spontaneous dynamics on their computational performance. Finally, we build a recurrent delay network in an electro-optical setup inspired by the Ikeda system, which at first is investigated in a nonlinear dynamics framework. We then implement a neuromorphic processor dedicated to a prediction task
Bücher zum Thema "Photonic computing"
Brunner, Daniel, Miguel C. Soriano und Guy Van der Sande, Hrsg. Photonic Reservoir Computing. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110583496.
Der volle Inhalt der QuelleNicolescu, Gabriela, Sébastien Le Beux und Mahdi Nikdast. Photonic Interconnects for Computing Systems. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003339076.
Der volle Inhalt der QuelleP, Hotaling Steven, Pirich Andrew R und Society of Photo-optical Instrumentation Engineers., Hrsg. Photonic quantum computing: 23-24 April 1997, Orlando, Florida. Bellingham, Wash., USA: SPIE, 1997.
Den vollen Inhalt der Quelle findenP, Hotaling Steven, Pirich Andrew R und Society of Photo-optical Instrumentation Engineers., Hrsg. Photonic quantum computing II: 15-16 April 1998, Orlando, Florida. Bellingham, Wash., USA: SPIE, 1998.
Den vollen Inhalt der Quelle findenWang, Howard. Photonic Switches and Networks for High-Performance Computing and Data Centers. [New York, N.Y.?]: [publisher not identified], 2015.
Den vollen Inhalt der Quelle finden1966-, Iftekharuddin Khan M., Awwal Abdul A. S und Society of Photo-optical Instrumentation Engineers., Hrsg. Photonic devices and algorithms for computing: 22-23 July 1999, Denver, Colorado. Bellingham, Wash., USA: SPIE, 1999.
Den vollen Inhalt der Quelle finden1966-, Iftekharuddin Khan M., Awwal Abdul A. S und Society of Photo-optical Instrumentation Engineers., Hrsg. Photonic devices and algorithms for computing II: 2-3 August 2000, San diego, USA. Bellingham, Wash., USA: SPIE, 2000.
Den vollen Inhalt der Quelle finden1966-, Iftekharuddin Khan M., Awwal Abdul A. S und Society of Photo-optical Instrumentation Engineers., Hrsg. Photonic devices and algorithms for computing III: 29-30 July, 2001, San Diego, USA. Bellingham, Wash: SPIE, 2001.
Den vollen Inhalt der Quelle finden1966-, Iftekharuddin Khan M., Awwal Abdul A. S und Society of Photo-optical Instrumentation Engineers., Hrsg. Photonic devices and algorithms for computing VI: 2-3 August, 2004, Denver, Colorado, USA. Bellingham, Wash: SPIE, 2004.
Den vollen Inhalt der Quelle finden1966-, Iftekharuddin Khan M., Awwal Abdul A. S, Society of Photo-optical Instrumentation Engineers. und Boeing Company, Hrsg. Photonic devices and algorithms for computing IV: 8-9 July, 2002, Seattle, Washington, USA. Bellingham, Washington: SPIE, 2002.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Photonic computing"
Binh, Le Nguyen. „Photonic Computing Processors“. In Photonic Signal Processing, 107–66. Second edition. | Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9780429436994-4.
Der volle Inhalt der QuelleChaurasiya, Rohit, und Devanshi Arora. „Photonic Quantum Computing“. In Quantum and Blockchain for Modern Computing Systems: Vision and Advancements, 127–56. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04613-1_4.
Der volle Inhalt der QuelleEasttom, Chuck. „Photonic Quantum Computing“. In Hardware for Quantum Computing, 31–48. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-66477-9_3.
Der volle Inhalt der QuelleBrunner, Daniel, Piotr Antonik und Xavier Porte. „1. Introduction to novel photonic computing“. In Photonic Reservoir Computing, herausgegeben von Daniel Brunner, Miguel C. Soriano und Guy Van der Sande, 1–32. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110583496-001.
Der volle Inhalt der QuelleOrtín, Silvia, Luis Pesquera, Guy Van der Sande und Miguel C. Soriano. „5. Time delay systems for reservoir computing“. In Photonic Reservoir Computing, herausgegeben von Daniel Brunner, Miguel C. Soriano und Guy Van der Sande, 117–52. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110583496-005.
Der volle Inhalt der QuelleDambre, Joni. „2. Information processing and computation with photonic reservoir systems“. In Photonic Reservoir Computing, herausgegeben von Daniel Brunner, Miguel C. Soriano und Guy Van der Sande, 33–52. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110583496-002.
Der volle Inhalt der QuelleKatumba, Andrew, Matthias Freiberger, Floris Laporte, Alessio Lugnan, Stijn Sackesyn, Chonghuai Ma, Joni Dambre und Peter Bienstman. „3. Integrated on-chip reservoirs“. In Photonic Reservoir Computing, herausgegeben von Daniel Brunner, Miguel C. Soriano und Guy Van der Sande, 53–82. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110583496-003.
Der volle Inhalt der QuelleBrunner, Daniel, Julian Bueno, Xavier Porte, Sheler Maktoobi und Louis Andreoli. „4. Large scale spatiotemporal reservoirs“. In Photonic Reservoir Computing, herausgegeben von Daniel Brunner, Miguel C. Soriano und Guy Van der Sande, 83–116. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110583496-004.
Der volle Inhalt der QuelleLarger, Laurent. „6. Ikeda delay dynamics as Reservoir processors“. In Photonic Reservoir Computing, herausgegeben von Daniel Brunner, Miguel C. Soriano und Guy Van der Sande, 153–84. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110583496-006.
Der volle Inhalt der QuelleVan der Sande, Guy, und Miguel C. Soriano. „7. Semiconductor lasers as reservoir substrates“. In Photonic Reservoir Computing, herausgegeben von Daniel Brunner, Miguel C. Soriano und Guy Van der Sande, 185–204. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110583496-007.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Photonic computing"
Youngblood, Nathan, Paolo Pintus, Mario Dumont, Vivswan Shah, Toshiya Murai, Yuya Shoji, Duanni Huang und John Bowers. „Non-reciprocal devices for in-memory photonic computing“. In Frontiers in Optics, FTu1D.2. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.ftu1d.2.
Der volle Inhalt der QuelleDe Marinis, L., P. S. Kincaid, G. Contestabile, S. Gupta und N. Andriolli. „Photonic Technologies for Analog Neuromorphic Computing“. In 2024 IEEE Photonics Society Summer Topicals Meeting Series (SUM), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/sum60964.2024.10614512.
Der volle Inhalt der QuelleCastro, Bernard J. Giron, Christophe Peucheret und Francesco Da Ros. „Microring Resonator-based Photonic Reservoir Computing“. In 2024 24th International Conference on Transparent Optical Networks (ICTON), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icton62926.2024.10648245.
Der volle Inhalt der QuelleEngheta, Nader. „Metamaterial Photonic Processing and Computing Machines“. In 2024 IEEE INC-USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), 127. IEEE, 2024. http://dx.doi.org/10.23919/inc-usnc-ursi61303.2024.10632286.
Der volle Inhalt der QuelleChoi, Seou, Yannick Salamin, Charles Roques-Carmes, Rumen Dangovski, Di Luo, Zhuo Chen, Michael Horodynski, Jamison Sloan und Marin Soljačić. „Photonic Probabilistic Computing Leveraging Quantum Vacuum Noise“. In CLEO: Science and Innovations, SF3J.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sf3j.5.
Der volle Inhalt der QuelleGhasemi, Mehrdad, Hassan Kaatuzian, Houshyar Noshad und Mahdi NoroozOliaei. „Quantum Photonic Computer Challenges: Quantum Decoherence, Quantum Error Correction (QEC), and Scalability“. In Frontiers in Optics, JD4A.42. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jd4a.42.
Der volle Inhalt der QuelleGaur, Prabhav, Chengkuan Gao, Karl Johnson, Shimon Rubin, Yeshaiahu Fainman und Tzu-Chien Hsueh. „Optimization of hybrid photonic electrical reservoir computing“. In Photonic Computing: From Materials and Devices to Systems and Applications, herausgegeben von Xingjie Ni und Wenshan Cai, 11. SPIE, 2024. http://dx.doi.org/10.1117/12.3027516.
Der volle Inhalt der QuelleKari, Sadra Rahimi, Allison Hastings, Nicholas A. Nobile, Dominique Pantin, Vivswan Shah und Nathan Youngblood. „Integrated Coherent Photonic Crossbar Arrays for Efficient Optical Computing“. In CLEO: Science and Innovations, SM4M.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sm4m.6.
Der volle Inhalt der QuelleNakai, Makoto, und Isamu Takai. „Nonlinear Silicon Photonic Passive Device for Edge Computing“. In CLEO: Science and Innovations, STh1K.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sth1k.4.
Der volle Inhalt der QuelleUchida, Atsushi. „Artificial Intelligence Using Complex Photonics: Decision Making and Reservoir Computing“. In Optical Fiber Communication Conference. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofc.2023.m2j.5.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Photonic computing"
Hendry, Gilbert, Eric Robinson, Vitaliy Gleyzer, Johnnie Chan, Luca P. Carloni, Nadya Bliss und Keren Bergman. Circuit-Switched Memory Access in Photonic Interconnection Networks for High-Performance Embedded Computing. Fort Belvoir, VA: Defense Technical Information Center, Juli 2010. http://dx.doi.org/10.21236/ada532933.
Der volle Inhalt der QuelleHogle, Craig, Megan Ivory, Daniel Lobser, Brandon Ruzic und Christopher DeRose. Three-Photon Optical Pumping for Trapped Ion Quantum Computing. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1854752.
Der volle Inhalt der QuelleBossler, Kerry. Coupled Electron-Photon Monte Carlo Radiation Transport for Next-Generation Computing Systems. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1474024.
Der volle Inhalt der QuelleHemmer, Philip, und Robert Armstrong. Fractal-Enhancement of Photon Band-Gap Cavities for Quantum Computing and Other Applications. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada444845.
Der volle Inhalt der QuelleGuha, Supratik, H. S. Philip Wong, Jean Anne Incorvia und Srabanti Chowdhury. Future Directions Workshop: Materials, Processes, and R&D Challenges in Microelectronics. Defense Technical Information Center, Juni 2022. http://dx.doi.org/10.21236/ad1188476.
Der volle Inhalt der QuelleQuinn, Jarus W. Optical Computing. Organization of the 1993 Photonics Science Topical Meetings Held in Palm Springs, California on March 16 - 19, 1993. Technical Digest Series, Volume 7. Fort Belvoir, VA: Defense Technical Information Center, März 1993. http://dx.doi.org/10.21236/ada269025.
Der volle Inhalt der Quelle