Bücher zum Thema „Photonic band“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Photonic band.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-32 Bücher für die Forschung zum Thema "Photonic band" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Bücher für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Soukoulis, Costas M., Hrsg. Photonic Band Gap Materials. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1665-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Soukoulis, C. M. Photonic Band Gap Materials. Dordrecht: Springer Netherlands, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

M, Soukoulis C., North Atlantic Treaty Organization. Scientific Affairs Division. und NATO Advanced Study Institute on Photonic Band Gap Materials (1995 : Eloúnda, Greece), Hrsg. Photonic band gap materials. Dordrecht: Kluwer Academic Publishers, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Soukoulis, C. M., Hrsg. Photonic Band Gaps and Localization. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1606-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

M, Soukoulis C., North Atlantic Treaty Organization. Scientific Affairs Division. und NATO Advanced Research Workshop on Localization and Propagation of Classical Waves in Random and Periodic Structures (1992 : Hagia Pelagia, Greece), Hrsg. Photonic band gaps and localization. New York: Plenum Press, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

NATO Advanced Research Workshop on Localization and Propagation of Classical Wavesin Random and Periodic Structures (1992 Aghia Pelaghia, Greece). Photonic band gaps and localization. New York: Plenum Press, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Phoenix, Ben. Reduced size photonic band gap (PBG) resonators. Birmingham: University of Birmingham, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Liu, Dahe. Achieving complete band gaps using low refractive index material. New York: Novinka/Nova Science Publishers, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dolgos, Denis. Full-band Monte Carlo simulation of single photon avalanche diodes. Konstanz: Hartung-Gorre Verlag, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hirakawa, Shinji. Passive determination of temperature and range using spectral band measurements of photon emittance. Monterey, Calif: Naval Postgraduate School, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Soukoulis, C. M. Photonic Band Gap Materials. Springer, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Soukoulis, C. M. Photonic Band Gap Materials. Ingramcontent, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Soukoulis, C. M. Photonic Band Gaps and Localization. Springer London, Limited, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Soukoulis, C. M. Photonic Band Gaps and Localization. Springer, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Swarup, Puneet. Band structure of a photonic crystal. 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Laine, Venla E. Photonic Crystals: Fabrication, Band Structure and Applications. Nova Science Publishers, Incorporated, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Aközbek, Neşet. Optical solitary waves in a photonic band gap material. 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Vats, Nipun. Non-markovian radiative phenomena in photonic band-gap materials. 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Antenna Gain Enhancement Using a Photonic Band Gap Reflector. Storming Media, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

John, Sajeev. Localization of Light and the Photonic Band Gap Concept. Springer, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Carpenter, Amelia K. A study of silicon nitride triangular photonic lattices near the frequency range of the photonic band gap. 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

National Aeronautics and Space Administration (NASA) Staff. Femtosecond Pulse Characterization As Applied to One-Dimensional Photonic Band Edge Structures. Independently Published, 2018.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Lee, Yee Loong Richard. Design and modelling of photonic band-gap response from doubly periodic arrays. 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Investigations of the Nonlinear Optical Response of Composite and Photonic Band Gap Materials. Storming Media, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Basu, Prasanta Kumar, Bratati Mukhopadhyay und Rikmantra Basu. Semiconductor Nanophotonics. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780198784692.001.0001.

Der volle Inhalt der Quelle
Annotation:
Abstract Nanometre sized structures made of semiconductors, insulators and metals and grown by modern growth technologies or by chemical synthesis exhibit novel electronic and optical phenomena due to confinement of electrons and photons. Strong interactions between electrons and photons in narrow regions lead to inhibited spontaneous emission, thresholdless laser operation, and Bose Einstein condensation of exciton-polaritons in microcavities. Generation of sub-wavelength radiation by surface Plasmon-polaritons at metal-semiconductor interfaces, creation of photonic band gap in dielectrics, and realization of nanometer sized semiconductor or insulator structures with negative permittivity and permeability, known as metamaterials, are further examples in the area of nanophotonics. The studies help develop Spasers and plasmonic nanolasers of subwavelength dimensions, paving the way to use plasmonics in future data centres and high speed computers working at THz bandwidth with less than a few fJ/bit dissipation. The present book intends to serveas a textbook for graduate students and researchers intending to have introductory ideas of semiconductor nanophotonics. It gives an introduction to electron-photon interactions in quantum wells, wires and dots and then discusses the processes in microcavities, photonic band gaps and metamaterials and related applications. The phenomena and device applications under strong light-matter interactions are discussed by mostly using classical and semi-classical theories. Numerous examples and problems accompany each chapter.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Florescu, Marian. Resonant atomic switching near a photonic band-gap: towards an all-optical micro-transistor. 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Woldeyohannes, Mesfin Arega. Quantum electrodynamics of a driven three-level atom near the edge of a photonic band gap. 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Vurgaftman, Igor, Matthew P. Lumb und Jerry R. Meyer. Bands and Photons in III-V Semiconductor Quantum Structures. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198767275.001.0001.

Der volle Inhalt der Quelle
Annotation:
Semiconductor quantum structures are at the core of many photonic devices such as lasers, photodetectors, solar cells etc. To appreciate why they are such a good fit to these devices, we must understand the basic features of their band structure and how they interact with incident light. This book takes the reader from the very basics of III-V semiconductors (some preparation in quantum mechanics and electromagnetism is helpful) and shows how seemingly obscure results such as detailed forms of the Hamiltonian, optical transition strengths, and recombination mechanisms follow. The reader does not need to consult other references to fully understand the material, although a few handpicked sources are listed for those who would like to deepen their knowledge further. Connections to the properties of novel materials such as graphene and transition metal dichalcogenides are pointed out, to help prepare the reader for contributing at the forefront of research. The book also supplies a complete, up-to-date database of the band parameters that enter into the calculations, along with tables of optical constants and interpolation schemes for alloys. From these foundations, the book goes on to derive the characteristics of photonic semiconductor devices (with a focus on the mid-infrared) using the same principles of building all concepts from the ground up, explaining all derivations in detail, giving quantitative examples, and laying out dimensional arguments whenever they can help the reader’s understanding. A substantial fraction of the material in this book has not appeared in print anywhere else, including journal publications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Launay, Jean-Pierre, und Michel Verdaguer. Electrons in Molecules. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.001.0001.

Der volle Inhalt der Quelle
Annotation:
The book treats in a unified way electronic properties of molecules (magnetic, electrical, photophysical), culminating with the mastering of electrons, i.e. molecular electronics and spintronics and molecular machines. Chapter 1 recalls basic concepts. Chapter 2 describes the magnetic properties due to localized electrons. This includes phenomena such as spin cross-over, exchange interaction from dihydrogen to extended molecular magnetic systems, and magnetic anisotropy with single-molecule magnets. Chapter 3 is devoted to the electrical properties due to moving electrons. One considers first electron transfer in discrete molecular systems, in particular in mixed valence compounds. Then, extended molecular solids, in particular molecular conductors, are described by band theory. Special attention is paid to structural distortions (Peierls instability) and interelectronic repulsions in narrow-band systems. Chapter 4 treats photophysical properties, mainly electron transfer in the excited state and its applications to photodiodes, organic light emitting diodes, photovoltaic cells and water photolysis. Energy transfer is also treated. Photomagnetism (how a photonic excitation modifies magnetic properties) is introduced. Finally, Chapter 5 combines the previous knowledge for three advanced subjects: first molecular electronics in its hybrid form (molecules connected to electrodes acting as wires, diodes, memory elements, field-effect transistors) or in the quantum computation approach. Then, molecular spintronics, using, besides the charge, the spin of the electron. Finally the theme of molecular machines is presented, with the problem of the directionality control of their motion.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Vurgaftman, Igor, Matthew P. Lumb und Jerry R. Meyer. Bands and Photons in III-V Semiconductor Quantum Structures. Oxford University Press, 2020.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Towe, E., und D. Pal. Intersublevel quantum-dot infrared photodetectors. Herausgegeben von A. V. Narlikar und Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.7.

Der volle Inhalt der Quelle
Annotation:
This article describes the basic principles of semiconductor quantum-dot infrared photodetectors based on conduction-band intersublevel transitions. Sufficient background material is discussed to enable an appreciation of the subtle differences between quantum-well and quantum-dot devices. The article first considers infrared photon absorption and photon detection, along with some metrics for photon detectors and the detection of infrared radiation by semiconductors. It then examines the optical matrix element for interband, intersubband and intersublevel transitions before turning to experimental single-pixel quantum-dot infrared photodetectors. In particular, it explains the epitaxial synthesis of quantum dots and looks at mid-wave and long-wave quantum-dot infrared photodetectors. It also evaluates the characteristics of quantum-dot detectors and possible development of quantum-dot focal plane array imagers. The article concludes with an assessment of the challenges and prospects for high-performance detectors and arrays.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Metzger, Lenard. Common Sense Cosmology. Lulu Press, Inc., 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie