Zeitschriftenartikel zum Thema „Photoionization of gases Measurement“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Photoionization of gases Measurement.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Photoionization of gases Measurement" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Strelkov, V. V., E. Mével und E. Constant. „Short pulse carrier-envelope phase absolute single-shot measurement by photoionization of gases with a guided laser beam“. Optics Express 22, Nr. 6 (10.03.2014): 6239. http://dx.doi.org/10.1364/oe.22.006239.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wannberg, Veronica E., Gustavious Williams, Patrick Sawyer und Richard Venedam. „An Experimental Field Dataset with Buoyant, Neutral, and Dense Gas Atmospheric Releases and Model Comparisons in Low–Wind Speed (Diffusion) Conditions“. Journal of Applied Meteorology and Climatology 49, Nr. 9 (01.09.2010): 1805–17. http://dx.doi.org/10.1175/2010jamc2383.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract A unique field dataset from a series of low–wind speed experiments, modeling efforts using three commonly used models to replicate these releases, and statistical analysis of how well these models were able to predict the plume concentrations is presented. The experiment was designed to generate a dataset to describe the behavior of gaseous plumes under low-wind conditions and the ability of current, commonly used models to predict these movements. The dataset documents the release and transport of three gases: ammonia (buoyant), ethylene (neutral), and propylene (dense) in low–wind speed (diffusion) conditions. Release rates ranged from 1 to 20 kg h−1. Ammonia and ethylene had five 5-min releases each to represent puff releases and five 20-min releases each to represent plume releases. Propylene had five 5-min puffs, six 20-min plumes, and a single 30-min plume. Thirty-two separate releases ranging from 6 to 47 min were conducted, of which only 30 releases generated useful data. The data collected included release rates, atmospheric concentrations to 100 m from the release point, and local meteorological conditions. The diagnostics included nine meteorological stations on 100-m centers and 36 photoionization detectors in a radial pattern. Three current state-of-the-practice models, Aerial Locations of Hazardous Atmospheres (ALOHA), Emergency Prediction Information code (EPIcode), and Second-Order Closure Integrated Puff (SCIPUFF), were used to try to duplicate the measured field results. Low wind speeds are difficult to model, and all of the models had difficulty replicating the field measurements. However, the work does show that these models, if used correctly, are conservative (overpredict concentrations) and can be used for safety and emergency planning.
3

Joshi, Satya Prakash, Prasenjit Seal, Timo Theodor Pekkanen, Raimo Sakari Timonen und Arrke J. Eskola. „Direct Kinetic Measurements and Master Equation Modelling of the Unimolecular Decomposition of Resonantly-Stabilized CH2CHCHC(O)OCH3 Radical and an Upper Limit Determination for CH2CHCHC(O)OCH3 + O2 Reaction“. Zeitschrift für Physikalische Chemie 234, Nr. 7-9 (27.08.2020): 1251–68. http://dx.doi.org/10.1515/zpch-2020-1612.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractMethyl-Crotonate (MC, (E)-methylbut-2-enoate, CH3CHCHC(O)OCH3) is a potential component of surrogate fuels that aim to emulate the combustion of fatty acid methyl ester (FAME) biodiesels with significant unsaturated FAME content. MC has three allylic hydrogens that can be readily abstracted under autoignition and combustion conditions to form a resonantly-stabilized CH2CHCHC(O)OCH3 radical. In this study we have utilized photoionization mass spectrometry to investigate the O2 addition kinetics and thermal unimolecular decomposition of CH2CHCHC(O)OCH3 radical. First we determined an upper limit for the bimolecular rate coefficient of CH2CHCHC(O)OCH3 + O2 reaction at 600 K (k ≤ 7.5 × 10−17 cm3 molecule−1 s−1). Such a small rate coefficient suggest this reaction is unlikely to be important under combustion conditions and subsequent efforts were directed towards measuring thermal unimolecular decomposition kinetics of CH2CHCHC(O)OCH3 radical. These measurements were performed between 750 and 869 K temperatures at low pressures (<9 Torr) using both helium and nitrogen bath gases. The potential energy surface of the unimolecular decomposition reaction was probed at density functional (MN15/cc-pVTZ) level of theory and the electronic energies of the stationary points obtained were then refined using the DLPNO-CCSD(T) method with the cc-pVTZ and cc-pVQZ basis sets. Master equation simulations were subsequently carried out using MESMER code along the kinetically important reaction pathway. The master equation model was first optimized by fitting the zero-point energy corrected reaction barriers and the collisional energy transfer parameters $\Delta{E_{{\text{down}},\;{\text{ref}}}}$ and n to the measured rate coefficients data and then utilize the constrained model to extrapolate the decomposition kinetics to higher pressures and temperatures. Both the experimental results and the MESMER simulations show that the current experiments for the thermal unimolecular decomposition of CH2CHCHC(O)OCH3 radical are in the fall-off region. The experiments did not provide definite evidence about the primary decomposition products.
4

Aseyev, S. A., V. G. Minogin und B. N. Mironov. „Projection microscopy of photoionization processes in gases“. Applied Physics B 108, Nr. 4 (September 2012): 755–59. http://dx.doi.org/10.1007/s00340-012-5136-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Huetz, A., P. Selles, D. Waymel und J. Mazeau. „Wannier theory for double photoionization of noble gases“. Journal of Physics B: Atomic, Molecular and Optical Physics 24, Nr. 8 (28.04.1991): 1917–33. http://dx.doi.org/10.1088/0953-4075/24/8/010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Miyahara, Yoshikazu. „Photoionization of Residual Gases in Electron Storage Rings“. Japanese Journal of Applied Physics 26, Part 1, No. 9 (20.09.1987): 1544–46. http://dx.doi.org/10.1143/jjap.26.1544.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Mics, Zoltan, Petr Kužel, Pavel Jungwirth und Stephen E. Bradforth. „Photoionization of atmospheric gases studied by time-resolved terahertz spectroscopy“. Chemical Physics Letters 465, Nr. 1-3 (November 2008): 20–24. http://dx.doi.org/10.1016/j.cplett.2008.09.046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Babushkin, I., S. Skupin, A. Husakou, C. Köhler, E. Cabrera-Granado, L. Bergé und J. Herrmann. „Tailoring terahertz radiation by controlling tunnel photoionization events in gases“. New Journal of Physics 13, Nr. 12 (21.12.2011): 123029. http://dx.doi.org/10.1088/1367-2630/13/12/123029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Short, R. T., C. S. O, J. C. Levin, I. A. Sellin, B. M. Johnson, M. Meron, K. W. Jones und D. A. Church. „Synchrotron radiation inner-shell photoionization of atomic and molecular gases“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 24-25 (April 1987): 417–19. http://dx.doi.org/10.1016/0168-583x(87)90673-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kim, Ki-Yong, James H. Glownia, Antoinette J. Taylor und George Rodriguez. „High-Power Broadband Terahertz Generation via Two-Color Photoionization in Gases“. IEEE Journal of Quantum Electronics 48, Nr. 6 (Juni 2012): 797–805. http://dx.doi.org/10.1109/jqe.2012.2190586.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Verdun, F., J. F. Muller und G. Krier. „Study of Photoionization of Solids—Resonance Ionization“. Laser Chemistry 5, Nr. 5 (01.01.1985): 297–307. http://dx.doi.org/10.1155/lc.5.297.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Multiphoton ionization (MPI) mechanism in the solid state being still controversial we coupled a tunable laser to the LAMMA 500 microprobe to reinvestigate, using different UV irradiations, the ionization of some organic and organometallic solid compounds. Two polycyclic aromatic hydrocarbons (PAH) anthracene and pyrene and metallic derivatives of copper and cadmium were tested. Preliminary results are consistent with thermal desorption of neutral molecules as the first step followed by photoionization in the vapor phase.Thus the ionization mechanisms described for gases or vapors, and in particular some REMPI or RIS processes appear to apply to our experimental conditions.
12

Jannitti, E., P. Nicolosi und G. Tondello. „Photoionization cross-section measurement of the CV ion“. Physics Letters A 131, Nr. 3 (August 1988): 186–89. http://dx.doi.org/10.1016/0375-9601(88)90066-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Lee, Yin-Yu, Tzan-Yi Dung, Jih-Young Yu, Yen-Fang Song, Kuo-Tung Hsu und Ke-Kang Lin. „Two-color photoionization of noble gases using laser and VUV synchrotron radiation“. Journal of Electron Spectroscopy and Related Phenomena 144-147 (Juni 2005): 29–33. http://dx.doi.org/10.1016/j.elspec.2005.01.278.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

FUKUDA, Atsuhisa, Hiromi ISHIDA, Meri KUBOTA und Yoshitada KOJIMA. „Measurement of Carboxyhemoglobin by Breath Gases“. Journal of Japan Association on Odor Environment 37, Nr. 2 (2006): 89–93. http://dx.doi.org/10.2171/jao.37.89.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Kijima, T., A. Makihara, H. Asa und E. F. Ezell. „Trace moisture measurement in semiconductor gases“. Sensors and Actuators B: Chemical 36, Nr. 1-3 (Oktober 1996): 388–91. http://dx.doi.org/10.1016/s0925-4005(97)80102-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Kraftmakher, Yaakov. „Measurement of dielectric constant of gases“. American Journal of Physics 64, Nr. 9 (September 1996): 1209–10. http://dx.doi.org/10.1119/1.18348.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Werner, C., J. C. Wyngaard und S. L. Brantley. „Eddy-correlation measurement of hydrothermal gases“. Geophysical Research Letters 27, Nr. 18 (15.09.2000): 2925–28. http://dx.doi.org/10.1029/2000gl011765.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Grant, William B., Robert H. Kagann und William A. McClenny. „Optical Remote Measurement of Toxic Gases“. Journal of the Air & Waste Management Association 42, Nr. 1 (Januar 1992): 18–30. http://dx.doi.org/10.1080/10473289.1992.10466965.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Balcou, Ph, P. Sali�res, K. S. Budil, T. Ditmire, M. D. Perry und A. L'Huillier. „High-order harmonic generation in rare gases: a new source in photoionization spectroscopy“. Zeitschrift f�r Physik D Atoms, Molecules and Clusters 34, Nr. 2 (Juni 1995): 107–10. http://dx.doi.org/10.1007/bf01439384.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Gabbanini, C., S. Gozzini und A. Lucchesini. „Photoionization cross section measurement in a Rb vapor cell trap“. Optics Communications 141, Nr. 1-2 (August 1997): 25–28. http://dx.doi.org/10.1016/s0030-4018(97)00214-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Jana, B., P. T. Kathar, A. Majumder, K. B. Thakur und A. K. Das. „Measurement of photoionization yield in low-density barium photoplasma study“. Measurement Science and Technology 25, Nr. 1 (26.11.2013): 015003. http://dx.doi.org/10.1088/0957-0233/25/1/015003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Valley, George C., Stephen W. McCahon und Marvin B. Klein. „Photorefractive measurement of photoionization and recombination cross sections in InP:Fe“. Journal of Applied Physics 64, Nr. 12 (15.12.1988): 6684–89. http://dx.doi.org/10.1063/1.342024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Wolf, Steffen, und Hanspeter Helm. „Ion-recoil energy measurement in photoionization of laser-cooled rubidium“. Physical Review A 56, Nr. 6 (01.12.1997): R4385—R4388. http://dx.doi.org/10.1103/physreva.56.r4385.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Lau, Yan K. „Measurement of sulphur gases in ambient air“. Environmental Monitoring and Assessment 13, Nr. 1 (August 1989): 69–74. http://dx.doi.org/10.1007/bf00398736.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

He, Jing, und David C. Joy. „Measurement of Elastic Cross-Sections for Gases“. Microscopy and Microanalysis 8, S02 (August 2002): 1542–43. http://dx.doi.org/10.1017/s1431927602104399.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Detjens, M., T. Hübert, C. Tiebe und U. Banach. „Coulometric trace humidity measurement in technical gases“. Review of Scientific Instruments 89, Nr. 8 (August 2018): 085004. http://dx.doi.org/10.1063/1.5008463.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Mandal, Nanda Gopal. „Measurement of volume and flow in gases“. Anaesthesia & Intensive Care Medicine 10, Nr. 1 (Januar 2009): 52–56. http://dx.doi.org/10.1016/j.mpaic.2008.11.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Jewitt, Helen, und Gary Thomas. „Measurement of flow and volume of gases“. Anaesthesia & Intensive Care Medicine 13, Nr. 3 (März 2012): 106–10. http://dx.doi.org/10.1016/j.mpaic.2011.12.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Kawashima, Kenji, Toshiharu Kagawa und Toshinori Fujita. „Instantaneous Flow Rate Measurement of Ideal Gases“. Journal of Dynamic Systems, Measurement, and Control 122, Nr. 1 (06.05.1996): 174–78. http://dx.doi.org/10.1115/1.482439.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In this paper, a chamber called an “Isothermal Chamber” was developed. The isothermal chamber can almost realize isothermal condition due to larger heat transfer area and heat transfer coefficient by stuffing steel wool in it. Using this chamber, a simple method to measure flow rates of ideal gases was developed. As the process during charge or discharge is almost isothermal, instantaneous flow rates charged into or discharged from the chamber can be obtained measuring only pressure in the chamber. The steady and the unsteady flow rate of air were measured by the proposed method, and the effectiveness of the method was demonstrated. [S0022-0434(00)00301-4]
30

Roberts, Fred. „Measurement of volume and flow in gases“. Anaesthesia & Intensive Care Medicine 7, Nr. 3 (März 2006): 100–104. http://dx.doi.org/10.1383/anes.2006.7.3.100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Howard, A. J., und W. P. Strange. „Measurement of 21884Po+ neutralization rates in gases“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 311, Nr. 1-2 (Januar 1992): 378–85. http://dx.doi.org/10.1016/0168-9002(92)90885-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Begunov, A. A. „Precision Measurement of the Mass of Gases“. Measurement Techniques 57, Nr. 1 (April 2014): 47–53. http://dx.doi.org/10.1007/s11018-014-0405-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Lohmann, B., U. Hergenhahn und N. M. Kabachnik. „Spin polarization of Auger electrons from noble gases after photoionization with circularly polarized light“. Journal of Physics B: Atomic, Molecular and Optical Physics 26, Nr. 19 (14.10.1993): 3327–38. http://dx.doi.org/10.1088/0953-4075/26/19/021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Shah, Mukesh Lal, Gomati Prasad Gupta, Vas Dev, Bishwaranjan Dikshit, Manmohan Singh Bhatia und Brij Mohan Suri. „Measurement of photoionization cross section in atomic uranium using simultaneous observation of laser-induced photoionization and fluorescence signals“. Journal of the Optical Society of America B 29, Nr. 4 (16.03.2012): 600. http://dx.doi.org/10.1364/josab.29.000600.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Van Bramer, S. E., und M. V. Johnston. „Tunable, Coherent Vacuum Ultraviolet Radiation for Photoionization Mass Spectrometry“. Applied Spectroscopy 46, Nr. 2 (Februar 1992): 255–61. http://dx.doi.org/10.1366/0003702924125564.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Coherent vacuum ultraviolet radiation between 118 and 129 nm (10.5 and 9.6 eV) is generated by third-harmonic conversion of radiation between 355 and 390 nm. The conversion efficiency of a single negatively dispersive rare gas (xenon or krypton) is compared to the efficiency of a mixture of a negatively dispersive gas with a positively dispersive gas (argon). The rare-gas mixtures are found to give significantly higher third-harmonic conversion efficiencies. They also have much narrower wavelength tuning ranges than the single gases. Optimum gas pressures, mixing ratios, and conversion efficiencies are tabulated at selected wavelengths. The photoionization characteristics of compounds that exhibit little or no parent ion abundance with conventional 70-eV electron impact ionization are evaluated with tunable vacuum ultraviolet radiation. n-Alkanes, alkenes, aldehydes, amines, carboxylic acids, ethers, and ketones are ionized without significant fragmentation by using wavelengths close to the ionization thresholds. Alcohols and esters, however, fragment extensively, even at the ionization threshold.
36

Hochlaf, M., H. Kjeldsen, F. Penent, R. I. Hall, P. Lablanquie, M. Lavollée und J. H. D. Eland. „Two spectrometers for threshold photoelectron coincidence studies of double photoionization“. Canadian Journal of Physics 74, Nr. 11-12 (01.11.1996): 856–60. http://dx.doi.org/10.1139/p96-800.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We present here two simple instruments for the study of double photoionization processes at threshold. They rely on the coincidence measurement of two near-zero energy electrons, which are collected by a penetrating field technique, and energy selected either by time-of-flight analysis (1st setup) or by electrostatic filtering in a hemispherical analyzer (2nd setup). Performance of the apparatus is demonstrated on Ar threshold double photoionization, and used to show the importance of two step double photoionization routes at Ar and Kr double ionization threshold.
37

Mandal, P. K., A. C. Sahoo, R. C. Das, M. L. Shah, A. K. Pulhani, K. G. Manohar und Vas Dev. „Understanding photoexcitation dynamics in a three-step photoionization of atomic uranium and measurement of photoexcitation and photoionization cross sections“. Applied Physics B 120, Nr. 4 (04.08.2015): 751–58. http://dx.doi.org/10.1007/s00340-015-6192-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Li, Zhonghao, Jinpeng Yuan, Zhonghua Ji, Yanting Zhao, Tengfei Meng, Liantuan Xiao und Suotang Jia. „Temperature measurement of ultracold molecules by time evolution of photoionization signal“. Applied Physics Express 7, Nr. 9 (01.09.2014): 096602. http://dx.doi.org/10.7567/apex.7.096602.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Yang, Jia-jun, Xing-yong Hu, Hong-xia Wu, Jian-mei Fan, Ran Cong, Yi Cheng, Xue-han Ji, Guan-xin Yao, Xian-feng Zheng und Zhi-feng Cui. „Measurement of Photoionization Cross Sections of the Excited States of Titanium“. Chinese Journal of Chemical Physics 22, Nr. 6 (Dezember 2009): 615–20. http://dx.doi.org/10.1088/1674-0068/22/06/615-620.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Rafiq, M., Shahid Hussain, M. Saleem, M. A. Kalyar und M. A. Baig. „Measurement of photoionization cross section from the 3s3p1P1excited state of magnesium“. Journal of Physics B: Atomic, Molecular and Optical Physics 40, Nr. 12 (05.06.2007): 2291–305. http://dx.doi.org/10.1088/0953-4075/40/12/006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Ogura, Koichi, und Takemasa Shibata. „Measurement of Metastable Population in Gadolinium Atomic Beam by Resonance Photoionization“. Journal of the Physical Society of Japan 63, Nr. 3 (15.03.1994): 834–38. http://dx.doi.org/10.1143/jpsj.63.834.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

SAMSON, J. A. R., L. LYN, G. N. HADDAD und G. C. ANGEL. „RECENT PROGRESS ON THE MEASUREMENT OF ABSOLUTE ATOMIC PHOTOIONIZATION CROSS SECTIONS“. Le Journal de Physique IV 01, Nr. C1 (März 1991): C1–99—C1–107. http://dx.doi.org/10.1051/jp4:1991113.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Patterson, B. M., T. Takekoshi und R. J. Knize. „Measurement of the photoionization cross section of the6P3/2state of cesium“. Physical Review A 59, Nr. 3 (01.03.1999): 2508–10. http://dx.doi.org/10.1103/physreva.59.2508.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Gabbanini, C., F. Ceccherini, S. Gozzini und A. Lucchesini. „Partial photoionization cross section measurement in a Rb magneto-optical trap“. Journal of Physics B: Atomic, Molecular and Optical Physics 31, Nr. 18 (28.09.1998): 4143–48. http://dx.doi.org/10.1088/0953-4075/31/18/012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Fendt, Alois, Thorsten Streibel, Martin Sklorz, Daniel Richter, Nicolaus Dahmen und Ralf Zimmermann. „On-Line Process Analysis of Biomass Flash Pyrolysis Gases Enabled by Soft Photoionization Mass Spectrometry“. Energy & Fuels 26, Nr. 1 (27.12.2011): 701–11. http://dx.doi.org/10.1021/ef2012613.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Evans, C. M., E. Morikawa und G. L. Findley. „Photoionization spectra of CH3I and C2H5I perturbed by CF4andc-C4F8: electron scattering in halocarbon gases“. Journal of Physics B: Atomic, Molecular and Optical Physics 34, Nr. 17 (24.08.2001): 3607–15. http://dx.doi.org/10.1088/0953-4075/34/17/320.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Schmidt, V. „Photoionization in rare gases with synchrotron radiation: Some basic aspects for critical tests with theory“. Zeitschrift f�r Physik D Atoms, Molecules and Clusters 2, Nr. 4 (Dezember 1986): 275–83. http://dx.doi.org/10.1007/bf01426232.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Schell, W. R., M. J. Tobin, D. J. Marsan, C. W. Schell, J. Vives-Batlle und S. R. Yoon. „Measurement of fission product gases in the atmosphere“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 385, Nr. 2 (Januar 1997): 277–84. http://dx.doi.org/10.1016/s0168-9002(96)00787-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Rodrigues, C. F., und M. J. Lemos de Sousa. „The measurement of coal porosity with different gases“. International Journal of Coal Geology 48, Nr. 3-4 (Januar 2002): 245–51. http://dx.doi.org/10.1016/s0166-5162(01)00061-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Turcu, I. C. E., M. C. Gower und P. Huntington. „Measurement of KrF laser breakdown threshold in gases“. Optics Communications 134, Nr. 1-6 (Januar 1997): 66–68. http://dx.doi.org/10.1016/s0030-4018(96)00543-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie