Auswahl der wissenschaftlichen Literatur zum Thema „Photoionization of gases Measurement“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Photoionization of gases Measurement" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Photoionization of gases Measurement"

1

Strelkov, V. V., E. Mével und E. Constant. „Short pulse carrier-envelope phase absolute single-shot measurement by photoionization of gases with a guided laser beam“. Optics Express 22, Nr. 6 (10.03.2014): 6239. http://dx.doi.org/10.1364/oe.22.006239.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wannberg, Veronica E., Gustavious Williams, Patrick Sawyer und Richard Venedam. „An Experimental Field Dataset with Buoyant, Neutral, and Dense Gas Atmospheric Releases and Model Comparisons in Low–Wind Speed (Diffusion) Conditions“. Journal of Applied Meteorology and Climatology 49, Nr. 9 (01.09.2010): 1805–17. http://dx.doi.org/10.1175/2010jamc2383.1.

Der volle Inhalt der Quelle
Annotation:
Abstract A unique field dataset from a series of low–wind speed experiments, modeling efforts using three commonly used models to replicate these releases, and statistical analysis of how well these models were able to predict the plume concentrations is presented. The experiment was designed to generate a dataset to describe the behavior of gaseous plumes under low-wind conditions and the ability of current, commonly used models to predict these movements. The dataset documents the release and transport of three gases: ammonia (buoyant), ethylene (neutral), and propylene (dense) in low–wind speed (diffusion) conditions. Release rates ranged from 1 to 20 kg h−1. Ammonia and ethylene had five 5-min releases each to represent puff releases and five 20-min releases each to represent plume releases. Propylene had five 5-min puffs, six 20-min plumes, and a single 30-min plume. Thirty-two separate releases ranging from 6 to 47 min were conducted, of which only 30 releases generated useful data. The data collected included release rates, atmospheric concentrations to 100 m from the release point, and local meteorological conditions. The diagnostics included nine meteorological stations on 100-m centers and 36 photoionization detectors in a radial pattern. Three current state-of-the-practice models, Aerial Locations of Hazardous Atmospheres (ALOHA), Emergency Prediction Information code (EPIcode), and Second-Order Closure Integrated Puff (SCIPUFF), were used to try to duplicate the measured field results. Low wind speeds are difficult to model, and all of the models had difficulty replicating the field measurements. However, the work does show that these models, if used correctly, are conservative (overpredict concentrations) and can be used for safety and emergency planning.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Joshi, Satya Prakash, Prasenjit Seal, Timo Theodor Pekkanen, Raimo Sakari Timonen und Arrke J. Eskola. „Direct Kinetic Measurements and Master Equation Modelling of the Unimolecular Decomposition of Resonantly-Stabilized CH2CHCHC(O)OCH3 Radical and an Upper Limit Determination for CH2CHCHC(O)OCH3 + O2 Reaction“. Zeitschrift für Physikalische Chemie 234, Nr. 7-9 (27.08.2020): 1251–68. http://dx.doi.org/10.1515/zpch-2020-1612.

Der volle Inhalt der Quelle
Annotation:
AbstractMethyl-Crotonate (MC, (E)-methylbut-2-enoate, CH3CHCHC(O)OCH3) is a potential component of surrogate fuels that aim to emulate the combustion of fatty acid methyl ester (FAME) biodiesels with significant unsaturated FAME content. MC has three allylic hydrogens that can be readily abstracted under autoignition and combustion conditions to form a resonantly-stabilized CH2CHCHC(O)OCH3 radical. In this study we have utilized photoionization mass spectrometry to investigate the O2 addition kinetics and thermal unimolecular decomposition of CH2CHCHC(O)OCH3 radical. First we determined an upper limit for the bimolecular rate coefficient of CH2CHCHC(O)OCH3 + O2 reaction at 600 K (k ≤ 7.5 × 10−17 cm3 molecule−1 s−1). Such a small rate coefficient suggest this reaction is unlikely to be important under combustion conditions and subsequent efforts were directed towards measuring thermal unimolecular decomposition kinetics of CH2CHCHC(O)OCH3 radical. These measurements were performed between 750 and 869 K temperatures at low pressures (<9 Torr) using both helium and nitrogen bath gases. The potential energy surface of the unimolecular decomposition reaction was probed at density functional (MN15/cc-pVTZ) level of theory and the electronic energies of the stationary points obtained were then refined using the DLPNO-CCSD(T) method with the cc-pVTZ and cc-pVQZ basis sets. Master equation simulations were subsequently carried out using MESMER code along the kinetically important reaction pathway. The master equation model was first optimized by fitting the zero-point energy corrected reaction barriers and the collisional energy transfer parameters $\Delta{E_{{\text{down}},\;{\text{ref}}}}$ and n to the measured rate coefficients data and then utilize the constrained model to extrapolate the decomposition kinetics to higher pressures and temperatures. Both the experimental results and the MESMER simulations show that the current experiments for the thermal unimolecular decomposition of CH2CHCHC(O)OCH3 radical are in the fall-off region. The experiments did not provide definite evidence about the primary decomposition products.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Aseyev, S. A., V. G. Minogin und B. N. Mironov. „Projection microscopy of photoionization processes in gases“. Applied Physics B 108, Nr. 4 (September 2012): 755–59. http://dx.doi.org/10.1007/s00340-012-5136-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Huetz, A., P. Selles, D. Waymel und J. Mazeau. „Wannier theory for double photoionization of noble gases“. Journal of Physics B: Atomic, Molecular and Optical Physics 24, Nr. 8 (28.04.1991): 1917–33. http://dx.doi.org/10.1088/0953-4075/24/8/010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Miyahara, Yoshikazu. „Photoionization of Residual Gases in Electron Storage Rings“. Japanese Journal of Applied Physics 26, Part 1, No. 9 (20.09.1987): 1544–46. http://dx.doi.org/10.1143/jjap.26.1544.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Mics, Zoltan, Petr Kužel, Pavel Jungwirth und Stephen E. Bradforth. „Photoionization of atmospheric gases studied by time-resolved terahertz spectroscopy“. Chemical Physics Letters 465, Nr. 1-3 (November 2008): 20–24. http://dx.doi.org/10.1016/j.cplett.2008.09.046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Babushkin, I., S. Skupin, A. Husakou, C. Köhler, E. Cabrera-Granado, L. Bergé und J. Herrmann. „Tailoring terahertz radiation by controlling tunnel photoionization events in gases“. New Journal of Physics 13, Nr. 12 (21.12.2011): 123029. http://dx.doi.org/10.1088/1367-2630/13/12/123029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Short, R. T., C. S. O, J. C. Levin, I. A. Sellin, B. M. Johnson, M. Meron, K. W. Jones und D. A. Church. „Synchrotron radiation inner-shell photoionization of atomic and molecular gases“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 24-25 (April 1987): 417–19. http://dx.doi.org/10.1016/0168-583x(87)90673-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kim, Ki-Yong, James H. Glownia, Antoinette J. Taylor und George Rodriguez. „High-Power Broadband Terahertz Generation via Two-Color Photoionization in Gases“. IEEE Journal of Quantum Electronics 48, Nr. 6 (Juni 2012): 797–805. http://dx.doi.org/10.1109/jqe.2012.2190586.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Photoionization of gases Measurement"

1

Hennessy, Michael Joseph. „Photoionization of gases in the Extreme Ultraviolet“. Title page, contents and abstract only, 1996. http://web4.library.adelaide.edu.au/theses/09SM/09smh515.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Mah, Kelly Robert Lim. „Investigations of resonantly enhanced multiphoton ionizations of atomic mercury and potassium“. Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26451.

Der volle Inhalt der Quelle
Annotation:
Two investigations are reported on the application of resonantly enhanced multiphoton ionization (RMPI) to gaseous mixtures of an atomic vapor and a few Torr of argon. Photon fluxes large enough to ionize atoms by RMPI were produced by focussing down the light from a tunable pulsed dye laser. The irradiances generated were of the order of 500MWcm⁻². Ionization was detected by a voltage biased wire electrode that simply collected the photoelectrons either directly or after some gas multiplication. One investigation was the measurement of the dependence of RMPI processes in mercury on the polarization of the incident light for comparisons with theoretical calculations. The processes were four-photon resonant absorptions to either a ¹S₀ or ¹’³D₂ level followed by single photon ionization. Complete photoionization of all atoms excited to the resonant levels is established and the measured polarization dependences are found to agree with the calculated polarization dependence for the resonant excitation step of the RMPI process. Unexplained observations of the distortions in the polarization dependence of the ion yield and the absorption linewidth of the 6d ¹D₂ resonance are discussed. The second investigation was a study of the density dependent electric dipole forbidden two-photon resonant transition ²S → ²P in three-photon RMPI spectra of the Rydberg states of potassium. Stark interactions are shown to be unlikely and too weak. From the characteristics of the spectra, the excitation process is identified as a laser-assisted collision interaction.
Science, Faculty of
Physics and Astronomy, Department of
Graduate
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Alexandridi, Christina-Anastasia. „Attosecond spectroscopy : study of the photoionization dynamics of atomic gases close to resonances“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS571/document.

Der volle Inhalt der Quelle
Annotation:
L'interaction des puissantes impulsions laser avec les gaz atomiques et moléculaires entraîne l’émission de flashs exceptionnellement brefs de lumière XUV grâce au processus de génération harmonique d'ordre élevé (GHOE) de la fréquence laser fondamentale. Ce rayonnement ultra-bref, dans la gamme attoseconde (10⁻¹⁸ s), permet des investigations détaillées de la dynamique électronique ultra-rapide dans la matière. Le travail de cette thèse consiste à étudier les délais de photoionisation au voisinage de différents types de résonances, en utilisant la technique Rainbow RABBIT. Il s'agit d'une technique interférométrique à deux couleurs (XUV + IR) qui permet d'accéder au temps nécessaire à l'électron pour s'échapper du potentiel atomique avec une haute résolution. Nous nous intéressons particulièrement à deux cas: i) les résonances auto-ionisantes spectralement étroites (dizaines de meV) et ii) les minima de type Cooper ayant une largeur spectrale de quelques eV. L'effet de ces structures de continuum sur la dynamique d'ionisation correspondante est étudié
The interaction of intense laser pulses with atomic and molecular gases results in exceptionally short bursts of XUV light, through the process of high-order harmonic generation of the fundamental laser frequency. This ultrashort radiation, in the attosecond (10⁻¹⁸ s) range, allows detailed investigations of ultrafast electron dynamics in matter. The work of this thesis consists in studying the photoionization delays close to different types of resonances, using the Rainbow RABBIT technique. This is a two-color interferometric technique (XUV + IR) that allows access to the time required for the electron to escape the atomic potential with high resolution. We are particularly interested in two cases: i) autoionizing resonances which are spectrally narrow (tens of meV) and ii) Cooper-type minima which have a spectral width of some eV. The effect of these continuum structures on the corresponding ionization dynamics is studied
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chatzipetros, Argyrios. „A simple model of above threshold ionization“. Thesis, Virginia Tech, 1990. http://hdl.handle.net/10919/42087.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Drum, S. M. „The remote detection of gases using coherence measurement“. Thesis, University of Southampton, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293132.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Aliwell, Simon Richard. „Measurement of atmospheric trace gases by absorption spectroscopy“. Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388668.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Adam, Nor Mariah. „Measurement of aerosol particles in buildings“. Thesis, University of Nottingham, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294520.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Panizza, M. P. „Analysis of complex integral photoelectron spectra /“. Title page, contents and introduction only, 1985. http://web4.library.adelaide.edu.au/theses/09SM/09smp193.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Briers, Michael Geoffrey. „Electrochemical transducers for the continuous measurement of blood gases“. Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314888.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mustafa, Merih. „Measurement and calculation of transport properties of polyatomic gases“. Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47198.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Photoionization of gases Measurement"

1

Canfield, L. Randall. NBS measurement services: Far ultraviolet detector standards. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Canfield, L. Randall. NBS measurement services: Far ultraviolet detector standards. Washington, D.C: National Bureau of Standards, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Canfield, L. Randall. NBS measurement services: Far ultraviolet detector standards. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Institut ėlektrofiziki (Rossiĭskai͡a akademii͡a nauk), Hrsg. Ėktony. Ekaterinburg: UIF Nauka, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Atomic and molecular photoabsorption: Absolute total cross sections. San Diego, CA: Academic Press, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chattopadhyay, Milan Kumar. Some aspects of double electron ejection in photoabsorption process. Burdwan: University of Burdwan, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

J, Ferland G., Savin Daniel Wolf und Astronomical Society of the Pacific., Hrsg. Spectroscopic challenges of photoionized plasmas: Proceedings of a conference held at University of Kentucky, Lexington, Kentucky, USA, 15-18 November 2001 [i.e. 2000]. San Francisco, Calif: Astronomical Society of the Pacific, 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Loreti, Christopher P. An overview of greenhouse gas emissions verification issues. Arlington, VA: Pew Center on Global Climate Change, 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kokuritsu Kankyō Kenkyūjo. Chikyū Kankyō Kenkyū Sentā. Onshitsu kōka gasu kansoku gijutsu eisei (GOSAT) kōkei kaihatsu no tame no kenshō taisei kyōka gyōmu: Hōkokusho : Heisei 24-nendo. [Ibaraki-ken Tsukuba-shi]: Kokuritsu Kankyō Kenkyūjo Chikyū Kankyō Kenkyū Sentā, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kaisha, Sūri Keikaku Kabushiki. Heisei 23-nendo onshitsu kōka gasu inbentori sakusei no tame no haishutsu keisū kaihatsu tō chōsa gyōmu hōkokusho. [Tōkyō-to Chiyoda-ku]: Sūri Keikaku, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Photoionization of gases Measurement"

1

Winkelmann, J. „2 Measurement Methods“. In Gases in Gases, Liquids and their Mixtures, 9–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-49718-9_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Winkelmann, Jochen. „2 Measurement Methods“. In Diffusion in Gases, Liquids and Electrolytes, 10–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-540-73735-3_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Allen, Terence. „Sampling of dusty gases in gas streams“. In Particle Size Measurement, 41–71. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0417-0_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dasgupta, Purnendu K. „Automated Measurement of Atmospheric Trace Gases“. In Advances in Chemistry, 41–90. Washington, DC: American Chemical Society, 1993. http://dx.doi.org/10.1021/ba-1993-0232.ch002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hellner, L., M. J. Besnard-Ramage, G. Dujardin und R. Azria. „Role of Valence Double Photoionization Processes in Ion Desorption from Condensed Gases“. In Springer Series in Surface Sciences, 240–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84145-3_32.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Malczewski, M. L. „Statistics of Continuous Particulate Measurement in Process Gas Streams“. In Particles in Gases and Liquids 3, 87–103. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1187-2_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Winkelmann, Jochen. „Methods for the measurement of diffusion coefficient of fluids“. In Diffusion in Gases, Liquids and Electrolytes, 10–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54089-3_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Schiff, H. I., G. W. Harris und G. I. Mackay. „Measurement of Atmospheric Gases by Laser Absorption Spectrometry“. In ACS Symposium Series, 274–88. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0349.ch024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Glover, T. E., R. W. Schoenlein, A. H. Chin und C. V. Shank. „Measurement of High Harmonic Pulse Durations Via Laser Assisted X-Ray Photoionization“. In Springer Series in Chemical Physics, 111–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80314-7_46.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lieberman, A. „Optical Particle Counter Performance Definitions Effects on Submicrometer Particle Measurement“. In Particles in Gases and Liquids 2, 103–14. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-3544-1_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Photoionization of gases Measurement"

1

Mics, Z., F. Kadlec, P. Kužel, P. Jungwirth, S. E. Bradforth und V. A. Apkarian. „Photoionization Mechanisms of Atmospheric Gases Probed by Terahertz Pulses“. In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/up.2006.tug24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Huetz, A., L. Andric, A. Jean, P. Lablanquie, P. Selles und J. Mazeau. „Energy and angular resolved studies of double photoionization of helium and rare gases“. In The 19th international conference on the physics of electronic and atomic collisions. AIP, 1996. http://dx.doi.org/10.1063/1.49808.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bartnik, A., T. Pisarczyk, P. Wachulak, T. Chodukowski, T. Fok, Ł. Węgrzyński, Z. Kalinowska und H. Fiedorowicz. „Low temperature plasmas created by photoionization of gases with intense radiation pulses from laser-produced plasma sources“. In XIth Symposium on Laser Technology, herausgegeben von Ryszard S. Romaniuk, Krzysztof Kopczynski, Jan K. Jabczyński und Zygmunt Mierczyk. SPIE, 2016. http://dx.doi.org/10.1117/12.2258588.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

de Delgado, E., und A. C. da Franca Correa. „Experimental Measurement of Dispersion Coefficients for Gases“. In Canadian International Petroleum Conference. Petroleum Society of Canada, 2001. http://dx.doi.org/10.2118/2001-083.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Moss, Brian, Gabriel Leen, Elfed Lewis, Kort Bremer und Andrew Niven. „Temperature measurement of gases using acoustic means“. In 2009 6th International Multi-Conference on Systems, Signals and Devices (SSD). IEEE, 2009. http://dx.doi.org/10.1109/ssd.2009.4956712.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Green, S. F. „ACOUSTIC TEMPERATURE & VELOCITY MEASUREMENT IN COMBUSTION GASES“. In International Heat Transfer Conference 8. Connecticut: Begellhouse, 1986. http://dx.doi.org/10.1615/ihtc8.2670.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Schruefer, Elmar, Erwin Lindermeir, Frank Palme und K. Wuelbern. „Spectral measurements of exhaust gases using a Fourier transform spectrometer“. In Measurement Technology and Intelligent Instruments, herausgegeben von Li Zhu. SPIE, 1993. http://dx.doi.org/10.1117/12.156389.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sulc, Miroslav. „Jamin interferometer for precise measurement of refractive index of gases“. In Optics and Measurement Conference 2014, herausgegeben von Jana Kovačičinová und Tomáš Vít. SPIE, 2015. http://dx.doi.org/10.1117/12.2175913.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kotur, Marija, Diego Guénot, David Kroon, Esben W. Larsen, Miguel Miranda, Maïté Louisy, Samuel Bengtsson et al. „Photoionization Time Delay Measurement close to a Fano Resonance Using Tunable Attosecond Pulses“. In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_qels.2014.fm2b.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sukhinets, Zh A., N. N. Prokopenko, A. I. Gulin, A. N. Krasnov, O. V. Dvornikov und A. L. Galiev. „Dynamic temperature measurement of GTE gases with interference elimination“. In 2019 International Conference on Electrotechnical Complexes and Systems (ICOECS). IEEE, 2019. http://dx.doi.org/10.1109/icoecs46375.2019.8949969.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Photoionization of gases Measurement"

1

Dennis Laudal. JV Task 125-Mercury Measurement in Combustion Flue Gases Short Course. Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/989405.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Davidovits, P., D. W. Worsnop, M. S. Zahniser und C. E. Kolb. Measurement of gas/water uptake coefficients for trace gases active in the marine environment. Office of Scientific and Technical Information (OSTI), Februar 1992. http://dx.doi.org/10.2172/5626361.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Davidovits, P., D. W. Worsnop, M. S. Zahniser und C. E. Kolb. Measurement of gas/water uptake coefficients for trace gases active in the marine environment. [Annual report]. Office of Scientific and Technical Information (OSTI), Februar 1992. http://dx.doi.org/10.2172/10131238.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chen, Kevin P. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature. Office of Scientific and Technical Information (OSTI), Februar 2015. http://dx.doi.org/10.2172/1172616.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mead, Franklin, und Bill Larsen. Measurement and Control of the Properties of Gases Produced by Ablation of Delrin (Polyformaldehyde) with a CO2 Laser. Fort Belvoir, VA: Defense Technical Information Center, Februar 2003. http://dx.doi.org/10.21236/ada412560.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Davidovits, P., D. R. Worsnop, M. S. Zahniser, J. T. Jayne und C. E. Kolb. Measurement of heterogeneous chemical processes relevant to aerosol surfaces and trace gases active in the marine environment. Progress report, February 1994--January 1995. Office of Scientific and Technical Information (OSTI), Februar 1995. http://dx.doi.org/10.2172/32576.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Davidovits, P., D. R. Worsnop, J. T. Jayne und C. E. Kolb. Measurement of heterogeneous chemical processes relevant to aerosol surfaces and trace gases active in the marine environment. Final report, August 1, 1991 to June 30, 1998. Office of Scientific and Technical Information (OSTI), Juli 1998. http://dx.doi.org/10.2172/765306.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie