Dissertationen zum Thema „Photochemistry“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Photochemistry" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Bones, David Lawrence. „Liquid Aerosol Photochemistry“. Thesis, University of Canterbury. Chemistry, 2008. http://hdl.handle.net/10092/1500.
Der volle Inhalt der QuelleFirth, S. „Low temperature photochemistry“. Thesis, University of Nottingham, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378979.
Der volle Inhalt der QuelleRapley, P. A. „Photochemistry of thiophthalimides“. Thesis, Open University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371027.
Der volle Inhalt der QuelleNiederjohann, Britta. „Photochemistry of small molecules“. [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972767398.
Der volle Inhalt der QuelleKarlsson, Daniel. „Photochemistry of Phenyl Halides“. Doctoral thesis, Uppsala universitet, Institutionen för fotokemi och molekylärvetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8602.
Der volle Inhalt der QuelleHaynes, Anthony. „Intermediates in organometallic photochemistry“. Thesis, University of Nottingham, 1989. http://eprints.nottingham.ac.uk/27829/.
Der volle Inhalt der QuelleBanks, C. P. „Aspects of polymer photochemistry“. Thesis, University of Hertfordshire, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384083.
Der volle Inhalt der QuelleSanderson, Jason Terry. „Studies in organic photochemistry“. Thesis, University of Sussex, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393200.
Der volle Inhalt der QuelleMcCallum, Terry. „Radical Adventures in Photochemistry“. Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37825.
Der volle Inhalt der QuelleSugita, Akihiro. „Multiphoton spectroscopy and photochemistry“. Kyoto University, 2001. http://hdl.handle.net/2433/150656.
Der volle Inhalt der QuelleWang, Jing. „Two-photon Induced Photochemistry“. Diss., The University of Arizona, 2007. http://hdl.handle.net/10150/195094.
Der volle Inhalt der QuelleYen, Chun-Wan. „Plasmonic photochemistry on the nanoscale“. Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41085.
Der volle Inhalt der QuelleBishenden, Elizabeth. „Mode-selective photochemistry of OClO“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq28270.pdf.
Der volle Inhalt der QuelleSmith, Richard S. „Photochemistry of 3,5-dimethoxybenzyl acetate“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0021/MQ57326.pdf.
Der volle Inhalt der QuelleDesikan, Vasumathi. „Photochemistry of dibenzothiophene-based sulfilimines“. [Ames, Iowa : Iowa State University], 2007.
Den vollen Inhalt der Quelle findenBruce, James I. „Supramolecular photochemistry of lanthanide complexes“. Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308689.
Der volle Inhalt der QuelleRoscini, Claudio. „Reaction Control in Organic Photochemistry“. Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.521102.
Der volle Inhalt der QuelleHiggins, Christina Mary. „Tropospheric photochemistry of organic nitrates“. Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627967.
Der volle Inhalt der QuelleCubbage, Kara. „Synthetic photochemistry of tethered maleimides“. Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547843.
Der volle Inhalt der QuelleKnox, Christopher James Henry. „The photochemistry of liquid aerosols“. Thesis, University of Canterbury. Chemistry, 2002. http://hdl.handle.net/10092/6076.
Der volle Inhalt der QuelleThomas, Dawn Ann. „Matrix photochemistry of stratospheric species“. Thesis, University of East Anglia, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318039.
Der volle Inhalt der QuelleCosta, Monica Ferreira da. „Mercury photochemistry in natural waters“. Thesis, University of East Anglia, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338305.
Der volle Inhalt der QuelleGadd, G. E. „Organometallic photochemistry at low temperatures“. Thesis, University of Nottingham, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304331.
Der volle Inhalt der QuelleReeman, Stuart Michael. „Adsorbate photochemistry of small molecules“. Thesis, University of Liverpool, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318275.
Der volle Inhalt der QuelleRichards, Andrew Maurice. „Photochemistry of novel aluminium complexes“. Thesis, Open University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236925.
Der volle Inhalt der QuelleSmith, Carina Alice. „The atmospheric photochemistry of formaldehyde“. Thesis, University of Bristol, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432746.
Der volle Inhalt der QuellePonczek, Milena. „Understanding Atmospheric Mineral Dust Photochemistry“. Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1190.
Der volle Inhalt der QuelleMinerals that absorb light near UV/Vis present in dust aerosols interact with trace gases in the atmosphere and can initiate a new and potentially significant photo-induced heterogeneous chemistry, which is currently poorly documented. This thesis aims to address different issues of mineral dust reactivity towards organic compounds and, therefore, assesses the impact of these interactions on several aspects of atmospheric sciences. We investigated experimentally the physicochemical interaction of mineral aerosols (synthetic and natural), pure or coated with organic/inorganic materials with trace gases from several chemical families (alcohols, ketones, carboxylic acids, etc.), under simulated conditions close to the real environment (regarding to humidity, concentration in the gas phase, wavelength and intensity of irradiation, pressure and temperature). In a first approach, we studied the uptake of oxygenated organics onto different dust proxies such as SiO2, TiO2 and Arizona test dust (ATD) evaluating the effects of ambient conditions on the uptake kinetics and product generation. Then, we discussed the chemistry of 5 dicarboxylic acids (C4-C8) on ATD particles upon UV-A irradiation monitoring products in the gas phase as well as those whose stay adsorbed on the particulate phase. Lastly, we investigated the influence of nitrate anions on the uptake of acetone on ATD and SiO2 and in the photochemical product formation of glutaric acid on ATD. Overall, our results clearly show that photochemical processing of dust aerosols should be considered as a source of reactive compounds and as a key process affecting their action as ice nucleation and cloud condensation nuclei
Zhuang, Bo. „Fundamental Processes in Flavoprotein Photochemistry“. Thesis, Institut polytechnique de Paris, 2022. https://tel.archives-ouvertes.fr/tel-03789651.
Der volle Inhalt der QuelleFlavins are derivatives of vitamin B2 that form a highly versatile group of chromophores found in a large variety of enzymes and photoreceptor proteins. They can adopt three different redox states with various protonation states, leading to at least five physiologically relevant forms, with distinct electronic absorption spectra. Despite the diverse photophysical properties of the flavin cofactors, there are only very few natural photo-responsive flavoproteins. The vast majority of flavoproteins perform non-light-driven physiological functions (“non-photoactive”), although ultrafast, reversible photoinduced redox reactions between flavins and surrounding residues still widely occur in these systems, which can be viewed as photo-protective “self-quenching”. The past few decades have seen a blooming in the study of flavoproteins for their photocatalytic and photo-biotechnological applications. Moreover, a newly emerging approach in the development of novel photocatalysts from canonical “non-photoactive” flavoenzymes is making use of the photochemistry of reduced flavins instead of the oxidized resting state. Furthermore, practical implications of photochemistry of yet different flavin species are envisaged, but a basic understanding of their mechanisms is still required. In this thesis, applying ultrafast absorption and fluorescence spectroscopy combined with molecular simulations and quantum chemistry approaches, a variety of fundamental photochemical processes in flavoproteins is investigated. First the photoreduction of oxidized flavins was revisited in a flavoprotein, ferredoxin-NADP+ oxidoreductase (FNR), with closely packed reactant configurations, allowing ultrafast formation of intermediate radical pairs. Combining experimental and modeling techniques allowed a detailed assessment of the influence of the environment on the spectral properties of both the anionic flavin and the cationic amino acid (tyrosine or tryptophan) radicals. We further investigated the photochemistry of protein-bound flavin species in different chemical states that are largely unexplored in the literature. It is demonstrated that photooxidation of anionic flavin radicals, which act as reaction intermediates in many biochemical reactions, efficiently occurs within ~100 fs in several flavoprotein oxidases. This process, effectively the reverse of the well-known photoreduction of oxidized flavin may constitute a universal decay pathway. The excited-state properties of fully reduced flavins were studied in several FNR systems where they are involved as functional intermediates, and compared with those in solution. Valuable information concerning their electronic structures and the flavin flexibility was obtained and compared with atomic simulations, with important catalytic implications. Finally, an unprecedented photo-dissociation phenomenon was revealed for a non-covalent charge transfer complex of flavin and a inhibitor in the flavoenzyme monomeric sarcosine oxidase. This process occurs on the timescale of a few hundred femtoseconds and can be attributed to a well-defined photoinduced isomerization of the inhibitor. Altogether, the described findings, which include the discovery of two hitherto undocumented photochemical processes in flavoproteins, expand the repertoire of photochemistry involving flavin cofactors. This work may open new avenues for the exploration of flavin photochemistry with ultimately possible practical implications as novel photocatalysts and optogenetic tools
Gan, Daqing. „Aqueous photochemistry of 1,4-benzoquinones and their possible role in the photochemistry of natural organic matter“. College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2180.
Der volle Inhalt der QuelleThesis research directed by: Chemistry. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Jansen, Lisinka M. G. „Photochemistry and photophysics of azo dyes“. Thesis, Loughborough University, 1997. https://dspace.lboro.ac.uk/2134/28271.
Der volle Inhalt der QuelleCowley, Nicholas John. „The mechanistic photochemistry of 4-hydroxybenzophenone“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq20620.pdf.
Der volle Inhalt der QuelleLeibovitch, Mordechai. „Asymmetric synthesis in solid state photochemistry“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq25090.pdf.
Der volle Inhalt der QuelleSmith, Kenneth Christopher. „Photochemistry of urea/ketone inclusion compounds“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq24919.pdf.
Der volle Inhalt der QuelleDelaney-Luu, Michelle Marie. „The photochemistry of substituted poly(acrylophenones)“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ33362.pdf.
Der volle Inhalt der QuelleVolkov, Victor Vitorovich. „Bacteriorhodopsin excited state dynamics and photochemistry“. Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/26308.
Der volle Inhalt der QuelleTaylor, Tammye L. „UV photochemistry of synthetic model peptides“. Thesis, Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/26966.
Der volle Inhalt der QuelleIqbal, Azhar. „Towards understanding the photochemistry of tyrosine“. Thesis, University of Warwick, 2010. http://wrap.warwick.ac.uk/3735/.
Der volle Inhalt der QuelleRowland, Glenn Anthony. „The photochemistry of sulfuric acid aerosols“. Thesis, University of Canterbury. Chemistry, 2001. http://hdl.handle.net/10092/5949.
Der volle Inhalt der QuelleKennedy, Graham Robert Alexander. „Laser photochemistry of jet-cooled molecules“. Thesis, Heriot-Watt University, 1998. http://hdl.handle.net/10399/621.
Der volle Inhalt der QuelleFletcher, S. C. „Polarized photochemistry and binuclear metal carbonyls“. Thesis, University of Nottingham, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356518.
Der volle Inhalt der QuelleLees, Alistair J. „Photophysics and photochemistry of organometallic complexes“. Thesis, University of Newcastle Upon Tyne, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417484.
Der volle Inhalt der QuelleWilkes, J. „Photochemistry of small adsorbates on surfaces“. Thesis, University of Huddersfield, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286052.
Der volle Inhalt der QuelleShields, C. J. „Matrix photochemistry with plane-polarised light“. Thesis, University of Strathclyde, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372121.
Der volle Inhalt der QuelleKunanandam, Suren. „Spectroscopy and photochemistry of arylazonaphtol dyes“. Thesis, University of York, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423732.
Der volle Inhalt der QuelleHaddleton, D. M. „Photochemistry of some metal-ethane complexes“. Thesis, University of York, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374165.
Der volle Inhalt der QuelleBirch, D. „The aqueous photochemistry of small peptides“. Thesis, Open University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383637.
Der volle Inhalt der QuelleWillasey-Wilsey, Sarah Louise. „The photochemistry of unsaturated carbonyl compounds“. Thesis, King's College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309739.
Der volle Inhalt der QuelleBushby, Lisa Marie. „Photochemistry and photophysics of lanthanide complexes“. Thesis, Durham University, 2001. http://etheses.dur.ac.uk/4208/.
Der volle Inhalt der QuelleMitchell, Lorna J. „Exploiting the photochemistry of the quinones“. Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/32977/.
Der volle Inhalt der QuelleKarabaeva, Kanykey E. „Photochemistry of Masked Pyrene-4,5-Dione“. Bowling Green State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1371083757.
Der volle Inhalt der Quelle