Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Phase quantification“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Phase quantification" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Phase quantification"
Döbelin, Nicola. „Validation of XRD phase quantification using semi-synthetic data“. Powder Diffraction 35, Nr. 4 (13.10.2020): 262–75. http://dx.doi.org/10.1017/s0885715620000573.
Der volle Inhalt der QuelleTakehara, L., M. A. Z. Vasconcellos, R. Hinrichs, J. B. M. da Cunha und F. Chemale Jr. „Phase quantification in iron ore“. Mineral Processing and Extractive Metallurgy 118, Nr. 3 (September 2009): 168–74. http://dx.doi.org/10.1179/174328509x431445.
Der volle Inhalt der QuelleHall, Caitrín, Ji Chul Kim und Alexandra Paxton. „Multidimensional recurrence quantification analysis of human-metronome phasing“. PLOS ONE 18, Nr. 2 (23.02.2023): e0279987. http://dx.doi.org/10.1371/journal.pone.0279987.
Der volle Inhalt der QuelleHarnett, L., M. Stennett, E. Maddrell und N. Hyatt. „Characterisation of glass ceramic wasteforms using quantitative image analysis of electron micrographs“. MRS Advances 7, Nr. 5-6 (09.02.2022): 86–89. http://dx.doi.org/10.1557/s43580-022-00227-0.
Der volle Inhalt der QuelleErgin, F. Gökhan. „Accuracy Improvement Quantification Using Phase-Separated PIV Measurements“. Proceedings of the International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics 21 (08.07.2024): 1–7. http://dx.doi.org/10.55037/lxlaser.21st.4.
Der volle Inhalt der QuelleSheiati, Shohreh, Hoang Nguyen, Paivo Kinnunen und Navid Ranjbar. „Cementitious phase quantification using deep learning“. Cement and Concrete Research 172 (Oktober 2023): 107231. http://dx.doi.org/10.1016/j.cemconres.2023.107231.
Der volle Inhalt der QuelleReddy, K. Chiranjeevi, und Kolluru V. L. Subramaniam. „Quantitative phase analysis of slag hydrating in an alkaline environment“. Journal of Applied Crystallography 53, Nr. 2 (13.03.2020): 424–34. http://dx.doi.org/10.1107/s1600576720001399.
Der volle Inhalt der QuelleHagni, Ann M. „Phase identification, phase quantification, and phase association determinations utilizing automated mineralogy technology“. JOM 60, Nr. 4 (April 2008): 33–37. http://dx.doi.org/10.1007/s11837-008-0045-8.
Der volle Inhalt der QuelleWininger, Michael, Alex Krasner, Nam Hun Kim und William Craelius. „Phase plane quantification of single-joint smoothness“. Journal of Biomedical Engineering and Informatics 4, Nr. 1 (15.05.2018): 40. http://dx.doi.org/10.5430/jbei.v4n1p40.
Der volle Inhalt der QuelleIlbagi, A., H. Henein und A. B. Phillion. „Phase quantification of impulse atomized Al68.5Ni31.5 alloy“. Journal of Materials Science 46, Nr. 19 (02.11.2010): 6235–42. http://dx.doi.org/10.1007/s10853-010-4972-8.
Der volle Inhalt der QuelleDissertationen zum Thema "Phase quantification"
Butler, Jonny. „Phase structure, phrase structure, and quantification“. Thesis, University of York, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415175.
Der volle Inhalt der QuelleGouverneur, Yves. „Phase de Berry et quantification de skyrmions“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0002/MQ33663.pdf.
Der volle Inhalt der QuelleBeese, Allison M. „Quantification of phase transformation in stainless steel 301LN sheets“. Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44870.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 101-102).
This thesis investigates the large deformation behavior of stainless steel 301LN cold-rolled sheets which is largely governed by the initial anisotropy combined with the phase transformation during deformation. Stainless steel offers high strength with relatively high ductility as compared with other structural steels. The effect of initial anisotropy on the strength in different material directions is studied in order to predict forming and crash response of vehicle components. It is observed that loading in the material rolling direction results in increased strength in the cross direction, however loading in the material cross-rolling direction results in decreased strength in the rolling direction. The mechanism responsible for the above cross-hardening is complex and requires investigation of the microstructural evolution of the sheets. The austenitic stainless steel studied is comprised of only austenite when in bulk form. However, the process of cold-rolling the bulk material into sheets results in strain-induced martensitic phase transformation. Additional straining of the material leads to even more transformation of austenite to martensite. Because martensite is a harder phase than austenite, micromechanical arguments suggest that the amount of martensite has an effect on the plasticity and eventual fracture of this material. In this thesis, the martensitic evolution as a function of material direction and strain level is measured using three different techniques: X-ray diffraction, microscopy, and magnetic induction. The first two methods require interrupted tests, while using a Feritscope allows for in-situ measurement of the martensite content. However, the Feritscope must be calibrated by another measurement method.
(cont.) Observations of the measurements from each of the three methods confirm that the output of the Feritscope, Ferrite Number, is proportional to the martensite content. Therefore in-situ tests employing the Feritscope will allow for monitoring of the martensite content with evolution of stress and strain. From experiments described here, a directional dependence on martensite content is observed. The results from this study can be used to formulate an anisotropic martensite transformation kinetics law to describe the evolution of martensite content as a function of material anisotropy, stress state, and strain state.
by Allison M. Beese.
S.M.
Chatzimavroudis, George P. „Quantification of valvular regurgitation with magnetic resonance phase velocity mapping“. Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/11808.
Der volle Inhalt der QuelleWallin, Ashley Kay. „Renal Arterial Blood Flow Quantification by Breath-held Phase-velocity Encoded MRI“. Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4982.
Der volle Inhalt der QuelleEngberg, Jonas. „Deep morphological quantification and clustering of brain cancer cells using phase-contrast imaging“. Thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454959.
Der volle Inhalt der QuelleLin, Hung-Yu. „REAL-TIME FLOW QUANTIFICATION TECHNIQUES IN CARDIOVASCULAR MRI APPLICATIONS“. The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1238594589.
Der volle Inhalt der QuelleMilet, Sylvain F. „Visualization and quantification of left heart blood flow by phase encoding magnetic resonance imaging“. Thesis, Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/16056.
Der volle Inhalt der QuelleROTEM, RANY. „Development of Reliable Experimental Models for the Study of the Biological Behavior of Drug Nanocarriers“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241245.
Der volle Inhalt der QuelleThe curative effectiveness of current and new drugs is often limited by poor pharmacokinetics in-vivo. The use of nanoparticles as drug carriers seems promising in solving this problem. In this work we aimed to further explore and improve common drug delivery components and techniques. Starting with the synthesis of nanoparticles with a controlled number of molecular recognition ligands, we used bulky ligands and gel separation to obtain nanoparticles with a discrete number of chemical functional groups, used later to conjugate the same number of molecular recognition ligands. These nanoparticles later showed substantial difference in the in-vivo behavior. A second project focused on the in-depth characterization of the relationship between hydrophobic inorganic nanoparticles and the polymer surfactants used to enable their water dispersibility, as well enabling their functionalization. This investigation was done through separate quantification of polymer and inorganic nanoparticles and assessment of stability. Our results showed that the removal of excess polymer from such systems can result in loss of colloidal stability. A third project was aimed to describe the mechanism of polymeric nanoparticle’s endosomal escape and provide a platform for qualitative investigation and enhancement of this process. This goal was accomplished through two complementary in-vitro experiments testing two proposed mechanisms of endosomal escape. These results raised a key consideration when matching a particle capable of endosomal escape to a specific cell type as well as methods reduce interaction with serum proteins. A fourth project focused on developing an assay to quantify cytosolic delivery of nanoparticles and theoretically assessed the possibility of using fluorescence resonance energy transfer (FRET) - which was found to be not practical in this case - as well as implementing a pro-fluorophore to generate a measurable signal. Our preliminary results indicate this method might indeed be useful for this purpose in the future.
Deroche, Annabelle. „Optimisation de la limite de quantification d'une méthode chromatographique en phase gazeuse couplée à une détection par capture d'électrons : développement et application au dosage d'un antiandrogène dans le plasma humain“. Paris 5, 1997. http://www.theses.fr/1997PA05P224.
Der volle Inhalt der QuelleBücher zum Thema "Phase quantification"
Khan, Zahid K. Phase I report: Ash quantification and characterization study. [Sacramento, CA] (1851 Heritage Lane, Sacramento, 95815): R.W. Beck and Associates, 1992.
Den vollen Inhalt der Quelle findenCurrens, James C. Characterization and quantification of nonpoint source pollution in a conduit-flow dominated karst aquifer underlying an extensive use agricultural region--phase III: Final report. [Lexington, Ky.]: Kentucky Geological Survey, University of Kentucky, 1999.
Den vollen Inhalt der Quelle findenGillespie, J. L. Installation Restoration Program: Phase II--confirmation/quantification stage 2 : final report for Wurtsmith Air Force Base, Michigan : hydrogeology near Wurtsmith Air Force Base, Michigan. Offut Air Force Base, Neb: USAF Environmental Quality Branch, Headquarters Strategic Air Command, 1991.
Den vollen Inhalt der Quelle findenGeological Survey (U.S.). Water Resources Division. und United States. Air Force. Environmental Quality Branch., Hrsg. Installation Restoration Program: Phase II--confirmation/quantification stage 2 : final report for Wurtsmith Air Force Base, Michigan : hydrogeology near Wurtsmith Air Force Base, Michigan. Offut Air Force Base, Neb: USAF Environmental Quality Branch, Headquarters Strategic Air Command, 1991.
Den vollen Inhalt der Quelle findenKadmon, Nirit. On unique and non-unique reference and asymmetric quantification. [Amherst, Mass: Dept of Linguistics, University of Massachusetts], 1987.
Den vollen Inhalt der Quelle findenKadmon, Nirit. On unique and non-unique reference and asymmetric quantification. New York: Garland Pub., 1992.
Den vollen Inhalt der Quelle findenRösler, Kai M., und Michel R. Magistris. The size of motor-evoked potentials: influencing parameters and quantification. Herausgegeben von Charles M. Epstein, Eric M. Wassermann und Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0009.
Der volle Inhalt der QuelleWendling, Fabrice, Marco Congendo und Fernando H. Lopes da Silva. EEG Analysis. Herausgegeben von Donald L. Schomer und Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0044.
Der volle Inhalt der QuellePitt, Matthew. Motor unit anatomy and physiology. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198754596.003.0006.
Der volle Inhalt der QuelleBuchteile zum Thema "Phase quantification"
Hayward-Lester, A., B. S. Chilton, P. A. Underhill, P. J. Oefner und P. A. Doris. „Quantification of Specific Nucleic Acids, Regulated RNA Processing, and Genomic Polymorphisms Using Reversed-Phase HPLC“. In Gene Quantification, 45–78. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-4164-5_4.
Der volle Inhalt der QuelleWei, Ya, Siming Liang und Weikang Kong. „Phase Quantification by Different Techniques“. In Mechanical Properties of Cementitious Materials at Microscale, 91–144. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6883-9_4.
Der volle Inhalt der QuelleJung, Bernd, und Michael Markl. „Phase-Contrast MRI and Flow Quantification“. In Magnetic Resonance Angiography, 51–64. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-1686-0_3.
Der volle Inhalt der QuelleHamilton, Robert G. „Antigen Quantification: Measurement of Multivalent Antigens by Solid-Phase Immunoassay“. In Immunochemistry of Solid-Phase Immunoassay, 139–50. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9780367812775-9.
Der volle Inhalt der QuelleSeuntjens, J. M., F. Y. Clark, T. J. Headley, A. C. Kilgo und N. Y. C. Yang. „Quantification of Second Phase Morphology in SSCL VQP Samples“. In Advances in Cryogenic Engineering Materials, 793–98. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9053-5_101.
Der volle Inhalt der QuelleBrown, Andrew M., und Jennifer L. DeLessio. „Test-Analysis Modal Correlation of Rocket Engine Structures in Liquid Hydrogen – Phase II“. In Model Validation and Uncertainty Quantification, Volume 3, 413–30. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47638-0_46.
Der volle Inhalt der QuellePlatz, Roland, und Benedict Götz. „Non-probabilistic Uncertainty Evaluation in the Concept Phase for Airplane Landing Gear Design“. In Model Validation and Uncertainty Quantification, Volume 3, 161–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54858-6_17.
Der volle Inhalt der QuelleLi, Qi, Gaohui Wang, Aral Sarrafi, Zhu Mao und Wenbo Lu. „Feasibility of Applying Phase-Based Video Processing for Modal Identification of Concrete Gravity Dams“. In Model Validation and Uncertainty Quantification, Volume 3, 137–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74793-4_18.
Der volle Inhalt der QuelleCanul-Polanco, J. A., und O. M. Jensen. „Variation in Phase Quantification of White Portland Cement by XRD“. In Concrete Durability and Service Life Planning, 8–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43332-1_2.
Der volle Inhalt der QuelleBurhenne, Heike, und Volkhard Kaever. „Quantification of Cyclic Dinucleotides by Reversed-Phase LC-MS/MS“. In Cyclic Nucleotide Signaling in Plants, 27–37. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-441-8_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Phase quantification"
Sjödahl, Mikael, und Joel Wahl. „Bi-directional digital holographic imaging for the quantification of the scattering phase function of natural snow“. In Digital Holography and Three-Dimensional Imaging, Tu5A.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.tu5a.5.
Der volle Inhalt der QuelleJudson, Robert, Miroslav Hejna, Aparna Jorapur, Jun S. Song und Yuntian Zhang. „Quantification of mammalian tumor cell state plasticity with digital holographic cytometry“. In Quantitative Phase Imaging IV, herausgegeben von Gabriel Popescu und YongKeun Park. SPIE, 2018. http://dx.doi.org/10.1117/12.2290462.
Der volle Inhalt der QuelleLee, Ariel J., Mahn Jae Lee, Hye-Jin Kim, WeiSun Park und YongKeun Park. „Label-free quantification of oxidative stress on HS68 cells using optical diffraction tomography“. In Quantitative Phase Imaging VII, herausgegeben von Gabriel Popescu, YongKeun Park und Yang Liu. SPIE, 2021. http://dx.doi.org/10.1117/12.2584888.
Der volle Inhalt der QuelleYoon, Jonghee, Su-a. Yang, Kyoohyun Kim und YongKeun Park. „Quantification of neurotoxic effects on individual neuron cells using optical diffraction tomography (Conference Presentation)“. In Quantitative Phase Imaging II, herausgegeben von Gabriel Popescu und YongKeun Park. SPIE, 2016. http://dx.doi.org/10.1117/12.2213780.
Der volle Inhalt der QuelleNiu, Mengxuan, und Renjie Zhou. „Compact and simultaneous three-wavelength quantitative phase microscopy for hemoglobin concentration quantification in red blood cells“. In Quantitative Phase Imaging VIII, herausgegeben von Gabriel Popescu, YongKeun Park und Yang Liu. SPIE, 2022. http://dx.doi.org/10.1117/12.2610467.
Der volle Inhalt der QuelleCho, Hyewon, Nurbolat Aimakov, Inwoo Park, Myeonghoon Choi, Yerim Kim, Geosong Na, Sunghoon Lim und Woonggyu Jung. „Glomerulus quantification with deep learning based on novel multi-modal label-free quantitative phase imaging from a near-infrared (Conference Presentation)“. In Quantitative Phase Imaging IX, herausgegeben von YongKeun Park und Yang Liu. SPIE, 2023. http://dx.doi.org/10.1117/12.2651095.
Der volle Inhalt der QuelleBennetzen, Martin Vad, Theis Ivan Solling und Xiomara Marquez. „Towards Four Phase Autosegmentation and Microporosity Quantification“. In Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers, 2014. http://dx.doi.org/10.2118/171721-ms.
Der volle Inhalt der QuelleLangley, J., und Qun Zhao. „Quantification of SPIO nanoparticles using phase gradient mapping“. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5333758.
Der volle Inhalt der QuelleOates, William S., und Justin Collins. „Uncertainty quantification in quantum informed ferroelectric phase field modeling“. In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, herausgegeben von Nakhiah C. Goulbourne. SPIE, 2015. http://dx.doi.org/10.1117/12.2084413.
Der volle Inhalt der QuelleManapuram, Ravi Kiran, Venugopal Reddy Manne, Narendran Sudheendran, Esteban F. Carbajal und Kirill V. Larin. „Quantification of microbubbles in blood with phase-sensitive SSOCT“. In BiOS, herausgegeben von Valery V. Tuchin, Donald D. Duncan und Kirill V. Larin. SPIE, 2010. http://dx.doi.org/10.1117/12.842295.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Phase quantification"
Nadiga, Balasubramanya T., und Emilio Baglietto. Uncertainty Quantification of Multi-Phase Closures. Office of Scientific and Technical Information (OSTI), Oktober 2017. http://dx.doi.org/10.2172/1406195.
Der volle Inhalt der QuelleDibert, Ana, und Daniel Rehn. Yttrium solid phase equation of state with uncertainty quantification. Office of Scientific and Technical Information (OSTI), September 2024. http://dx.doi.org/10.2172/2440689.
Der volle Inhalt der QuelleMcQuerry, Meredith, und Reannan Riedy. Development of a Phase Change Material (PCM) Measurement Methodology for Fabric Surface Quantification. Ames (Iowa): Iowa State University. Library, Januar 2019. http://dx.doi.org/10.31274/itaa.8293.
Der volle Inhalt der QuelleHerman, Brook, Todd Swannack, Nathan Richards, Nancy Gleason und Safra Altman. Development of a General Anadromous Fish Habitat Model : phase 2 : initial model quantification. Engineer Research and Development Center (U.S.), September 2020. http://dx.doi.org/10.21079/11681/38249.
Der volle Inhalt der QuelleWESTON (ROY F) INC WEST CHESTER PA. Installation Restoration Program, Phase II - Confirmation/Quantification Stage 1 for Travis Air Force Base, California. Fort Belvoir, VA: Defense Technical Information Center, April 1986. http://dx.doi.org/10.21236/ada168077.
Der volle Inhalt der QuelleWESTON (ROY F) INC WEST CHESTER PA. Installation Restoration Program. Phase 2. Confirmation/Quantification. Stage 2. Volume 3. Luke Air Force Base, Arizona. Fort Belvoir, VA: Defense Technical Information Center, Juni 1988. http://dx.doi.org/10.21236/ada199228.
Der volle Inhalt der QuelleWESTON (ROY F) INC WEST CHESTER PA. Installation Restoration Program. Phase 2. Confirmation/Quantification. Stage 2. Volume 4. Luke Air Force Base, Arizona. Fort Belvoir, VA: Defense Technical Information Center, Juni 1988. http://dx.doi.org/10.21236/ada199229.
Der volle Inhalt der QuelleBrusseau, Mark L., Mart Oostrom und Mark White. Partitioning Tracers for In Situ Detection and Quantification of Dense Nonaqueous Phase Liquids in Groundwater Systems. Office of Scientific and Technical Information (OSTI), Juni 1999. http://dx.doi.org/10.2172/827261.
Der volle Inhalt der QuelleAlexander, W. J., S. L. Winters und S. A. Guthrie. Installation Restoration Program. Phase 2. Confirmation/Quantification, Stage 2 for Seymour Johnson Air Force Base, North Carolina. Volume 1. Fort Belvoir, VA: Defense Technical Information Center, November 1988. http://dx.doi.org/10.21236/ada203412.
Der volle Inhalt der QuelleAlexander, W. J., S. L. Winters und S. A. Guthrie. Installation Restoration Program. Phase 2. Confirmation/Quantification, Stage 2 for Seymour Johnson Air Force Base, North Carolina. Volume 2. Fort Belvoir, VA: Defense Technical Information Center, November 1988. http://dx.doi.org/10.21236/ada203413.
Der volle Inhalt der Quelle