Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Phase change memory GST“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Phase change memory GST" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Phase change memory GST"
S. A.Aziz, M., F. H. M.Fauzi, Z. Mohamad und R. I. Alip. „The Effect of Channel Length on Phase Transition of Phase Change Memory“. International Journal of Engineering & Technology 7, Nr. 3.11 (21.07.2018): 25. http://dx.doi.org/10.14419/ijet.v7i3.11.15923.
Der volle Inhalt der QuelleGolovchak, R., Y. G. Choi, S. Kozyukhin, Yu Chigirinsky, A. Kovalskiy, P. Xiong-Skiba, J. Trimble, R. Pafchek und H. Jain. „Oxygen incorporation into GST phase-change memory matrix“. Applied Surface Science 332 (März 2015): 533–41. http://dx.doi.org/10.1016/j.apsusc.2015.01.203.
Der volle Inhalt der QuelleBehrens, Mario, Andriy Lotnyk, Hagen Bryja, Jürgen W. Gerlach und Bernd Rauschenbach. „Structural Transitions in Ge2Sb2Te5 Phase Change Memory Thin Films Induced by Nanosecond UV Optical Pulses“. Materials 13, Nr. 9 (01.05.2020): 2082. http://dx.doi.org/10.3390/ma13092082.
Der volle Inhalt der QuelleStern, Keren, Yair Keller, Christopher M. Neumann, Eric Pop und Eilam Yalon. „Temperature-dependent thermal resistance of phase change memory“. Applied Physics Letters 120, Nr. 11 (14.03.2022): 113501. http://dx.doi.org/10.1063/5.0081016.
Der volle Inhalt der QuelleKim, Sung Soon, Jun Hyun Bae, Woo Hyuck Do, Kyun Ho Lee, Young Tae Kim, Young Kwan Park, Jeong Taek Kong und Hong Lim Lee. „Thermal Stress Model for Phase Change Random Access Memory“. Solid State Phenomena 124-126 (Juni 2007): 37–40. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.37.
Der volle Inhalt der QuelleRaeis-Hosseini, Niloufar, und Junsuk Rho. „Dual-Functional Nanoscale Devices Using Phase-Change Materials: A Reconfigurable Perfect Absorber with Nonvolatile Resistance-Change Memory Characteristics“. Applied Sciences 9, Nr. 3 (08.02.2019): 564. http://dx.doi.org/10.3390/app9030564.
Der volle Inhalt der QuelleAgarwal, Satish C. „Role of potential fluctuations in phase-change GST memory devices“. physica status solidi (b) 249, Nr. 10 (17.08.2012): 1956–61. http://dx.doi.org/10.1002/pssb.201200362.
Der volle Inhalt der QuelleXue, Yuan, Sannian Song, Xiaogang Chen, Shuai Yan, Shilong Lv, Tianjiao Xin und Zhitang Song. „Enhanced performance of phase change memory by grain size reduction“. Journal of Materials Chemistry C 10, Nr. 9 (2022): 3585–92. http://dx.doi.org/10.1039/d1tc06045g.
Der volle Inhalt der QuellePacco, Antoine, Ju-Geng Lai, Pallavi Puttarame Gowda, Hanne De Coster, Jens Rip, Kurt Wostyn und Efrain Altamirano Sanchez. „Wet Chemical Recess Etching of Ge2Sb2Te5 for 3D PCRAM Memory Applications“. ECS Meeting Abstracts MA2022-01, Nr. 28 (07.07.2022): 1262. http://dx.doi.org/10.1149/ma2022-01281262mtgabs.
Der volle Inhalt der QuelleYin, You, und Sumio Hosaka. „Crystal Growth Suppression by N-Doping into Chalcogenide for Application to Next-Generation Phase Change Memory“. Key Engineering Materials 497 (Dezember 2011): 101–5. http://dx.doi.org/10.4028/www.scientific.net/kem.497.101.
Der volle Inhalt der QuelleDissertationen zum Thema "Phase change memory GST"
Giovanardi, Fabio <1984>. „Analysis of charge-transport properties in GST materials for next generation phase-change memory devices“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5583/4/giovanardi_fabio_tesi.pdf.
Der volle Inhalt der QuelleLo sviluppo dei sistemi di memoria di futura generazione è guidato principalmente dalla ricerca di una tecnologia in grado di superare quelle attuali in ogni loro specifica di funzionamento, dalla ritenzione di dato alla velocità di accesso, migliorandone la durata e riducendo il dispendio energetico. Il sottosistema delle memorie assorbe una parte significativa delle risorse del macro sistema costituito dal calcolatore, tanto da aver quasi raggiunto il limite tecnologico nel caso delle odierne memorie di tipo DRAM. La soluzione più promettente sembra essere quella delle memorie a cambiamento di fase (PCM), in grado di colmare anche i limiti mostrati dalla tecnologia Flash nell’ambito della durata e scalabilità. I materiali che consentono di realizzare dispostivi a cambiamento di fase pilotato elettricamente appartengono alla famiglia dei calcogenuri. Tra i diversi composti calcogenuri quello attualmente identificato come soluzione più promettente è il Ge2Sb2Te5 (GST). Il trasporto di carica all’interno di dispositivi di memoria realizzati con tali materiali è stato modellato considerando l’azione di due contributi differenti: hopping di cariche intrappolate e moto di elettroni liberi in stati estesi. Il GST mostra un comportamento elettrico pressoché Ohmico in fase cristallina mentre, in fase amorfa, risulta essere poco conduttivo per basse correnti fino al superamento di una tensione di soglia oltre la quale si assiste al passaggio da uno stato altamente resistivo ad uno altamente conduttivo, caratterizzato da un andamento a resistenza differenziale negativa (NDR). Il meccanismo retroattivo che induce il fenomeno di snapback viene descritto come filamentazione in energia controllata dalle interazioni tra elettroni liberi ed elettroni intrappolati. Il modello fisico ricavato è stato implementato all’interno di un simulatore di dispositivi di ultima generazione ed è stato in seguito riprodotto in una versione analitica semplificata in grado, però, di permettere una prima analisi del comportamento elettrico del dispositivo e delle sue proprietà di scaling.
Giovanardi, Fabio <1984>. „Analysis of charge-transport properties in GST materials for next generation phase-change memory devices“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5583/.
Der volle Inhalt der QuelleLo sviluppo dei sistemi di memoria di futura generazione è guidato principalmente dalla ricerca di una tecnologia in grado di superare quelle attuali in ogni loro specifica di funzionamento, dalla ritenzione di dato alla velocità di accesso, migliorandone la durata e riducendo il dispendio energetico. Il sottosistema delle memorie assorbe una parte significativa delle risorse del macro sistema costituito dal calcolatore, tanto da aver quasi raggiunto il limite tecnologico nel caso delle odierne memorie di tipo DRAM. La soluzione più promettente sembra essere quella delle memorie a cambiamento di fase (PCM), in grado di colmare anche i limiti mostrati dalla tecnologia Flash nell’ambito della durata e scalabilità. I materiali che consentono di realizzare dispostivi a cambiamento di fase pilotato elettricamente appartengono alla famiglia dei calcogenuri. Tra i diversi composti calcogenuri quello attualmente identificato come soluzione più promettente è il Ge2Sb2Te5 (GST). Il trasporto di carica all’interno di dispositivi di memoria realizzati con tali materiali è stato modellato considerando l’azione di due contributi differenti: hopping di cariche intrappolate e moto di elettroni liberi in stati estesi. Il GST mostra un comportamento elettrico pressoché Ohmico in fase cristallina mentre, in fase amorfa, risulta essere poco conduttivo per basse correnti fino al superamento di una tensione di soglia oltre la quale si assiste al passaggio da uno stato altamente resistivo ad uno altamente conduttivo, caratterizzato da un andamento a resistenza differenziale negativa (NDR). Il meccanismo retroattivo che induce il fenomeno di snapback viene descritto come filamentazione in energia controllata dalle interazioni tra elettroni liberi ed elettroni intrappolati. Il modello fisico ricavato è stato implementato all’interno di un simulatore di dispositivi di ultima generazione ed è stato in seguito riprodotto in una versione analitica semplificata in grado, però, di permettere una prima analisi del comportamento elettrico del dispositivo e delle sue proprietà di scaling.
Hernandez, Gerardo Rodriguez. „Study of mixed mode electro-optical operations of Ge2Sb2Te5“. Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:5bb8c1f5-2f4b-4eb0-a61a-3978af04211f.
Der volle Inhalt der QuelleKiouseloglou, Athanasios. „Caractérisation et conception d' architectures basées sur des mémoires à changement de phase“. Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT128/document.
Der volle Inhalt der QuelleSemiconductor memory has always been an indispensable component of modern electronic systems. The increasing demand for highly scaled memory devices has led to the development of reliable non-volatile memories that are used in computing systems for permanent data storage and are capable of achieving high data rates, with the same or lower power dissipation levels as those of current advanced memory solutions.Among the emerging non-volatile memory technologies, Phase Change Memory (PCM) is the most promising candidate to replace conventional Flash memory technology. PCM offers a wide variety of features, such as fast read and write access, excellent scalability potential, baseline CMOS compatibility and exceptional high-temperature data retention and endurance performances, and can therefore pave the way for applications not only in memory devices, but also in energy demanding, high-performance computer systems. However, some reliability issues still need to be addressed in order for PCM to establish itself as a competitive Flash memory replacement.This work focuses on the study of embedded Phase Change Memory in order to optimize device performance and propose solutions to overcome the key bottlenecks of the technology, targeting high-temperature applications. In order to enhance the reliability of the technology, the stoichiometry of the phase change material was appropriately engineered and dopants were added, resulting in an optimized thermal stability of the device. A decrease in the programming speed of the memory technology was also reported, along with a residual resistivity drift of the low resistance state towards higher resistance values over time.A novel programming technique was introduced, thanks to which the programming speed of the devices was improved and, at the same time, the resistance drift phenomenon could be successfully addressed. Moreover, an algorithm for programming PCM devices to multiple bits per cell using a single-pulse procedure was also presented. A pulse generator dedicated to provide the desired voltage pulses at its output was designed and experimentally tested, fitting the programming demands of a wide variety of materials under study and enabling accurate programming targeting the performance optimization of the technology
Sevison, Gary Alan. „Silicon Compatible Short-Wave Infrared Photonic Devices“. University of Dayton / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1523553057993197.
Der volle Inhalt der QuelleAboujaoude, Andrea E. „Nanopatterned Phase-Change Materials for High-Speed, Continuous Phase Modulation“. University of Dayton / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1538243834791942.
Der volle Inhalt der QuelleSeong, Nak Hee. „A reliable, secure phase-change memory as a main memory“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/50123.
Der volle Inhalt der QuelleHuang, Bolong. „Theoretical study on phase change memory materials“. Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609986.
Der volle Inhalt der QuelleAlmoric, Jean. „Développement d'un nouvel instrument couplant FIB/SEM UHV et OTOF-SIMS à haute résolution spatiale pour la microélectronique et ses applications“. Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0368.
Der volle Inhalt der QuelleSecondary Ion Mass Spectrometry (SIMS) is probably the most widely used chemical analysis technique in semiconductor science and metallurgy because of its ultimate sensitivity to all elements, especially the lighter ones. With systems downsizing, high-resolution 3D chemical imaging is becoming a prerequisite for the development of new materials. In this thesis, we report the development and optimization of an innovative SIMS implemented in a scanning electron microscope. The equipment makes it possible to obtain elementary chemical mapping at very high resolution (~25nm). The capacity of the technique is demonstrated with the characterization at the nanometric scale on the one hand of metallic superalloys necessary for the manufacture of aircraft engine parts and on the other hand of chalcogenide alloys used in the latest generation phase change memories developed in microelectronics
Huang, Ruomeng. „Confined nanoscale chalcogenide phase change material and memory“. Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/379321/.
Der volle Inhalt der QuelleBücher zum Thema "Phase change memory GST"
Redaelli, Andrea, Hrsg. Phase Change Memory. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69053-7.
Der volle Inhalt der Quelle1976-, Chen Yiran, Hrsg. Nonvolatile memory design: Magnetic, resistive, and phase change. Boca Raton, FL: Taylor & Francis, 2012.
Den vollen Inhalt der Quelle findenLan, Rui. Thermophysical Properties and Measuring Technique of Ge-Sb-Te Alloys for Phase Change Memory. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2217-8.
Der volle Inhalt der QuelleDurable Phase-Change Memory Architectures. Elsevier, 2020. http://dx.doi.org/10.1016/s0065-2458(20)x0004-0.
Der volle Inhalt der QuelleAsadinia, Marjan, und Hamid Sarbazi-Azad. Durable Phase-Change Memory Architectures. Elsevier Science & Technology, 2020.
Den vollen Inhalt der Quelle findenAsadinia, Marjan, und Hamid Sarbazi-Azad. Durable Phase-Change Memory Architectures. Elsevier Science & Technology Books, 2020.
Den vollen Inhalt der Quelle findenMuralimanohar, Naveen, Moinuddin K. Qureshi, Sudhanva Gurumurthi und Bipin Rajendran. Phase Change Memory: From Devices to Systems. Springer International Publishing AG, 2011.
Den vollen Inhalt der Quelle findenQureshi, Moinuddin K., Sudhanva Gurumurthi und Bipin Rajendran. Phase Change Memory: From Devices to Systems. Morgan & Claypool Publishers, 2011.
Den vollen Inhalt der Quelle findenQureshi, Moinuddin K., Sudhanva Gurumurthi und Bipin Rajendran. Phase Change Memory: From Devices to Systems. Morgan & Claypool Publishers, 2011.
Den vollen Inhalt der Quelle findenRedaelli, Andrea. Phase Change Memory: Device Physics, Reliability and Applications. Springer, 2018.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Phase change memory GST"
Jeyasingh, Rakesh, Ethan C. Ahn, S. Burc Eryilmaz, Scott Fong und H. S. Philip Wong. „Phase Change Memory“. In Emerging Nanoelectronic Devices, 78–109. Chichester, United Kingdom: John Wiley & Sons Ltd, 2014. http://dx.doi.org/10.1002/9781118958254.ch05.
Der volle Inhalt der QuellePirovano, Agostino. „An Introduction on Phase-Change Memories“. In Phase Change Memory, 1–10. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_1.
Der volle Inhalt der QuelleVilla, Corrado. „PCM Array Architecture and Management“. In Phase Change Memory, 285–311. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_10.
Der volle Inhalt der QuelleAtwood, Gregory. „PCM Applications and an Outlook to the Future“. In Phase Change Memory, 313–24. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_11.
Der volle Inhalt der QuelleIelmini, Daniele. „Electrical Transport in Crystalline and Amorphous Chalcogenide“. In Phase Change Memory, 11–39. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_2.
Der volle Inhalt der QuelleBoniardi, Mattia. „Thermal Model and Remarkable Temperature Effects on the Chalcogenide Alloy“. In Phase Change Memory, 41–64. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_3.
Der volle Inhalt der QuelleRedaelli, Andrea. „Self-Consistent Numerical Model“. In Phase Change Memory, 65–88. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_4.
Der volle Inhalt der QuelleGleixner, Robert. „PCM Main Reliability Features“. In Phase Change Memory, 89–124. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_5.
Der volle Inhalt der QuelleNoé, Pierre, und Françoise Hippert. „Structure and Properties of Chalcogenide Materials for PCM“. In Phase Change Memory, 125–79. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_6.
Der volle Inhalt der QuelleSousa, Véronique, und Gabriele Navarro. „Material Engineering for PCM Device Optimization“. In Phase Change Memory, 181–222. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Phase change memory GST"
Jackson, D. C. S., M. Nardone, V. Karpov und I. Karpov. „Relaxation Oscillation in GST-Based Phase Change Memory Devices“. In 2009 IEEE International Memory Workshop (IMW). IEEE, 2009. http://dx.doi.org/10.1109/imw.2009.5090605.
Der volle Inhalt der QuelleBaldo, M., L. Laurin, E. Petroni, G. Samanni, M. Allegra, E. Gomiero, D. Ielmini und A. Redaelli. „Modeling Environment for Ge-rich GST Phase Change Memory Cells“. In 2022 IEEE International Memory Workshop (IMW). IEEE, 2022. http://dx.doi.org/10.1109/imw52921.2022.9779290.
Der volle Inhalt der QuelleZheng, J. F., P. Chen, W. Hunks, W. Li, J. Cleary, J. Reed, J. Ricker et al. „MOCVD GST for high speed and low current Phase Change Memory“. In 2011 11th Annual Non-Volatile Memory Technology Symposium (NVMTS). IEEE, 2011. http://dx.doi.org/10.1109/nvmts.2011.6137102.
Der volle Inhalt der QuelleLee, Jaeho, Takashi Kodama, Yoonjin Won, Mehdi Asheghi und Kenneth E. Goodson. „Thermoelectric Characterization of Ge2Sb2Te5 Films for Phase-Change Memory“. In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75092.
Der volle Inhalt der QuelleLi, Zijian, Jaeho Lee, John P. Reifenberg, Mehdi Asheghi, H. S. Philip Wong und Kenneth E. Goodson. „In-Plane Thermal Conduction and Conductivity Anisotropy in Ge2Sb2Te5 Films for Phase Change Memory“. In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40459.
Der volle Inhalt der QuelleLee, Jaeho, John P. Reifenberg, Mehdi Asheghi und Kenneth E. Goodson. „High Temperature Thermal Characterization of Ge2Sb2Te5 for Phase Change Memory“. In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44230.
Der volle Inhalt der QuelleYang, Yizhang, Taehee Jeong, Hendrik F. Hamann, Jimmy Zhu und Mehdi Asheghi. „Thermal Conductivity Measurements and Modeling of Phase-Change GST Materials“. In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32830.
Der volle Inhalt der QuelleSong, Yibin, Ruixuan Huang, Yiying Zhang und Haiyang Zhang. „A study of GST etching process for phase change memory application“. In 2016 China Semiconductor Technology International Conference (CSTIC). IEEE, 2016. http://dx.doi.org/10.1109/cstic.2016.7464012.
Der volle Inhalt der QuelleFantini, A., L. Perniola, M. Armand, J. F. Nodin, V. Sousa, A. Persico, J. Cluzel et al. „Comparative Assessment of GST and GeTe Materials for Application to Embedded Phase-Change Memory Devices“. In 2009 IEEE International Memory Workshop (IMW). IEEE, 2009. http://dx.doi.org/10.1109/imw.2009.5090585.
Der volle Inhalt der QuelleChao, Der-Sheng, Frederick T. Chen, Yen-Ya Hsu, Wen-Hsing Liu, Chain-Ming Lee, Chih-Wei Chen, Wei-Su Chen, Ming-Jer Kao und Ming-Jinn Tsai. „Multi-level phase change memory using slow-quench operation: GST vs. GSST“. In 2009 International Symposium on VLSI Technology, Systems, and Applications (VLSI-TSA). IEEE, 2009. http://dx.doi.org/10.1109/vtsa.2009.5159282.
Der volle Inhalt der Quelle