Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Pharmacokinetic interactions“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Pharmacokinetic interactions" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Pharmacokinetic interactions"
Taylor, David. „Pharmacokinetic interactions involving clozapine“. British Journal of Psychiatry 171, Nr. 2 (August 1997): 109–12. http://dx.doi.org/10.1192/bjp.171.2.109.
Der volle Inhalt der QuelleKeirns, J., T. Sawamoto, M. Holum, D. Buell, W. Wisemandle und A. Alak. „Steady-State Pharmacokinetics of Micafungin and Voriconazole after Separate and Concomitant Dosing in Healthy Adults“. Antimicrobial Agents and Chemotherapy 51, Nr. 2 (20.11.2006): 787–90. http://dx.doi.org/10.1128/aac.00673-06.
Der volle Inhalt der QuelleSoyata, Amelia, Aliya Nur Hasanah und Taofik Rusdiana. „Interaction of Warfarin with Herbs Based on Pharmacokinetic and Pharmacodynamic Parameters“. Indonesian Journal of Pharmaceutics 2, Nr. 2 (05.06.2020): 69. http://dx.doi.org/10.24198/idjp.v2i2.27289.
Der volle Inhalt der QuelleCostache, Irina-Iuliana, Anca Miron, Monica Hăncianu, Viviana Aursulesei, Alexandru Dan Costache und Ana Clara Aprotosoaie. „Pharmacokinetic Interactions between Cardiovascular Medicines and Plant Products“. Cardiovascular Therapeutics 2019 (02.09.2019): 1–19. http://dx.doi.org/10.1155/2019/9402781.
Der volle Inhalt der QuelleERESHEFSKY, LARRY, STEPHEN R. SAKLAD, MARK D. WATANABE, CHESTER M. DAVIS und MICHAEL W. JANN. „Thiothixene Pharmacokinetic Interactions“. Journal of Clinical Psychopharmacology 11, Nr. 5 (Oktober 1991): 296???301. http://dx.doi.org/10.1097/00004714-199110000-00004.
Der volle Inhalt der QuelleHartshorn, Edward A. „Pharmacokinetic Drug Interactions“. Journal of Pharmacy Technology 1, Nr. 5 (September 1985): 193–99. http://dx.doi.org/10.1177/875512258500100505.
Der volle Inhalt der QuelleEichelbaum, Michel. „Pharmacokinetic Drug Interactions“. Journal of Clinical Pharmacology 26, Nr. 6 (08.07.1986): 469–73. http://dx.doi.org/10.1002/j.1552-4604.1986.tb03560.x.
Der volle Inhalt der QuellePukrittayakamee, Sasithon, Joel Tarning, Podjanee Jittamala, Prakaykaew Charunwatthana, Saranath Lawpoolsri, Sue J. Lee, Warunee Hanpithakpong et al. „Pharmacokinetic Interactions between Primaquine and Chloroquine“. Antimicrobial Agents and Chemotherapy 58, Nr. 6 (31.03.2014): 3354–59. http://dx.doi.org/10.1128/aac.02794-13.
Der volle Inhalt der QuelleCohen, Lawrence J., und C. Lindsay DeVane. „Clinical Implications of Antidepressant Pharmacokinetics and Pharmacogenetics“. Annals of Pharmacotherapy 30, Nr. 12 (Dezember 1996): 1471–80. http://dx.doi.org/10.1177/106002809603001216.
Der volle Inhalt der QuelleMarvanova, Marketa. „Pharmacokinetic characteristics of antiepileptic drugs (AEDs)“. Mental Health Clinician 6, Nr. 1 (01.01.2016): 8–20. http://dx.doi.org/10.9740/mhc.2015.01.008.
Der volle Inhalt der QuelleDissertationen zum Thema "Pharmacokinetic interactions"
McArdle, Elizabeth Karen. „Pharmacokinetic interactions of constituents of cannabis extracts“. Thesis, University of Aberdeen, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415480.
Der volle Inhalt der QuelleRaaska, Kari. „Pharmacokinetic interactions of clozapine in hospitalized patients“. Helsinki : University of Helsinki, 2003. http://ethesis.helsinki.fi/julkaisut/laa/kliin/vk/raaska/.
Der volle Inhalt der QuelleLundahl, Anna. „In vivo Pharmacokinetic Interactions of Finasteride and Identification of Novel Metabolites“. Doctoral thesis, Uppsala universitet, Institutionen för farmaci, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-129362.
Der volle Inhalt der QuelleAdedoyin, A. P. „Pharmacokinetic drug-drug interactions : inhibition and induction studies in the rat“. Thesis, University of Manchester, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376236.
Der volle Inhalt der QuelleElsherbiny, Doaa. „Pharmacokinetic drug-drug interactions in the management of malaria, HIV and tuberculosis“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8426.
Der volle Inhalt der QuelleYadav, Jaydeep. „EVALUATING PHARMACOKINETIC DRUG-DRUG INTERACTIONS DUE TO TIME DEPENDENT INHIBITION OF CYTOCHROME P450s“. Diss., Temple University Libraries, 2018. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/524248.
Der volle Inhalt der QuellePh.D.
Time-dependent inactivation (TDI) of CYPs is a leading cause of clinical drug-drug interactions (DDIs). Current methods tend to over-predict DDIs. In this study, a numerical approach was used to model complex CYP3A TDI in human liver microsomes. Inhibitors evaluated include troleandomycin (TAO), erythromycin (ERY), verapamil (VER), Paroxetine (PAR), itraconazole (ITZ) and diltiazem (DTZ) along with primary metabolites N-demethyl erythromycin (NDE), norverapamil (NV), and N-desmethyl diltiazem (MA). Complexities incorporated in the models included multiple binding kinetics, quasi-irreversible inactivation, sequential metabolism, inhibitor depletion, and membrane partitioning. The different factors affecting TDI kinetics were evaluated such as lipid partitioning, inhibitor depletion, presence of transporters. The inactivation parameters obtained from numerical method were incorporated into static in-vitro – in-vivo correlation (IVIVC) models to predict clinical DDIs. For 123 clinically observed DDIs, using a hepatic CYP3A synthesis rate constant of 0.000146 min-1, the average fold difference between observed and predicted DDIs was 2.97 for the standard replot method and 1.66 for the numerical method. Similar results were obtained using a synthesis rate constant of 0.00032 min-1. These results suggest that numerical methods can successfully model complex in-vitro TDI kinetics and that the resulting DDI predictions are more accurate than those obtained with the standard replot approach. Chapter one presents the detailed introduction along with the hypothesis and significance of the project. Chapter 2 includes the development of the bioanalytical method for quantitation of various compounds which includes inactivators and their primary metabolites. Chapter 3 entails the discussion on in-vivo studies in rats involving TDI mediated DDI studies. Chapter 4 discusses the in-vitro studies and use of the numerical method for evaluation of TDI kinetics. Chapter 5 and chapter 6 provides discussion on the impact of inhibitor depletion and partitioning of TDI kinetics and how these two could lead to misinterpretation of TDI results. Chapter 6 also provides a discussion on how transporters could affect TDI results mainly from hepatocyte studies. Chapter 7 involves prediction of TDI mediated DDI using static modeling. Chapter 8 is a case study on bosentan involving induction mediated DDI.
Temple University--Theses
Cherkaoui, Rbati Mohammed. „Mathematical and physical systems biology : application to pharmacokinetic drug-drug interactions and tumour growth“. Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/33719/.
Der volle Inhalt der QuelleNaghmeh, Jabarizadekivi. „A Comparison of the Effect of Omeprazole and Rabeprazole on Clozapine Serum Concentrations“. University of Sydney, 2008. http://hdl.handle.net/2123/2471.
Der volle Inhalt der QuelleClozapine is a drug of choice for treatment of refractory schizophrenia, which is primarily metabolized by Cytochrome P450 1A2 (CYP1A2). Norclozapine is its main metabolite. There are reports of wide ranging gastrointestinal side effects associated with clozapine therapy, that result in concomitant administration of proton pump inhibitors to treat acid-related disorders. Omeprazole is an established CYP1A2 inducer, while an in vitro study has shown that rabeprazole is much less potent in this regard. There is no available information about the impact of rabeprazole on CYP1A2 activity in patients. Firstly, this information is essential when prescriptions are changed from omeprazole to rabeprazole to reduce medication costs. Therefore, the aim of this study was to compare the effects of rabeprazole and omeprazole on CYP1A2-mediated clearance (CL/F) of clozapine. Secondly, the effective dosage of clozapine varies widely among patients, making it necessary to individualize drug therapy with clozapine. The reason for dosage variation could be due to the influence of patient-related variables on clozapine plasma concentrations. Therefore, another aim of this study was to investigate the relationship between patient variables, such as age, gender, cigarette smoke, weight and body mass index and clozapine clearance (CL/F). A cross-over study design was used for this study. Twenty patients from Macquarie hospital who were receiving clozapine and rabeprazole (with no other interacting medications) were recruited in this study. Blood samples were taken at 30 min, 1 hr, 2 hr and 12 hr after a dose of clozapine. Rabeprazole was then replaced with omeprazole. After at least 1 month blood samples were again collected at the above corresponding intervals after clozapine. The plasma concentrations of clozapine and norclozapine were determined by high performance liquid chromatography. Abbottbase Pharmacokinetic Systems Software, which utilizes Bayesian forecasting, was used to estimate pharmacokinetic parameters of clozapine. The ratio of plasma norclozapine/clozapine concentrations at trough level was used to reflect CYP1A2 activity. No difference was observed in clozapine clearance (CL/F) and CYP1A2 activity during concurrent therapy with either rabeprazole or omeprazole. According to some studies CYP1A2 induction by omeprazole is dose dependent. Furthermore, since rabeprazole is a weak CYP1A2 inducer in vitro, we conclude that omeprazole and rabeprazole may not induce CYP1A2 activity when used at conventional therapeutic dosage (<40 mg/day). Hence, replacement of omeprazole with rabeprazole at conventional therapeutic dosages (20 or 40 mg daily) offers no advantages in the management of patients with schizophrenia on clozapine and no dose adjustment is required. Consistent with previous studies, clozapine concentrations were found to be significantly lower in cigarette smokers due to CYP1A2 induction. No relationship was found between age, gender, or weight and clozapine clearance (CL/F). However, body mass index showed a significant negative correlation with clozapine clearance (CL/F). Since weight gain and lipid accumulation are common side effects of clozapine they may be associated with a reduction of CYP1A2 activity and clozapine clearance (CL/F). Moreover, high lipoprotein levels may decrease the unbound fraction of clozapine and decrease the availability of clozapine for oxidation by cytochrome P450 enzymes. Therefore, it is concluded that omeprazole and rabeprazole may not induce CYP1A2 activity when used at conventional therapeutic dosage (<40mg/day). Hence, replacement of omeprazole with rabeprazole does not require the dose of clozapine to be adjusted. Moreover, the negative correlation between clozapine clearance (CL/F) and BMI is informative. Further studies are now required to clarify the relationship between BMI, lipoprotein levels and clozapine clearance in patients with schizophrenia.
Naghmeh, Jabarizadekivi. „A Comparison of the Effect of Omeprazole and Rabeprazole on Clozapine Serum Concentrations“. Thesis, The University of Sydney, 2007. http://hdl.handle.net/2123/2471.
Der volle Inhalt der QuelleSalem, Farzaneh. „Applications of physiologically based pharmacokinetic modelling to prediction of the likelihood of metabolic drug interactions in paediatric population and studying disparities in pharmacokinetics between children and adults“. Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/applications-of-physiologically-based-pharmacokinetic-modelling-to-prediction-of-the-likelihood-of-metabolic-drug-interactions-in-paediatric-population-and-studying-disparities-in-pharmacokinetics-between-children-and-adults(1fdefe9a-037a-4738-b92a-5904a60960db).html.
Der volle Inhalt der QuelleBücher zum Thema "Pharmacokinetic interactions"
Kiang, Tony K. L., Kyle John Wilby und Mary H. H. Ensom. Clinical Pharmacokinetic and Pharmacodynamic Drug Interactions Associated with Antimalarials. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10527-7.
Der volle Inhalt der QuelleKiang, Tony K. L., Kyle John Wilby und Mary H. H. Ensom, Hrsg. Pharmacokinetic and Pharmacodynamic Drug Interactions Associated with Antiretroviral Drugs. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2113-8.
Der volle Inhalt der QuelleBartle, W. R., V. Braun, J. M. Dietschy, Y. Emori, M. Hagiwara, H. Hidaka, S. Imajoh et al. Regulation of Plasma Low Density Lipoprotein Levels Biopharmacological Regulation of Protein Phosphorylation Calcium-Activated Neutral Protease Microbial Iron Transport Pharmacokinetic Drug Interactions. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72902-7.
Der volle Inhalt der QuelleDavid, Rodrigues A., Hrsg. Drug-drug interactions. New York: M. Dekker, 2002.
Den vollen Inhalt der Quelle findenDavid, Rodrigues A., Hrsg. Drug-drug interactions. 2. Aufl. New York: Informa Healthcare, 2008.
Den vollen Inhalt der Quelle findenHuang, L. Evaluation of the potential pharmacokinetic interaction between naproxen and zidovudine. [Ottawa: Ottawa General Hospital, 1991.
Den vollen Inhalt der Quelle findenMultiple chemical interactions. Chelsea, Mich: Lewis Publishers, 1991.
Den vollen Inhalt der Quelle findenRitschel, W. A. Handbook of basic pharmacokinetics-- including clinical applications. 6. Aufl. Washington, D.C: American Pharmacists Association, 2004.
Den vollen Inhalt der Quelle findenRitschel, W. A. Handbook of basic pharmacokinetics ... including clinical applications. 7. Aufl. Washington, D.C: American Pharmacists Association, 2009.
Den vollen Inhalt der Quelle findenHandbook of basic pharmacokinetics-- including clinical applications. 3. Aufl. Hamilton, IL: Drug Intelligence Publications, 1986.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Pharmacokinetic interactions"
Bartle, W. R., S. E. Walker und N. E. Winslade. „Pharmacokinetic Drug Interactions“. In Progress in Clinical Biochemistry and Medicine, 101–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72902-7_5.
Der volle Inhalt der QuelleWittwer, Erica D., und Wayne T. Nicholson. „Pharmacokinetic Interactions: Core Concepts“. In A Case Approach to Perioperative Drug-Drug Interactions, 15–22. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-7495-1_3.
Der volle Inhalt der QuelleMukherjee, Biswajit. „Pharmacokinetic Drug–Drug Interactions“. In Pharmacokinetics: Basics to Applications, 145–55. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8950-5_7.
Der volle Inhalt der QuelleRenton, Kenneth W. „Cytokines and Pharmacokinetic Drug Interactions“. In Methods in Pharmacology and Toxicology, 275–96. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-350-9_14.
Der volle Inhalt der QuelleKiang, Tony K. L., Kyle John Wilby und Mary H. H. Ensom. „Pharmacokinetic Drug Interactions Affecting Antimalarials“. In Clinical Pharmacokinetic and Pharmacodynamic Drug Interactions Associated with Antimalarials, 27–55. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10527-7_4.
Der volle Inhalt der QuelleMarkowitz, John S., und Kennerly S. Patrick. „Pharmacokinetic and Pharmacodynamic Drug Interactions“. In Attention Deficit Hyperactivity Disorder, 529–50. Totowa, NJ: Humana Press, 2005. http://dx.doi.org/10.1385/1-59259-891-9:529.
Der volle Inhalt der QuelleHuang, Shiew-Mei. „Drug-Drug Interactions“. In Applications of Pharmacokinetic Principles in Drug Development, 307–31. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9216-1_10.
Der volle Inhalt der QuelleLewis, D. F. V. „Modelling Human Cytochrome P450-Substrate Interactions“. In Pharmacokinetic Challenges in Drug Discovery, 235–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04383-7_12.
Der volle Inhalt der QuelleIeuter, Rachel C. „Pharmacokinetic Drug-Drug Interactions with Warfarin“. In Oral Anticoagulation Therapy, 221–27. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54643-8_32.
Der volle Inhalt der QuelleBack, D. J., und M. L’E Orme. „Pharmacokinetic Drug Interactions with Oral Contraceptives“. In Steroid Contraceptives and Women’s Response, 103–23. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2445-8_10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Pharmacokinetic interactions"
Moitra, Abha, Ravi Palla, Luis Tari und Mukkai Krishnamoorthy. „Semantic Inference for Pharmacokinetic Drug-Drug Interactions“. In 2014 IEEE International Conference on Semantic Computing (ICSC). IEEE, 2014. http://dx.doi.org/10.1109/icsc.2014.36.
Der volle Inhalt der QuelleEgenlauf, Benjamin, Johanna Ohnesorge, Satenik Harutyunova, Nicola Benjamin, Christine Fischer, Yeliz Enderle, Jürgen Burhenne et al. „Pharmacokinetic interactions in different combinations of pulmonary arterial hypertension treatment“. In ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.pa2397.
Der volle Inhalt der QuelleKulanthaivel, Palaniappan, Daruka Mahadevan, P. Kellie Turner, Jane Royalty, Wee Teck Ng, Ping Yi, Jessica Rehmel, Kenneth Cassidy und Jill Chappell. „Abstract CT153: Pharmacokinetic drug interactions between abemaciclib and CYP3A inducers and inhibitors“. In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-ct153.
Der volle Inhalt der QuelleHunta, Sathien, und Panchit Longpradit. „Pharmacokinetic simulation for prediction of drug-drug interactions based on agent based modeling“. In 2018 International Conference on Digital Arts, Media and Technology (ICDAMT). IEEE, 2018. http://dx.doi.org/10.1109/icdamt.2018.8376508.
Der volle Inhalt der QuelleKOLCHINSKY, A., A. LOURENÇO, L. LI und L. M. ROCHA. „EVALUATION OF LINEAR CLASSIFIERS ON ARTICLES CONTAINING PHARMACOKINETIC EVIDENCE OF DRUG-DRUG INTERACTIONS“. In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814447973_0040.
Der volle Inhalt der QuelleSchneider, Elena, Patrick Hanafin und Gauri Rao. „A retrospective observational study: Bidirectional pharmacokinetic interactions between ivacaftor-lumacaftor in cystic fibrosis“. In ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.362.
Der volle Inhalt der QuellePawaskar, Dipti K., Robert Straubinger, Gerald Fetterly, Wen Ma und William Jusko. „Abstract 27: Physiologically based pharmacokinetic model for interactions of sorafenib and everolimus in mice“. In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-27.
Der volle Inhalt der QuelleYang, Xiaoxia, Hofmeister C. Craig, Darlene M. Rozewski, Seungsoo Lee, Ping Chen, Amy J. Johnson, Zhongfa Liu et al. „Abstract 5473: The contribution of P-glycoprotein to clinical pharmacokinetic interactions between lenalidomide and temsirolimus“. In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-5473.
Der volle Inhalt der QuelleSidharta, P. N., P. L. M. van Giersbergen, Michael Wolzt und Jasper Dingemanse. „Lack Of Clinically Relevant Pharmacokinetic Interactions Between The Dual Endothelin Receptor Antagonist Macitentan And Sildenafil In Healthy Subjects“. In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a4802.
Der volle Inhalt der QuelleGeorges, G., A. Lucardie, C. Garofalo, C. Beaudot und M. Cella. „Pharmacokinetic/Pharmacodynamic Interactions Between Extrafine Beclomethasone Dipropionate and Formoterol Fumarate Components of a Fixed-Dose Combination for Asthma and COPD“. In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a4528.
Der volle Inhalt der Quelle