Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Pérovskite halogénée“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Pérovskite halogénée" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Dissertationen zum Thema "Pérovskite halogénée"
Fournier, Olivier. „Synthèse par ALD et caractérisation de couches extractrices d'électrons pour application dans les cellules solaires à base de pérovskite“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLC025.
Der volle Inhalt der QuellePerovskite solar cells have sparked a large interest in the photovoltaic community in the last 10 years due to their expedient optoelectrical properties, their vast scope of applications and their economical attractiveness.They are expected to reach the market by 2023, but challenges have to be tackled first, among which upscale and stability issues.To do so, a strategy is to work on the charge transport layers.They need to ensure a high selectivity towards one charge carrier, and have a good interface.Atomic layer deposition is an industrial deposition technique which allows for the synthesis of a large variety of materials.ALD layers are dense, homogeneous, conformal, pinhole-free and their thickness and composition can be controlled at the nano-scale.ALD hence appears as an ideal candidate to deposit the charge extraction layers.This thesis focuses on the development and on the characterization of various oxides by ALD.SnO2 and TiO2 have been developed at the Institut Photovoltaïque d'Île-de-France (IPVF) with two different processes for each material.Their properties in regard of an integration in perovskite solar cells as inorganic electron transport layers have been explored, and one process for each material has been chosen.The advantageous integration of a 15 nm-thick ALD-TiO2 layer has been demonstrated as compact blocking layer in a mesoporous architecture, and compared to a blocking layer deposited by spray pyrolysis.Similar power conversion efficiencies (PCE) up to 19% have been achieved, with a higher homogeneity of the ALD layer leading to a better reproducibility of the results now used in the baseline production at IPVF.The integration of ALD-SnO2 in planar structures is also discussed.The 10 nm-thick layer alone was found to give mediocre efficiencies due to a lack of fill factor.The addition of an organic interlayer solved this issue allowing for PCE up to 16%.Finally an analysis of the interface between ALD-ZnO modified by phosphonic acid derivatives and a perovskite absorber is proposed.The organization of the molecules at the surface of ZnO and their impact on the perovskite have been determined, but the performances of full devices are poor
Leblanc, Antonin. „Pérovskites Halogénées pour l'électronique“. Thesis, Angers, 2019. http://www.theses.fr/2019ANGE0006.
Der volle Inhalt der QuelleAlthough the Halogenated Perovskites based 3rd generation of solar cells are very promising, they suffer from a too short lifetime, which is due to a high instability of the Perovskite material towards the moisture in air. Since 10 years, many studies have considerably improved the lifespan of these solar cells, thanks in part to the engineering of the Perovskite material. That is in this context that the results of this thesis are located. Here, in this manuscript, the discovery of the new family of lead (or Tin) and Iodide (or Bromide) deficient Halogenated Perovskites is reported (abbreviated d-PHs). The d-PHs, particularly the Iodoplumbates d-PHs, present a lead lightened 3D Perovskite structure, and tolerate the incorporation of cations that don't respect the imposed limitation from the Goldschmidt factor. The Iodoplumbates d-PHs show suitable optoelectronic properties for an application in solar cells. Moreover, this d-PHs are more stable in open air, towards moisture. Remarkably, some of these d-PHs show a stability more than ten times higher than the stability of their non-deficient Perovskite counterparts. This d-PHs family opens up a new path for the chemistry of the 3D-structure Halogenated Perovskites, and also offers the possibility to combine efficiency and stability for Perovskites solar cells
Che, Xiaoyang. „Étude théorique de matériaux pérovskites halogénées“. Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S040/document.
Der volle Inhalt der QuelleThis actual work is entirely devoted to the study of halide perovskite materials, promising materials in many fields of application, by means of the Density Functional Theory. The "hybrid" feature of this type of material is illustrated through various studies of their structural and electronic properties. The three-dimensional compound CH₃NH₃PbBr₃ is firstly presented. Basic electronic properties such as band structures, projected density of states or wave functions are discussed. In addition, the importance of spin-orbit coupling is highlighted. Symmetry analysis is applied to understand and interpret the optical properties of different materials. Structural reconstructions on the surface of the crystals lead the Rashba-Dresselhaus effects. In addition, surface defects and their passivations are also studied. Studies on lead-free materials that are potentially less toxic are proposed in a second step. These studies aim to analyze their potentials for photovoltaic devices from the point of view of electronic structures. Different substitution strategies, ranging from the simple replacement of lead to other more elaborate alternatives such as double perovskites or low-dimensional perovskites are investigated as well
Bouteyre, Paul. „Lasers à pérovskites hybrides halogénées en microcavité“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLN069/document.
Der volle Inhalt der QuelleSince 2012, the hybrid halide perovskites of CH3NH3PbX3 (X = I, Br or Cl) type have emerged as very promising not only in the field of photovoltaics but also for light-emitting devices such as light-emitting diodes and lasers. One of the crucial advantages of these semiconductor materials is their low temperature and solution deposition method. The tuning of the perovskites emission wavelength throughout the visible spectrum by simple chemistry substitutions in the halogenated part is another asset. In particular, the halide perovskites show a high luminescence efficiency in the green and could address the "green gap" problem in laser sources (the "green gap" refers to the drop in efficiency of light-emitting diodes and laser diodes emitting in the green).The thesis work carried out here is focused on the development of an optically pumped laser based on the hybrid halide perovskite CH3NH3PbBr3 emitting in the green. The structure consists of a vertical microcavity based on a 100-nanometre thin film of CH3NH3PbBr3 deposited by spin-coating, inserted between a dielectric mirror and a metal mirror. We have demonstrated, at room temperature, the strong coupling regime between the microcavity photonic mode and the exciton of the perovskite. This strong coupling regime leads to the creation of quasi-particles called exciton-polaritons, which are a coherent superposition of photonic and excitonic states. By increasing the optically injected power, we obtained a laser effect in this microcavity. The study of the emission properties of this laser shows that we have produced a random laser, emitting in the green, filtered directionally by the dispersion curve of the lower polariton. This filtering by the polariton dispersion curve allows the directionality of the laser emission to be controlled over a wide range of angles: angles as large as 22° were obtained experimentally
Bouchard, Mathilde. „Pérovskites halogénées AMX3 : synthèse, substitution cationique et étude structurale“. Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAV008/document.
Der volle Inhalt der QuelleMetal halide perovskites AMX3 (A+ is an organic or inorganic cation: Cs+ methylammonium [CH3NH3]+ (MA); M2+ is a metallic cation such as Pb2+ and X a halide anion I-, Br- or Cl-) have remarkable properties as solar cell absorbers. In the perovskite structural framework the properties of the materials can be easily tailored by modifying their chemical composition. Changing for example the halide anion modulates their band gap. This thesis deals with the synthesis and the advanced characterisation of mixed halide perovskite materials – i.e. with mixed ions on the same site A, M or X – of low dimensions such as thin films and nanocrystals.A fabrication protocol was developed for reference solar cells with CH3NH3PbI3 and CH3NH3PbI3-xClx absorbers yielding a power conversion efficiency over 10%. The perovskite thin films could be fabricated with a controlled thickness and a high reproducibility on different TiO2 substrates (compact, mesoporous or monocrystalline). The study of these thin films by laboratory and synchrotron X-ray diffraction showed that the CH3NH3PbI3-xClx crystallites exhibit a preferential (001) orientation on any kind of TiO2 substrate. By using monocristalline TiO2 substrates we showed for the first time that the degree of orientation and the grain size increased considerably (the surface coverage was determined to be 80%) compared to mesoporous and compact polycrystalline TiO2 substrates. The presence of chlorine at the TiO2–perovskite interface and the low surface roughness of the substrate are key factors, which promote the growth of highly oriented crystallites.In the second part of the thesis, the influence of the partial substitution of lead with non-toxic homovalent metal cations (alcaline earth, 3d transition metals) on the structural and optical properties of hybrid and inorganic perovskite nanocrystals was studied. The morphology and the size of MAPb1-xMxBr3 hybrid nanocrystals synthesised by reprecipitation is clearly affected despite the low substitution (x: maximum 6% with Mg2+). Conversely, in CsPb1-xMxX3 inorganic nanocrystals synthesised by hot injection, up to 16% of Pb2+ could be replaced by Mg2+ or Sr2+, while keeping their size, shape, structure, absorption and photoluminescence properties. With a higher substitution ratio (up to 22% was achieved), the formation of the Cs4PbX6 structure is favoured
Ledee, Ferdinand. „Cristallisation et fonctionnalisation de pérovskites hybrides halogénées à 2-dimensions pour le photovoltaïque et l’émission de lumière“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLN045/document.
Der volle Inhalt der QuelleHybrid halide perovskites are new class of high-end semiconductors that combine high performances, low cost and low temperature proccessability for different application such as photovoltaics or light-emitting devices. Their large-scale commercialization is however hindered by their poor stability. For a few years, many groups started to grow interest in 2-dimensional (2D) hybrid perovskites. This subclass of perovskite is much more stable than their 3D counterparts, and offers more chemical flexibility. Yet their performances are limited by the bad quality of the spin-coated layers. Moreover an increase in the understanding of their intrinsic properties is necessary. This last point could be solved by the study of single crystals. We developped therefore a new anti-solvant, vapor-assisted crystallization (AVC) method for the growth of (PEA)2PbI4 and (PEA)2(MA)Pb2I7. Furthermore, a capped AVC process (AVCC) was developped for the growth of 2D perovskites single crystalline thin films. These films might help getting closer to the intrinsic limits of the material. We also synthesized new 2D luminophore-functionalized perovskite systems. The spectroscopic studies of this material highlighted a possible charge transfer between the two moities of the perovskite. This kind of perovskite could help improving the photovoltaic performances of 2D perovskite thanks to the splitting of the strongly bounded exciton
Sapori, Daniel. „Hybrid Perovskites : Fundamental properties and solar cell thin film technology“. Thesis, Rennes, INSA, 2018. http://www.theses.fr/2018ISAR0017.
Der volle Inhalt der QuelleIn the future, the world has to face up to major challenges: increasing the energy production, reducing the environmental impact, moving towards sustainability in energy, etc. Renewable energies such as photovoltaics can meet these challenges. This thesis concerns hybrid halide perovskite materials and their use in solar cells. These materials have recently attracted a lot of attention owing to their direct bandgaps, strong light absorption, large carrier diffusion lengths, tunable optoelectronic properties, and their facile and low-cost fabrication In few years, their energy conversion efficiency has rapidly increased from 3.8 % in 2009 to 22.7 % in 2017, hence approaching efficiencies of crystalline silicon based-devices which represent 90% of commercial photovoltaic cells. In the design of perovskite cells, the perovskite photoabsorber is generally sandwiched by two interfacial layers that yield selective charge collections: the hole and electron transport layers (HTM and ETM). Good quality and adapted interfacial layers are required to obtained high efficiency cells. In this thesis, both the perovskite material and the interfacial layers are investigated
Wang, Shuli. „Étude des propriétés électroniques des perovskites bidimensionnelles à halogénure métallique par spectroscopie magnéto-optique“. Electronic Thesis or Diss., Toulouse, INSA, 2023. http://www.theses.fr/2023ISAT0004.
Der volle Inhalt der QuelleAbstract: In recent years, two-dimensional (2D) perovskite materials have attracted considerable attention duo to their unique and excellent electronic and optical properties, which make them an extremely promising semiconductor for light-emitting and display applications. Furthermore, the nonmagnetic perovskite can be semi magnetic semiconductor by incorporating magnetic impurities into lattices of the host perovskite to introduce magnetic properties. The coexistence of both excellent optoelectronic and magnetic properties, makes semi magnetic 2D perovskite to be a considerably promising material for opto-spintronic semiconductor devices for information processing and communications.In this thesis, we explore the electronic and optical properties of 2D perovskites via magneto-optical spectroscopy. We start from performing magneto-photoluminescence (PL) and magneto-transmission measurements on CsPbBr3-based nanoplatelets with a different thickness of the lead-halide slab, ranging from 2 to 4 layers of lead-halide octahedral plane. By applying in-plane magnetic fields up to 65 T, the optically inactive dark excitonic state is brightened. This approach allows us to directly observe an improvement of the PL emission on the low-energy side of the PL spectrum, which indicates that the optically inactive dark excitonic state is the lowest-lying state in these nanoplatelets. Additionally, combining our magneto-PL and magneto-transmission results with theoretical predictions of the exciton fine structure splitting, we accurately determine the energy splitting between the dark and bright excitons. We demonstrate that indeed the dark-bright exciton splitting increases with decreasing layers of lead-halide octahedral plane. We also demonstrate that the efficient emission from these nanoplateltes is due to a phonon bottleneck effect, which significantly reduces the relaxation of the photo excited excitons to the optically inactive dark state.Finally, we investigate the electronic properties of Mn-doped 2D (PEA)2PbI4 perovskite via magneto-transmission spectroscopy for various Mn molar fractions. We find that the exciton Lande g-factor can be controlled by the incorporated Mn concentration. With increasing Mn concentration x from 0 to 2%, the g-factor increases, which we attribute to the sp-d exchange interaction between band-edge excitons and spins hosted in Mn ions. If the Mn concentration is increased further, up to 5%, the exciton g-factor decreases. This anomalous counter-trend is attributed to the Mn-Mn interactions, which result in an effective anti-ferromagnetic coupling
Yildirim, Ceren. „Using a perovskite oxide as interfacial layer for halide perovskite optoelectronics“. Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0001.
Der volle Inhalt der QuelleHalide organic-inorganic photovoltaics and light-emitting diodes require suitable charge injection/extraction layers, which are crucial for several important processes governing performance and lifetime. While intensive research has been devoted to developing innovative p-type interfacial layers, materials with highly tunable properties and high photochemical stability remain in demand. This thesis explores oxide perovskites as interlayers for optoelectronic applications due to their stable physical properties under ambient conditions. SrTi0.7Fe0.3O3-δ (STFO) oxide perovskite thin film is utilized as charge extraction/injection layers for planar halide perovskite solar cells and light-emitting diodes. Using pulsed laser deposition (PLD), highly crystalline STFO thin layers on glass/FTO substrates have been successfully processed at relatively moderate temperatures (<400 °C) as compared to traditional deposition techniques. Additional thermal treatments, either by rapid thermal processing (RTP) or conventional thermal annealing, have been applied to the oxide thin films to further improve the larger crystal of the polycrystalline layers, and to tune their optical and electronic properties. When deposited on top of the oxide perovskite, FA0.85Cs0.15Pb(I0.85Br0.15)3 halide perovskite layer (suitable for photovoltaic PV energy conversion) show larger grain sizes and better crystalline order than compared to similar films deposited on top of reference p-type interlayer such as commercial PEDOT:PSS. Furthermore, the presence of the oxide resulted in a clear reduction of the fraction of optically inactive halide perovskite phase. This observation suggests that the perovskite interlayer positively impacts the growth mechanism of the halide perovskite active layer. Finally, annealed STFO layers induce longer exciton lifetime in the halide perovskite active layer, compared PEDOT:PSS. Similarly, the crystallization of the (PEA)2(MA)PbBr4 quasi-2D perovskite (suitable for light-emitting LED applications) on STFO layers was found to be of high quality, leading to comparable properties of layers deposited on top of classical PEDOT:PSS. Moreover, quasi-2D perovskite on STFO showed quite a long exciton lifetime. Although STFO thin films integrated into both halide perovskite PV and LED devices have conducted to limited performance, this work demonstrates the high potential of oxide perovskites towards efficient and stable all-perovskite devices
Huang, Yong. „Modélisation des cellules solaires pérovskites, des dispositifs optoélectroniques III-V et de la microscopie à sonde de Kelvin“. Thesis, Rennes, INSA, 2018. http://www.theses.fr/2018ISAR0007/document.
Der volle Inhalt der QuelleThis PhD work focuses on optoelectronic device simulations based on drift-diffusion models. Approaches are developed for the modelling of Kelvin Probe Force Microscopy (KPFM), perovskite-based solar cells (PSCs), perovskite/silicon tandem solar cells and lll-V/GaP quantum dots (ODs). Firstly, a new approach for the modelling of KPFM is applied to TiOx slabs and to the MAPbI3 perovskite absorber. Secondly, KPFM measurements and simulations are proposed for silicon-based diffused junctions and mesoporous TiOx based PSCs. The built-in potential is investigated, and this study paves the way toward fu rther device improvements. In addition, the influence of the surface of WO. slabs on KPFM measurements is studied theoretically. Various facto rs influencing open circuit voltage (Voe) losses in PSCs are discussed. The abnormal hysteresis effect in the PSCs is simulated as well, considering interface trap states and mobile ions. The design of two-terminal perovskite/silicon tandem solar cells is studied in detail. A siliconbased tunnel junction between the top and the bottom subcells is proposed for serial current matching. The influence of the doping profile in the tunnel junction is discussed. At the end of the manuscript, the carrier transport in III-V/GaP QDs is investigated, for the integration of III-V emitters on silicon. The electroluminescence and electrical characteristics of these III -V light emitting devices are simulated by using a cylindrical approximation