Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Perovskite“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Perovskite" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Perovskite"
Zhang, Lei, Mingze Xia, Yuan Zhang, Li Song, Xiwei Guo, Yong Zhang, Yulei Wang und Yuanqin Xia. „The Effect of Organic Spacer Cations with Different Chain Lengths on Quasi-Two-Dimensional Perovskite Properties“. Inorganics 12, Nr. 1 (27.12.2023): 12. http://dx.doi.org/10.3390/inorganics12010012.
Der volle Inhalt der QuelleZhou, Dahua, Leyong Yu, Peng Zhu, Hongquan Zhao, Shuanglong Feng und Jun Shen. „Lateral Structured Phototransistor Based on Mesoscopic Graphene/Perovskite Heterojunctions“. Nanomaterials 11, Nr. 3 (05.03.2021): 641. http://dx.doi.org/10.3390/nano11030641.
Der volle Inhalt der QuelleMeyer, Edson, Dorcas Mutukwa, Nyengerai Zingwe und Raymond Taziwa. „Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties as Well as Their Viability to Replace Lead Halide Perovskites“. Metals 8, Nr. 9 (27.08.2018): 667. http://dx.doi.org/10.3390/met8090667.
Der volle Inhalt der QuelleMcDonald, Calum, Chengsheng Ni, Paul Maguire, Paul Connor, John Irvine, Davide Mariotti und Vladimir Svrcek. „Nanostructured Perovskite Solar Cells“. Nanomaterials 9, Nr. 10 (18.10.2019): 1481. http://dx.doi.org/10.3390/nano9101481.
Der volle Inhalt der QuelleYang, Bilin, Yujun Xie, Pan Zeng, Yurong Dong, Qiongrong Ou und Shuyu Zhang. „Tightly Compacted Perovskite Laminates on Flexible Substrates via Hot-Pressing“. Applied Sciences 10, Nr. 6 (11.03.2020): 1917. http://dx.doi.org/10.3390/app10061917.
Der volle Inhalt der QuelleJanendra Pratap, Et al. „Modeling and Investigation of Highly Efficient Environment Friendly Perovskite Solar Cell with CuSbS2 as Hole Transport Layer“. International Journal on Recent and Innovation Trends in Computing and Communication 11, Nr. 9 (05.11.2023): 4385–93. http://dx.doi.org/10.17762/ijritcc.v11i9.9925.
Der volle Inhalt der QuelleJi, Long, und Shibin Li. „Large organic cations are beneficial for slowing tin-based perovskites crystallization rate and improving efficiency“. Journal of Physics: Conference Series 2306, Nr. 1 (01.11.2022): 012017. http://dx.doi.org/10.1088/1742-6596/2306/1/012017.
Der volle Inhalt der QuelleEra, Masanao, Yumeko Komatsu und Naotaka Sakamoto. „Enhancement of Exciton Emission in Lead Halide-Based Layered Perovskites by Cation Mixing“. Journal of Nanoscience and Nanotechnology 16, Nr. 4 (01.04.2016): 3338–42. http://dx.doi.org/10.1166/jnn.2016.12295.
Der volle Inhalt der QuelleKorolev, Viacheslav I., Anatoly P. Pushkarev, Petr A. Obraztsov, Anton N. Tsypkin, Anvar A. Zakhidov und Sergey V. Makarov. „Enhanced terahertz emission from imprinted halide perovskite nanostructures“. Nanophotonics 9, Nr. 1 (27.12.2019): 187–94. http://dx.doi.org/10.1515/nanoph-2019-0377.
Der volle Inhalt der QuelleAdjogri, Shadrack J., und Edson L. Meyer. „Chalcogenide Perovskites and Perovskite-Based Chalcohalide as Photoabsorbers: A Study of Their Properties, and Potential Photovoltaic Applications“. Materials 14, Nr. 24 (18.12.2021): 7857. http://dx.doi.org/10.3390/ma14247857.
Der volle Inhalt der QuelleDissertationen zum Thema "Perovskite"
Bufaiçal, Leandro Félix de Sousa. „Propriedades estruturais, eletrônicas e magnéticas dos óxidos Ca2-xLaxFelrO6, Sr2-xLaxFelrO6 e TbMnO3“. [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278527.
Der volle Inhalt der QuelleTese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-15T19:42:04Z (GMT). No. of bitstreams: 1 Bufaical_LeandroFelixdeSousa_D.pdf: 2467040 bytes, checksum: 4460b75c04d570fb27584b7dfff2c5f3 (MD5) Previous issue date: 2010
Resumo: Há muitas décadas os óxidos de metais de transição são tema de grande interesse científico devido à grande variedade de propriedades físicas interessantes que apresentam, com suas possíveis aplicações tecnológicas. Mais recentemente, por exemplo, os óxidos de metais de transição com propriedades multiferróicas ganharam destaque na comunidade científica como potenciais dispositivos magneto-eletrônicos. Muitos óxidos de metais de transição se formam na estrutura cristalina chamada perovskita simples, com simetria cúbica ou distorcida. Muitos outros óxidos podem se cristalizar numa variante da perovskita simples, a chamada perovskita dupla ordenada (PDO), que possui fórmula geral A2B¿B¿¿O6, onde o íon A ocupa os vértices do cubo enquanto os cátions B¿ e B¿¿ se alternam nos centros dos octaedros de oxigênio. Dois compostos com estrutura PDO bastante estudados são o Sr2FeReO6 e Sr2FeMoO6 devido ao fato de apresentarem, entre outras propriedades interessantes, comportamento meio-metálico (halfmetal), magnetrorresistência por tunelamento à temperatura ambiente, ferrimagnetismo com TC acima de 400K em ambos os compostos. As propriedades estruturais, eletrônicas e magnéticas dessas PDOs estão altamente conectadas e são fortemente dependentes do grau de hibridização dos orbitais d dos cátions B¿¿. Assim, se fazem importantes os estudos de novos compostos PDO a fim de se investigar as idéias correntes propostas em literatura e, nesse contexto, reportamos aqui os resultados da síntese e caracterização das séries inéditas Ca2-xLaxFeIrO6 e Sr2-xLaxFeIrO6, onde o Ir, assim como o Re e Mo, é metal de transição, no caso com caráter 5d, e pode assumir diferentes estados de valência. As medidas de magnetização indicaram que estes sistemas tendem a evoluir de antiferromagnéticos nas extremidades das séries, x = 0 e x = 2, para ferrimagnéticos em regiões intermediárias da série. Medidas realizadas no composto de maior magnetização da série de Sr, o Sr1.2La0.8FeIrO6, indicaram que este composto se ordena ferrimagneticamente em torno de 700 K, sendo esta a mais elevada TC já reportada para perovskitas duplas. Medidas de resistividade em função da temperatura indicaram que os compostos apresentam comportamento isolante e praticamente nenhum efeito magneto-resistivo. No composto antiferromagnético Sr2FeIrO6 foi estudada a resistividade sob efeito de pressão e, embora não tenha ocorrido nenhuma transição metal-isolante, ocorre uma diminuição sistemática da resistência do material e da inclinação da curva à medida que a pressão aumenta, indicando um comportamento do tipo isolante de Mott nesse composto. Neste trabalho são apresentados também resultados dos estudos realizados na perovskita TbMnO3. Realizamos neste óxido medidas de susceptibilidade magnética, calor específico, Ressonância Paramagnética Eletrônica (EPR) e absorção de microondas para várias temperaturas. A susceptibilidade magnética e o calor específico confirmaram para a amostra estudada as temperaturas de transição de fase magnética (TN = 41 K) e ferroelétrica (Tlock) já reportadas em literatura. Os espectros de EPR mostraram para todo o intervalo de temperatura uma única linha consistente com uma forma de linha Lorentziana e um valor de g independente da temperatura g = 1.96(3) consistente com Mn3+ em um meio isolante. A largura de linha sofreu um alargamento com a temperatura seguindo uma lei do tipo C/T. Esse alargamento impediu a observação dos espectros de ressonância em torno das regiões de temperaturas das transições de fase magnética e ferroelétrica. Devido à forte dependência da constante dielétrica com a freqüência, as medidas realizadas com a cavidade de campo elétrico não permitiram a observação de qualquer anomalia em torno das temperaturas de transições
Abstract: For many decades the transition metal oxides are subject of great scientific interest because of the wide variety of interesting physical properties and their potential technological applications. More recently, for example, oxides of transition metals with multiferroic properties have been considered as potential magneto-electronic devices. Many transition metal oxides form in the perovskite crystalline structure, with cubic or distorted symmetry. Many other oxides can crystallize in a variant of the simple perovskite, called the ordered double perovskite (ODP), which has the general formula A2B'B''O6, where the A ion occupies the vertices of the cube while the cations B 'and B'' alternate in the centers of the oxygen octahedra. Sr2FeReO6 and Sr2FeMoO6 are two compounds with the ODP structure which were extensively studied due to their interesting properties such as half-metal behavior, tunneling magnetoresistance at room temperature and ferrimagnetic order (TC above 400 K). The structural, electronic and magnetic properties of these ODPs are highly correlated and are strongly dependent on the strong d orbitals hybridization of the of the B'' cations. Therefore, studies of new ODP compounds are important in order to investigate the current ideas proposed in the literature and improve the understanding of their physical properties. We report here our results of synthesis and characterization of the unpublished series Ca2-xLaxFeIrO6 and Sr2-xLaxFeIrO6, where the Ir such as Re and Mo are transition metal, with d character that can assume different valence states. The magnetic measurements indicated that those systems tend to evolve from antiferromagnetics at the ends of the series, x = 0 and x = 2, to ferrimagnetic for intermediate regions of the series. Measurements performed in the compound of higher magnetization in the Sr serie, Sr1.2La0.8FeIrO6 indicated that this compound orders ferrimagnetic around 700 K, which is the highest TC ever reported for double perovskites. Resistivity measurements as a function of temperature indicated that these compounds also exhibit insulating behavior and virtually no magneto-resistive effect. In the antiferromagnetic compound Sr2FeIrO6, the effect of pressure on the resistivity was investigated, and although no metal-insulator transition was seen, there is a systematic decrease of the resistance and the slope of the curve as the pressure increases, indicating a Mott insulator-like behavior in this compound. This work also presents results on the TbMnO3 perovskite. We have performed magnetic susceptibility, specific heat, Electron Paramagnetic Resonance (EPR) and microwave absorption measurements at various temperatures. Magnetic susceptibility and specific heat data confirmed the ocurrence of a magnetic (TN = 41 K) and ferroelectric (Tlock) phase transition. The EPR spectra showed, for the entire temperature range measured, a single Lorentzian line shape and T independent g-value = 1.96 (3), consistent with the resonance of Mn3+ in an insulating environment. The width line broadens with the decreasing temperature following a C/T law. This broadening prevented the observation of the resonance spectra near the magnetic and ferroelectric phase transitions. Because of the strong frequency dependence of the dielectric constant, the measurements performed with the electric field cavity also did not allow observation of any anomaly around the ferroelectric transition
Doutorado
Física da Matéria Condensada
Doutor em Ciências
Tanabe, Eurico Yuji. „\"Óxidos do tipo Perovskitas para reações de decomposição direta de NO e redução de NO com CO\"“. Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/75/75131/tde-16042007-111408/.
Der volle Inhalt der QuelleA important technology to reduce the atmospheric pollution is the use of catalysts, to transform high pollutant as NO in other inoffensive gases to the environment. In this work, the perovskite oxides La2CuO4, LaNiO3, LaMnO3, La1,4Sr0,6CuO4, La0,7Sr0,3NiO3 e La0,7Sr0,3MnO3 were prepared through co-precipitation method and characterized by X-ray diffraction and temperature programmed reduction, nitrogen physsisorption and subsequent valued on the reduction of NO by CO and the direct decomposition of NO. These reaction were tested at 400oC and 500oC temperatures and times of reaction between 7 and 10 hours. Through the catalytic tests the La2CuO4 catalyst shown the best activity to the reduce reaction, and when the La is partially substituted by strontium all the catalyst showed a better significant for all the catalysts. The XRD analysis shown that the catalytic structure of the catalysts were preserved after the catalytic test yet.
Ahchawarattaworn, Jutharat. „Perovskite oxynitride dielectrics“. Thesis, University of Newcastle Upon Tyne, 2011. http://hdl.handle.net/10443/1186.
Der volle Inhalt der QuellePrasad, Bhagwati. „Perovskite spin filters“. Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709021.
Der volle Inhalt der QuelleStenberg, Jonas. „Perovskite solar cells“. Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-137302.
Der volle Inhalt der QuelleLukose, Rasuole. „Liquid-delivery metal-organic chemical vapour deposition of perovskites and perovskite-like compounds“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16278.
Der volle Inhalt der QuellePerovskites and perovskite-like materials are actually of great interest since they offer a wide range of structural and physical properties giving the opportunity to employ these materials for different applications. Liquid-Delivery Metal Organic Chemical Vapour deposition (LD-MOCVD) was chosen due to the easy composition control for ternary oxides, high uniformity and good conformal step coverage. Additionally, it allows growing the films, containing elements, for which only solid or low vapour pressure precursors, having mainly thermal stability problems over long heating periods, are available. The purpose of this work was to grow SrRuO3, Bi4Ti3O12 and (Na, Bi)4Ti3O12 films by LD-MOCVD and to investigate the influence of the deposition conditions on the properties of the films. Additionally, the effect of the strain due to the lattice mismatch between substrates and films on the physical properties of the films was also investigated. SrRuO3 films were grown on stepped SrTiO3(001), NdGaO3(110) and DyScO3(110) substrates, which were prepared under different conditions by changing the annealing time and atmosphere. The termination of the substrates was measured by surface sensitive proton-induced Auger Electron Spectroscopy (p-AES) technique. Another systematic study of the relation between epitaxial strain and Curie temperature of thin SrRuO3(100) films was performed by using substrates with different lattice constants. The observed Curie temperature decreased with compressive and increased with tensile strain. Thin films of Bi4Ti3O12 as well as (Na, Bi)4Ti3O12 were successfully deposited. In order to grow stoichiometric and epitaxial Bi4Ti3O12(001) films, Bi excess in the precursor solution was necessary, due to the volatility of Bi. Substitution of Bi with Na in Bi4Ti3O12 was achieved for the first time for the films deposited by LD-MOCVD.
Liu, Tianyu. „Perovskite Solar Cells fabrication and Azobenzene Perovskite synthesis: a study in understanding organic-inorganic hybrid lead halide perovskite“. The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1576840261464488.
Der volle Inhalt der QuelleLiang, Xinxing. „Synthesis of perovskite nanocrystals and their applications in perovskite solar cells“. Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.767584.
Der volle Inhalt der QuelleYildirim, Ceren. „Using a perovskite oxide as interfacial layer for halide perovskite optoelectronics“. Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0001.
Der volle Inhalt der QuelleHalide organic-inorganic photovoltaics and light-emitting diodes require suitable charge injection/extraction layers, which are crucial for several important processes governing performance and lifetime. While intensive research has been devoted to developing innovative p-type interfacial layers, materials with highly tunable properties and high photochemical stability remain in demand. This thesis explores oxide perovskites as interlayers for optoelectronic applications due to their stable physical properties under ambient conditions. SrTi0.7Fe0.3O3-δ (STFO) oxide perovskite thin film is utilized as charge extraction/injection layers for planar halide perovskite solar cells and light-emitting diodes. Using pulsed laser deposition (PLD), highly crystalline STFO thin layers on glass/FTO substrates have been successfully processed at relatively moderate temperatures (<400 °C) as compared to traditional deposition techniques. Additional thermal treatments, either by rapid thermal processing (RTP) or conventional thermal annealing, have been applied to the oxide thin films to further improve the larger crystal of the polycrystalline layers, and to tune their optical and electronic properties. When deposited on top of the oxide perovskite, FA0.85Cs0.15Pb(I0.85Br0.15)3 halide perovskite layer (suitable for photovoltaic PV energy conversion) show larger grain sizes and better crystalline order than compared to similar films deposited on top of reference p-type interlayer such as commercial PEDOT:PSS. Furthermore, the presence of the oxide resulted in a clear reduction of the fraction of optically inactive halide perovskite phase. This observation suggests that the perovskite interlayer positively impacts the growth mechanism of the halide perovskite active layer. Finally, annealed STFO layers induce longer exciton lifetime in the halide perovskite active layer, compared PEDOT:PSS. Similarly, the crystallization of the (PEA)2(MA)PbBr4 quasi-2D perovskite (suitable for light-emitting LED applications) on STFO layers was found to be of high quality, leading to comparable properties of layers deposited on top of classical PEDOT:PSS. Moreover, quasi-2D perovskite on STFO showed quite a long exciton lifetime. Although STFO thin films integrated into both halide perovskite PV and LED devices have conducted to limited performance, this work demonstrates the high potential of oxide perovskites towards efficient and stable all-perovskite devices
Montero, Rama María Del Pilar. „TOWARD NANOSTRUCTURED PEROVSKITE SOLAR CELLS BASED ON NANOPOROUS ANODIC ALUMINA TECHNOLOGY“. Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/670596.
Der volle Inhalt der QuelleEn esta tesis se plantea fabricar una celda solar nano-estructurada de perovskita utilizando alúmina nano-porosa anodizada (NAA de sus siglas en inglés) como soporte. Se eligió la perovskita ya que las celdas solares de este material han alcanzado una eficiencia muy similar a las celdas existentes de silicio. Además, son baratas y fáciles de preparar. El hecho de que la celda este nano-estructurada aportará estabilidad frente a la radiación, temperatura y humedad, siendo este el principal problema de estos dispositivos. Los nano-poros de la NAA tienen una forma cilíndrica muy bien definida cuyo tamaño se puede controlar fácilmente siendo todos los nano-poros iguales, lo cual permitirá un mayor control sobre la homogeneidad del material infiltrado. Por lo que el objetivo de esta tesis es aplicar la tecnología de NAA a las celdas solares de perovskita (CSP). Para ello primero tuvo lugar el proceso de familiarización con la fabricación y caracterización de NAA, así como de CSPs de alta eficiencia, mediante métodos estándar conocidos. Una vez se consiguió la fabricación de NAA con diferentes tamaños de poro, la capa barrera de alúmina que existe entre el aluminio y el fondo del poro tuvo que ser eliminada, para poder aprovechar el aluminio (base de la NAA) como contacto eléctrico. Para lo cual se investigó y desarrolló un nuevo método, ya que los métodos existentes no son adecuados para eliminar capa de barrera de espesores superiores a los 200 nm. Finalmente se estudió la infiltración de los materiales que forman una CSP en los nano-poros, mediante métodos simples de deposición. Se obtuvo una celda solar nano-estructurada de perovskita utilizando como soporte NAA, cuyos resultados de eficiencia son humildes, debido a que la estructura planteada en este trabajo es totalmente novedosa. Lo cual abre un amplio camino para futuros trabajos.
In this thesis, the nanostructured perovskite solar cell manufacture using nanoporous anodic alumina (NAA) as a scaffold is proposed. The perovskite was chosen since the solar cells made with this material have achieved very similar efficiency to silicon cells. Also, they are cheap and easy to prepare. The fact that the cell will be nanostructured will provide stability against radiation, temperature and humidity, this being the main problem of these devices. The NAA nanopores have a very well defined cylindrical shape, whose size can be easily controlled, all nanopores being ident, which will allow greater control over the homogeneity of the infiltrated material. Therefore, this thesis aims to apply NAA technology to perovskite solar cells (PSCs). First, the familiarization process with the manufacture and characterization of NAA, as well as of high-efficiency PSCs, through known standard methods were carried out. Once the manufacture of NAA with different pore sizes was achieved, the alumina barrier layer that exists between the aluminium and the bottom of the nanopores had to be removed, to take advantage of the aluminium (base of the NAA) as an electrical contact. For which a new method was investigated and developed since existing methods are not suitable for removing barrier layer thicknesses greater than 200 nm. Finally, the infiltration of the materials that form a PSC within the nanopores was studied, utilizing simple deposition methods. A full working nanostructured perovskite solar cell was obtained using NAA as a scaffold, whose efficiency results are modest because the structure proposed in this work is novel. Which opens a wide path for future work.
Bücher zum Thema "Perovskite"
G, Tejuca L., und Fierro, J. L. G., 1948-, Hrsg. Perovskite oxides. New York: Marcel Dekker, 1992.
Den vollen Inhalt der Quelle findenTay, Yong Kang Eugene, Huajun He, Xiangling Tian, Mingjie Li und Tze Chien Sum. Halide Perovskite Lasers. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7973-5.
Der volle Inhalt der QuelleZhou, Ye, und Yan Wang, Hrsg. Perovskite Quantum Dots. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6637-0.
Der volle Inhalt der QuelleArul, Narayanasamy Sabari, und Vellalapalayam Devaraj Nithya, Hrsg. Revolution of Perovskite. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1267-4.
Der volle Inhalt der QuellePradhan, Basudev, Hrsg. Perovskite Optoelectronic Devices. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-57663-8.
Der volle Inhalt der QuelleKei, Hirose, Hrsg. Post-perovskite: The last mantle phase transition. Washington, DC: American Geophysical Union, 2007.
Den vollen Inhalt der Quelle findenNie, Wanyi, und Krzysztof Iniewski, Hrsg. Metal-Halide Perovskite Semiconductors. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26892-2.
Der volle Inhalt der QuellePark, Nam-Gyu, und Hiroshi Segawa. Multifunctional Organic-Inorganic Halide Perovskite. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003275930.
Der volle Inhalt der QuellePark, Nam-Gyu, Michael Grätzel und Tsutomu Miyasaka, Hrsg. Organic-Inorganic Halide Perovskite Photovoltaics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35114-8.
Der volle Inhalt der QuelleWijn, H. P. J., Hrsg. Halide Perovskite-Type Layer Structures. Berlin/Heidelberg: Springer-Verlag, 2001. http://dx.doi.org/10.1007/b79064.
Der volle Inhalt der QuelleBuchteile zum Thema "Perovskite"
Giorno, Lidietta, und Heiner Strathmann. „Perovskite Membranes“. In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_2250-1.
Der volle Inhalt der QuelleJena, Ajay Kumar, Somayeh Gholipour, Yaser Abdi und Michael Saliba. „Perovskite Photovoltaics“. In Springer Handbook of Inorganic Photochemistry, 1267–303. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-63713-2_41.
Der volle Inhalt der QuellePramod, Ashna K., und Sudip K. Batabyal. „Perovskite Photodetector“. In Engineering Materials, 397–416. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-57663-8_11.
Der volle Inhalt der QuelleTiwari, Udit, und Sahab Dass. „Moisture Stable Soot Coated Methylammonium Lead Iodide Perovskite Photoelectrodes for Hydrogen Production in Water“. In Springer Proceedings in Energy, 141–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_18.
Der volle Inhalt der QuelleMiddelkoop, Vesna. „Oxygen Transport Ceramic Membranes: Perovskite and Non-perovskite“. In Encyclopedia of Membranes, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_1775-1.
Der volle Inhalt der QuelleIshihara, Tatsumi. „Inorganic Perovskite Oxides“. In Springer Handbook of Electronic and Photonic Materials, 1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48933-9_59.
Der volle Inhalt der QuelleShabdan, Erkin, Blake Hanford, Baurzhan Ilyassov, Kadyrzhan Dikhanbayev und Nurxat Nuraje. „Perovskite Solar Cell“. In Multifunctional Nanocomposites for Energy and Environmental Applications, 91–111. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527342501.ch5.
Der volle Inhalt der QuelleGanose, Alex. „Review: Perovskite Photovoltaics“. In Springer Theses, 53–63. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55708-9_4.
Der volle Inhalt der QuelleGanose, Alex. „Pseudohalide Perovskite Absorbers“. In Springer Theses, 65–85. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55708-9_5.
Der volle Inhalt der QuelleZdyb, Agata. „Perovskite Solar Cells“. In Third Generation Solar Cells, 69–101. London: Routledge, 2022. http://dx.doi.org/10.1201/9781003196785-4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Perovskite"
Volkov, Valentyn S. „Anisotropic Photonics with Single-Crystal Halide Perovskites“. In Novel Optical Materials and Applications. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/noma.2023.noth3c.7.
Der volle Inhalt der QuelleLiu, Sai, Yuwei Du, Huanfeng He, Aiqiang Pan und Chi Yan Tso. „Durability-Enhanced Thermochromic Perovskite Smart Window for Energy-Efficient Buildings“. In ASME 2023 17th International Conference on Energy Sustainability collocated with the ASME 2023 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/es2023-106197.
Der volle Inhalt der QuelleParida, Bhaskar, Abdul Kareem Kalathil Soopy, Hiba Shahulhameed und Adel Najar. „Zn-Porphyrin Blended Anti-Solvent Treatment for Grain Boundary Passivation of Perovskite Solar Cells“. In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fio.2022.jtu4a.39.
Der volle Inhalt der QuelleMiyasaka, Tsutomu. „Development of halide perovskite photovoltaic devices towards high voltage performance“. In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.cthw4_01.
Der volle Inhalt der QuelleShrivastava, Megha, Abhinav Kala, Dmitry Dirin, Maryna I. Bodnarchuk, Venu Gopal Achanta, Maksym V. Kovalenko und K. V. Adarsh. „Tailoring Recombination Dynamics in APbBr3 Single Crystals“. In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.sth5i.4.
Der volle Inhalt der QuelleLagerbom, J., A. P. Nikkilä, M. Kylmälahti, P. Vuoristo, U. Kanerva und T. Varis. „Phase Stability and Structure of Conductive Perovskite Ceramic Coatings by Thermal Spraying“. In ITSC2008, herausgegeben von B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima und G. Montavon. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2008. http://dx.doi.org/10.31399/asm.cp.itsc2008p1091.
Der volle Inhalt der QuelleP, Geetha, R. Sudarmani, C. Venkataraman und S. Shubha. „Modeling and Verification of 1D Array Methyl Ammonium Lead Halide Perovskite Solar Cells for Electric Vehicles“. In SAENIS TTTMS Thermal Management Systems Conference-2023. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-28-0026.
Der volle Inhalt der QuelleJäger, Klaus, Sebastian Berwig, Jona Kurpiers, Fengjiu Yang, Philipp Tockhorn, Steve Albrecht und Christiane Becker. „Optical Simulations of Perovskite/Perovskite Tandem Solar Cells“. In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/iprsn.2023.jm4d.3.
Der volle Inhalt der QuelleChristians, Jeffrey A., Ashley R. Marshall, Qian Zhao, Paul Ndione, Erin M. Sanehira und Joseph M. Luther. „Perovskite Quantum Dots. A New Absorber for Perovskite-Perovskite Tandem Solar Cells“. In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, 2018. http://dx.doi.org/10.1109/pvsc.2018.8547642.
Der volle Inhalt der QuelleCai, Zhuangli, Zuolin Liu, Bin Yang, Min Yang und Shangchao Lin. „Diffusion-Mediated Anharmonic Phonon Transport and Thermal Conductivity Reduction in Defective Hybrid Perovskites“. In ASME 2021 Heat Transfer Summer Conference collocated with the ASME 2021 15th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/ht2021-62601.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Perovskite"
Cohen, Harel. Perovskite Photovoltaics research and testing. Ames (Iowa): Iowa State University, Januar 2021. http://dx.doi.org/10.31274/cc-20240624-1111.
Der volle Inhalt der QuelleBrosha, E. L., B. W. Chung und F. H. Garzon. Electrochemical studies of perovskite mixed conductors. Office of Scientific and Technical Information (OSTI), Dezember 1994. http://dx.doi.org/10.2172/10103797.
Der volle Inhalt der QuelleNowicki, Suzanne Florence, Charles Olson Leak, Jeremy Tyler Tisdale, Duc Ta Vo und Michael Duncan Yoho. Performance Characterization of Halide Perovskite Detectors. Office of Scientific and Technical Information (OSTI), Februar 2020. http://dx.doi.org/10.2172/1599027.
Der volle Inhalt der QuelleMitzi, David, und Yanfa Yan. High Performance Perovskite-Based Solar Cells. Office of Scientific and Technical Information (OSTI), Januar 2020. http://dx.doi.org/10.2172/1582433.
Der volle Inhalt der QuelleHuang, Jinsong. Developing Efficient Perovskite/Silicon Tandem Devices. Office of Scientific and Technical Information (OSTI), Dezember 2019. http://dx.doi.org/10.2172/1583171.
Der volle Inhalt der QuelleMcGehee, Michael. Perovskite on Silicon Tandem Solar Cells. Office of Scientific and Technical Information (OSTI), März 2021. http://dx.doi.org/10.2172/1830219.
Der volle Inhalt der QuelleMcGehee, Michael, und Tonio Buonassisi. Perovskite Solar Cells for High-Efficiency Tandems. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1420976.
Der volle Inhalt der QuelleChern, Ming Y., F. J. DiSalvo, J. B. Parise und Joyce A. Goldstone. The Distortion of Anti-Perovskite Nitride AsNCa3. Fort Belvoir, VA: Defense Technical Information Center, Mai 1991. http://dx.doi.org/10.21236/ada236719.
Der volle Inhalt der QuelleChandramouli, Deepthi, und Mary Clarke. Perovskite Sorbent Oxygen Separation Modeling with MFiX. Office of Scientific and Technical Information (OSTI), Februar 2022. http://dx.doi.org/10.2172/1843379.
Der volle Inhalt der QuelleCarlson, Brett. Remanufacturable "Net-Zero Pb" Perovskite Solar Modules. Office of Scientific and Technical Information (OSTI), Mai 2024. http://dx.doi.org/10.2172/2377007.
Der volle Inhalt der Quelle