Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Permutation groups.

Zeitschriftenartikel zum Thema „Permutation groups“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Permutation groups" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Niemenmaa, Markku. „Decomposition of Transformation Groups of Permutation Machines“. Fundamenta Informaticae 10, Nr. 4 (01.10.1987): 363–67. http://dx.doi.org/10.3233/fi-1987-10403.

Der volle Inhalt der Quelle
Annotation:
By a permutation machine we mean a triple (Q,S,F), where Q and S are finite sets and F is a function Q × S → Q which defines a permutation on Q for every element from S. These permutations generate a permutation group G and by considering the structure of G we can obtain efficient ways to decompose the transformation group (Q,G). In this paper we first consider the situation where G is half-transitive and after this we show how to use our result in the general non-transitive case.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Burns, J. M., B. Goldsmith, B. Hartley und R. Sandling. „On quasi-permutation representations of finite groups“. Glasgow Mathematical Journal 36, Nr. 3 (September 1994): 301–8. http://dx.doi.org/10.1017/s0017089500030901.

Der volle Inhalt der Quelle
Annotation:
In [6], Wong defined a quasi-permutation group of degree n to be a finite group G of automorphisms of an n-dimensional complex vector space such that every element of G has non-negative integral trace. The terminology derives from the fact that if G is a finite group of permutations of a set ω of size n, and we think of G as acting on the complex vector space with basis ω, then the trace of an element g ∈ G is equal to the number of points of ω fixed by g. In [6] and [7], Wong studied the extent to which some facts about permutation groups generalize to the quasi-permutation group situation. Here we investigate further the analogy between permutation groups and quasipermutation groups by studying the relation between the minimal degree of a faithful permutation representation of a given finite group G and the minimal degree of a faithful quasi-permutation representation. We shall often prefer to work over the rational field rather than the complex field.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bigelow, Stephen. „Supplements of bounded permutation groups“. Journal of Symbolic Logic 63, Nr. 1 (März 1998): 89–102. http://dx.doi.org/10.2307/2586590.

Der volle Inhalt der Quelle
Annotation:
AbstractLet λ ≤ κ be infinite cardinals and let Ω be a set of cardinality κ. The bounded permutation group Bλ(Ω), or simply Bλ, is the group consisting of all permutations of Ω which move fewer than λ points in Ω. We say that a permutation group G acting on Ω is a supplement of Bλ if BλG is the full symmetric group on Ω.In [7], Macpherson and Neumann claimed to have classified all supplements of bounded permutation groups. Specifically, they claimed to have proved that a group G acting on the set Ω is a supplement of Bλ if and only if there exists Δ ⊂ Ω with ∣Δ∣ < λ such that the setwise stabiliser G{Δ} acts as the full symmetric group on Ω ∖ Δ. However I have found a mistake in their proof. The aim of this paper is to examine conditions under which Macpherson and Neumann's claim holds, as well as conditions under which a counterexample can be constructed. In the process we will discover surprising links with cardinal arithmetic and Shelah's recently developed pcf theory.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Cohen, Stephen D. „Permutation polynomials and primitive permutation groups“. Archiv der Mathematik 57, Nr. 5 (November 1991): 417–23. http://dx.doi.org/10.1007/bf01246737.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tovstyuk, K. D., C. C. Tovstyuk und O. O. Danylevych. „The Permutation Group Theory and Electrons Interaction“. International Journal of Modern Physics B 17, Nr. 21 (20.08.2003): 3813–30. http://dx.doi.org/10.1142/s0217979203021812.

Der volle Inhalt der Quelle
Annotation:
The new mathematical formalism for the Green's functions of interacting electrons in crystals is constructed. It is based on the theory of Green's functions and permutation groups. We constructed a new object of permutation groups, which we call double permutation (DP). DP allows one to take into consideration the symmetry of the ground state as well as energy and momentum conservation in every virtual interaction. We developed the classification of double permutations and proved the theorem, which allows the selection of classes of associated double permutations (ADP). The Green's functions are constructed for series of ADP. We separate in the DP the convolving columns by replacing the initial interaction between the particles with the effective interaction. In convoluting the series for Green's functions, we use the methods developed for permutation groups schemes of Young–Yamanuti.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Boy de la Tour, Thierry, und Mnacho Echenim. „On leaf permutative theories and occurrence permutation groups“. Electronic Notes in Theoretical Computer Science 86, Nr. 1 (Mai 2003): 61–75. http://dx.doi.org/10.1016/s1571-0661(04)80653-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Senashov, Vasily S., Konstantin A. Filippov und Anatoly K. Shlepkin. „Regular permutations and their applications in crystallography“. E3S Web of Conferences 525 (2024): 04002. http://dx.doi.org/10.1051/e3sconf/202452504002.

Der volle Inhalt der Quelle
Annotation:
The representation of a group G in the form of regular permutations is widely used for studying the structure of finite groups, in particular, parameters like the group density function. This is related to the increased potential of computer technologies for conducting calculations. The work addresses the problem of calculation regular permutations with restrictions on the structure of the degree and order of permutations. The considered regular permutations have the same nontrivial order, which divides the degree of the permutation. Examples of the application of permutation groups in crystallography and crystal chemistry are provided.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cameron, Peter J. „Cofinitary Permutation Groups“. Bulletin of the London Mathematical Society 28, Nr. 2 (März 1996): 113–40. http://dx.doi.org/10.1112/blms/28.2.113.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lucchini, A., F. Menegazzo und M. Morigi. „Generating Permutation Groups“. Communications in Algebra 32, Nr. 5 (31.12.2004): 1729–46. http://dx.doi.org/10.1081/agb-120029899.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kearnes, Keith A. „Collapsing permutation groups“. Algebra Universalis 45, Nr. 1 (01.02.2001): 35–51. http://dx.doi.org/10.1007/s000120050200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Gu, Yutong. „Introduction of Several Special Groups and Their Applications to Rubik’s Cube“. Highlights in Science, Engineering and Technology 47 (11.05.2023): 172–75. http://dx.doi.org/10.54097/hset.v47i.8186.

Der volle Inhalt der Quelle
Annotation:
Group theory is the subject that aims to study the symmetries and structures of groups in mathematics. This work provides an introduction to group theory and explores some potential applications of group theory on complex geometric objects like the Rubik's cube. To this end, the concepts of symmetric group, permutation group, and cyclic group are introduced, and the famous Lagrange’s theorem and Cayley’s theorem are mentioned briefly. The former theorem establishes that a subgroup’s order must be a divisor of the parent group’s order. Concerning the permutation group, it is a set of permutations that form a group under composition. Hence, the various groups that can be formed by the Rubik's cube are discussed, including the group of all possible permutations of the cube's stickers, and the subgroups that are generated through permutations of the six basic movements embedded in Rubik’s cube. Overall, this essay provides an accessible introduction to group theory and its applications to the popular Rubik's cube.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Guralnick, Robert M., und David Perkinson. „Permutation polytopes and indecomposable elements in permutation groups“. Journal of Combinatorial Theory, Series A 113, Nr. 7 (Oktober 2006): 1243–56. http://dx.doi.org/10.1016/j.jcta.2005.11.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Liebeck, Martin W., und Aner Shalev. „Simple groups, permutation groups, and probability“. Journal of the American Mathematical Society 12, Nr. 2 (1999): 497–520. http://dx.doi.org/10.1090/s0894-0347-99-00288-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Chalapathi, T., und R. V. „Graphs of Permutation Groups“. International Journal of Computer Applications 179, Nr. 3 (15.12.2017): 14–19. http://dx.doi.org/10.5120/ijca2017915872.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Burness, Timothy C., und Emily V. Hall. „Almost elusive permutation groups“. Journal of Algebra 594 (März 2022): 519–43. http://dx.doi.org/10.1016/j.jalgebra.2021.11.037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Lucchini, Andrea, Marta Morigi und Mariapia Moscatiello. „Primitive permutation IBIS groups“. Journal of Combinatorial Theory, Series A 184 (November 2021): 105516. http://dx.doi.org/10.1016/j.jcta.2021.105516.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Conway, John H., Alexander Hulpke und John McKay. „On Transitive Permutation Groups“. LMS Journal of Computation and Mathematics 1 (1998): 1–8. http://dx.doi.org/10.1112/s1461157000000115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Gerner, M. „Predicate-Induced Permutation Groups“. Journal of Semantics 29, Nr. 1 (13.10.2011): 109–44. http://dx.doi.org/10.1093/jos/ffr007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Adeleke, S. A., und Peter M. Neumann. „Infinite Bounded Permutation Groups“. Journal of the London Mathematical Society 53, Nr. 2 (April 1996): 230–42. http://dx.doi.org/10.1112/jlms/53.2.230.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

KOVÁCS, L. G., und M. F. NEWMAN. „GENERATING TRANSITIVE PERMUTATION GROUPS“. Quarterly Journal of Mathematics 39, Nr. 3 (1988): 361–72. http://dx.doi.org/10.1093/qmath/39.3.361.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Neumann, Peter M. „Some Primitive Permutation Groups“. Proceedings of the London Mathematical Society s3-50, Nr. 2 (März 1985): 265–81. http://dx.doi.org/10.1112/plms/s3-50.2.265.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Atkinson, M. D. „Permutation Involvement and Groups“. Quarterly Journal of Mathematics 52, Nr. 4 (01.12.2001): 415–21. http://dx.doi.org/10.1093/qjmath/52.4.415.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Cossey, John. „Quotients of permutation groups“. Bulletin of the Australian Mathematical Society 57, Nr. 3 (Juni 1998): 493–95. http://dx.doi.org/10.1017/s0004972700031907.

Der volle Inhalt der Quelle
Annotation:
If G is a finite permutation group of degree d and N is a normal subgroup of G, Derek Holt has given conditions which show that in some important special cases the least degree of a faithful permutation representation of the quotient G/N will be no larger than d. His conditions do not apply in all cases of interest and he remarks that it would be interesting to know if G/F(G) has a faithful representation of degree no larger than d (where F(G) is the Fitting subgroup of G). We prove in this note that this is the case.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Cigler, Grega. „Permutation-like matrix groups“. Linear Algebra and its Applications 422, Nr. 2-3 (April 2007): 486–505. http://dx.doi.org/10.1016/j.laa.2006.11.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Mazurov, V. D. „2-Transitive permutation groups“. Siberian Mathematical Journal 31, Nr. 4 (1991): 615–17. http://dx.doi.org/10.1007/bf00970632.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Galvin, Fred. „Almost disjoint permutation groups“. Proceedings of the American Mathematical Society 124, Nr. 6 (1996): 1723–25. http://dx.doi.org/10.1090/s0002-9939-96-03264-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Hulpke, Alexander. „Constructing transitive permutation groups“. Journal of Symbolic Computation 39, Nr. 1 (Januar 2005): 1–30. http://dx.doi.org/10.1016/j.jsc.2004.08.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Cameron, Peter J. „Cycle-closed permutation groups“. Journal of Algebraic Combinatorics 5, Nr. 4 (Oktober 1996): 315–22. http://dx.doi.org/10.1007/bf00193181.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Grech, Mariusz. „Graphical cyclic permutation groups“. Discrete Mathematics 337 (Dezember 2014): 25–33. http://dx.doi.org/10.1016/j.disc.2014.08.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Bichon, Julien. „ALGEBRAIC QUANTUM PERMUTATION GROUPS“. Asian-European Journal of Mathematics 01, Nr. 01 (März 2008): 1–13. http://dx.doi.org/10.1142/s1793557108000023.

Der volle Inhalt der Quelle
Annotation:
We discuss some algebraic aspects of quantum permutation groups, working over arbitrary fields. If 𝕂 is any characteristic zero field, we show that there exists a universal cosemisimple Hopf algebra coacting on the diagonal algebra 𝕂n: this is a refinement of Wang's universality theorem for the (compact) quantum permutation group. We also prove a structural result for Hopf algebras having a non-ergodic coaction on the diagonal algebra 𝕂n, on which we determine the possible group gradings when 𝕂 is algebraically closed and has characteristic zero.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Neumann, Peter M., und Cheryl E. Praeger. „Three-star permutation groups“. Illinois Journal of Mathematics 47, Nr. 1-2 (März 2003): 445–52. http://dx.doi.org/10.1215/ijm/1258488164.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Kuzucuoğlu, M. „Barely transitive permutation groups“. Archiv der Mathematik 55, Nr. 6 (Dezember 1990): 521–32. http://dx.doi.org/10.1007/bf01191686.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Li, Jiongsheng. „TheL-sharp permutation groups“. Science in China Series A: Mathematics 43, Nr. 1 (Januar 2000): 22–27. http://dx.doi.org/10.1007/bf02903844.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Anagnostopoulou-Merkouri, Marina, Peter J. Cameron und Enoch Suleiman. „Pre-primitive permutation groups“. Journal of Algebra 636 (Dezember 2023): 695–715. http://dx.doi.org/10.1016/j.jalgebra.2023.09.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Franchi, Clara. „Abelian sharp permutation groups“. Journal of Algebra 283, Nr. 1 (Januar 2005): 1–5. http://dx.doi.org/10.1016/j.jalgebra.2004.06.031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Khashaev, Arthur A. „On the membership problem for finite automata over symmetric groups“. Discrete Mathematics and Applications 32, Nr. 6 (01.12.2022): 383–89. http://dx.doi.org/10.1515/dma-2022-0033.

Der volle Inhalt der Quelle
Annotation:
Abstract We consider automata in which transitions are labelled with arbitrary permutations. The language of such an automaton consists of compositions of permutations for all possible admissible computation paths. The membership problem for finite automata over symmetric groups is the following decision problem: does a given permutation belong to the language of a given automaton? We show that this problem is NP-complete. We also propose an efficient algorithm for the case of strongly connected automata.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Vesanen, Ari. „Finite classical groups and multiplication groups of loops“. Mathematical Proceedings of the Cambridge Philosophical Society 117, Nr. 3 (Mai 1995): 425–29. http://dx.doi.org/10.1017/s0305004100073278.

Der volle Inhalt der Quelle
Annotation:
Let Q be a loop; then the left and right translations La(x) = ax and Ra(x) = xa are permutations of Q. The permutation group M(Q) = 〈La, Ra | a ε Q〉 is called the multiplication group of Q; it is well known that the structure of M(Q) reflects strongly the structure of Q (cf. [1] and [8], for example). It is thus an interesting question, which groups can be represented as multiplication groups of loops. In particular, it seems important to classify the finite simple groups that are multiplication groups of loops. In [3] it was proved that the alternating groups An are multiplication groups of loops, whenever n ≥ 6; in this paper we consider the finite classical groups and prove the following theorems
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Pearson, Mike, und Ian Short. „Magic letter groups“. Mathematical Gazette 91, Nr. 522 (November 2007): 493–99. http://dx.doi.org/10.1017/s0025557200182130.

Der volle Inhalt der Quelle
Annotation:
Certain numeric puzzles, known as ‘magic letters’, each have a finite permutation group associated with them in a natural manner. We describe how the isomorphism type of these permutation groups relates to the structure of the magic letters.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Grech, Mariusz, und Andrzej Kisielewicz. „Cyclic Permutation Groups that are Automorphism Groups of Graphs“. Graphs and Combinatorics 35, Nr. 6 (13.09.2019): 1405–32. http://dx.doi.org/10.1007/s00373-019-02096-1.

Der volle Inhalt der Quelle
Annotation:
Abstract In this paper we establish conditions for a permutation group generated by a single permutation to be an automorphism group of a graph. This solves the so called concrete version of König’s problem for the case of cyclic groups. We establish also similar conditions for the symmetry groups of other related structures: digraphs, supergraphs, and boolean functions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Burov, Dmitry A. „Subgroups of direct products of groups invariant under the action of permutations on factors“. Discrete Mathematics and Applications 30, Nr. 4 (26.08.2020): 243–55. http://dx.doi.org/10.1515/dma-2020-0021.

Der volle Inhalt der Quelle
Annotation:
AbstractWe study subgroups of the direct product of two groups invariant under the action of permutations on factors. An invariance criterion for the subdirect product of two groups under the action of permutations on factors is put forward. Under certain additional constraints on permutations, we describe the subgroups of the direct product of a finite number of groups that are invariant under the action of permutations on factors. We describe the subgroups of the additive group of vector space over a finite field of characteristic 2 which are invariant under the coordinatewise action of inversion permutation of nonzero elements of the field.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Gill, Nick, und Pablo Spiga. „Binary permutation groups: Alternating and classical groups“. American Journal of Mathematics 142, Nr. 1 (2020): 1–43. http://dx.doi.org/10.1353/ajm.2020.0000.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Banica, Teodor, Julien Bichon und Sonia Natale. „Finite quantum groups and quantum permutation groups“. Advances in Mathematics 229, Nr. 6 (April 2012): 3320–38. http://dx.doi.org/10.1016/j.aim.2012.02.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

BRYANT, R. M., L. G. KOVÁCS und G. R. ROBINSON. „TRANSITIVE PERMUTATION GROUPS AND IRREDUCIBLE LINEAR GROUPS“. Quarterly Journal of Mathematics 46, Nr. 4 (1995): 385–407. http://dx.doi.org/10.1093/qmath/46.4.385.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Heath-Brown, D. R., Cheryl E. Praeger und Aner Shalev. „Permutation groups, simple groups, and sieve methods“. Israel Journal of Mathematics 148, Nr. 1 (Dezember 2005): 347–75. http://dx.doi.org/10.1007/bf02775443.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Bowler, Nathan, und Thomas Forster. „Normal subgroups of infinite symmetric groups, with an application to stratified set theory“. Journal of Symbolic Logic 74, Nr. 1 (März 2009): 17–26. http://dx.doi.org/10.2178/jsl/1231082300.

Der volle Inhalt der Quelle
Annotation:
It is generally known that infinite symmetric groups have few nontrivial normal subgroups (typically only the subgroups of bounded support) and none of small index. (We will explain later exactly what we mean by small). However the standard analysis relies heavily on the axiom of choice. By dint of a lot of combinatorics we have been able to dispense—largely—with the axiom of choice. Largely, but not entirely: our result is that if X is an infinite set with ∣X∣ = ∣X × X∣ then Symm(X) has no nontrivial normal subgroups of small index. Some condition like this is needed because of the work of Sam Tarzi who showed [4] that, for any finite group G, there is a model of ZF without AC in which there is a set X with Symm(X)/FSymm(X) isomorphic to G.The proof proceeds in two stages. We consider a particularly useful class of permutations, which we call the class of flexible permutations. A permutation of X is flexible if it fixes at least ∣X∣-many points. First we show that every normal subgroup of Symm(X) (of small index) must contain every flexible permutation. This will be theorem 4. Then we show (theorem 7) that the flexible permutations generate Symm(X).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Praeger, Cheryl E. „Seminormal and subnormal subgroup lattices for transitive permutation groups“. Journal of the Australian Mathematical Society 80, Nr. 1 (Februar 2006): 45–64. http://dx.doi.org/10.1017/s144678870001137x.

Der volle Inhalt der Quelle
Annotation:
AbstractVarious lattices of subgroups of a finite transitive permutation group G can be used to define a set of ‘basic’ permutation groups associated with G that are analogues of composition factors for abstract finite groups. In particular G can be embedded in an iterated wreath product of a chain of its associated basic permutation groups. The basic permutation groups corresponding to the lattice L of all subgroups of G containing a given point stabiliser are a set of primitive permutation groups. We introduce two new subgroup lattices contained in L, called the seminormal subgroup lattice and the subnormal subgroup lattice. For these lattices the basic permutation groups are quasiprimitive and innately transitive groups, respectively.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

., Haci Aktas. „On Finite Topological Permutation Groups“. Journal of Applied Sciences 2, Nr. 1 (15.12.2001): 60–61. http://dx.doi.org/10.3923/jas.2002.60.61.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Jones, Gareth. „Combinatorial categories and permutation groups“. Ars Mathematica Contemporanea 10, Nr. 2 (20.10.2015): 237–54. http://dx.doi.org/10.26493/1855-3974.545.fd5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Neumann, Peter M. „Homogeneity of Infinite Permutation Groups“. Bulletin of the London Mathematical Society 20, Nr. 4 (Juli 1988): 305–12. http://dx.doi.org/10.1112/blms/20.4.305.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Birszki, Bálint. „ON PRIMITIVE SHARP PERMUTATION GROUPS“. Communications in Algebra 30, Nr. 6 (19.06.2002): 3013–23. http://dx.doi.org/10.1081/agb-120004005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie