Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Permeable surfaces“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Permeable surfaces" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Permeable surfaces"
Leontiev, Alexander I. „BOUNDARY LAYERS ON PERMEABLE SURFACES“. International Journal of Fluid Mechanics Research 27, Nr. 5-6 (2000): 548–74. http://dx.doi.org/10.1615/interjfluidmechres.v27.i5-6.290.
Der volle Inhalt der QuelleLing, Bowen, Alexandre M. Tartakovsky und Ilenia Battiato. „Dispersion controlled by permeable surfaces: surface properties and scaling“. Journal of Fluid Mechanics 801 (19.07.2016): 13–42. http://dx.doi.org/10.1017/jfm.2016.431.
Der volle Inhalt der QuelleShevelev, Yu D., und F. A. Maksimov. „Modeling a Flow around Permeable Surfaces“. Mathematical Models and Computer Simulations 11, Nr. 4 (Juli 2019): 531–41. http://dx.doi.org/10.1134/s2070048219040124.
Der volle Inhalt der QuelleHokenson, G. J. „Boundary Conditions for Flow Over Permeable Surfaces“. Journal of Fluids Engineering 107, Nr. 3 (01.09.1985): 430–32. http://dx.doi.org/10.1115/1.3242505.
Der volle Inhalt der QuelleStarke, P., P. Göbel und W. G. Coldewey. „Urban evaporation rates for water-permeable pavements“. Water Science and Technology 62, Nr. 5 (01.09.2010): 1161–69. http://dx.doi.org/10.2166/wst.2010.390.
Der volle Inhalt der QuelleGillies, J. A., C. McKenna Neuman und P. O’Brien. „Flow around surface-mounted permeable cubes on solid and deformable surfaces“. Environmental Fluid Mechanics 21, Nr. 3 (11.04.2021): 619–41. http://dx.doi.org/10.1007/s10652-021-09789-3.
Der volle Inhalt der QuelleMoon, Young J., Ikhyun Bai und Seungtae Hwang. „Control of edge-scattering noise via permeable surfaces“. Journal of the Acoustical Society of America 131, Nr. 4 (April 2012): 3430. http://dx.doi.org/10.1121/1.4708866.
Der volle Inhalt der QuelleCipolla, Sara Simona, Marco Maglionico und Irena Stojkov. „Experimental Infiltration Tests on Existing Permeable Pavement Surfaces“. CLEAN - Soil, Air, Water 44, Nr. 1 (07.12.2015): 89–95. http://dx.doi.org/10.1002/clen.201400550.
Der volle Inhalt der QuellePierce, F., D. Perahia und G. S. Grest. „Spreading of liquid droplets on permeable polymeric surfaces“. EPL (Europhysics Letters) 86, Nr. 6 (01.06.2009): 64004. http://dx.doi.org/10.1209/0295-5075/86/64004.
Der volle Inhalt der QuellePratt, C. J., J. D. G. Mantle und P. A. Schofield. „UK research into the performance of permeable pavement, reservoir structures in controlling stormwater discharge quantity and quality“. Water Science and Technology 32, Nr. 1 (01.07.1995): 63–69. http://dx.doi.org/10.2166/wst.1995.0016.
Der volle Inhalt der QuelleDissertationen zum Thema "Permeable surfaces"
Moore, Angela Mary. „Anion reactions at iron surfaces : implications for perchlorate remediation using permeable reactive barriers /“. For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2003. http://uclibs.org/PID/11984.
Der volle Inhalt der QuelleShah, Sarvang D. „Heat Transfer in a Nanofluid Flow Past a Permeable Continuous Moving Surface“. Cleveland State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=csu1294789859.
Der volle Inhalt der QuelleLai, Peter. „Pore-scale heterogeneity in the mineral distribution and reactive surface area of permeable rocks“. Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/42537.
Der volle Inhalt der QuelleGHIMIRE, BIDUR. „HYDRAULIC ANALYSIS OF FREE-SURFACE FLOWS INTO HIGHLY PERMEABLE POROUS MEDIA AND ITS APPLICATIONS“. 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/85382.
Der volle Inhalt der QuelleKyoto University (京都大学)
0048
新制・課程博士
博士(工学)
甲第14916号
工博第3143号
新制||工||1471(附属図書館)
27354
UT51-2009-M830
京都大学大学院工学研究科都市社会工学専攻
(主査)教授 細田 尚, 教授 戸田 圭一, 准教授 岸田 潔
学位規則第4条第1項該当
Dracic, Melisa. „Omvandla Malmö till en "svampstad"? : En studie om sponge city-konceptet“. Thesis, Malmö universitet, Institutionen för Urbana Studier (US), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-44104.
Der volle Inhalt der QuelleThe occurrence of water related problems such as extreme precipitation, floods, drought and water scarcity will increase in urban areas as a result of global climate change. The sponge city-concept is an urban stormwater system launched in China and aims to improve the water management in cities by restoring the city’s capacity to absorb, infiltrate, store and purify water. This study aimed to investigate if the sponge city-concept could be implemented in Malmö by answering the question “What possibilities and obstacles exist for Malmö to implement the sponge city-concept?”. Through a systematic literature review and content analysis in combination with the theoretical framework, which was based on the concept climate change vulnerability, the results showed that there are some possibilities but also obstacles. The main obstacle that was identified is that the ground in Malmö largely consists of dense moraines which forms an obstacle for the infiltration measures that are included in the sponge city-concept. Some possibilities that were identified is that the sponge city-concept can decrease the sensitivity to harm that occurs in relation to the exposure level but also that Malmö’s adaptation capacity is relatively high. However, because this study only investigated specific physical/environmental aspects within the sponge city-concept, more studies that consider more aspects are required if an implementation of the concept would become prevailing.
Mukherjee, Moumita. „Instrumented permeable blankets for estimating subsurface hydraulic conductivity and confirming numerical models used for subsurface liquid injection“. Diss., Connect to online resource - MSU authorized users, 2008.
Den vollen Inhalt der Quelle findenPluvinage, Franck. „Effets d’interfaces poroélastiques sur la stabilité d’un écoulement incompressible cisaillé“. Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2036/document.
Der volle Inhalt der QuelleLocal linear stability of fluid-structure interactions is investigated in uncustomary fields such as swept, unswept and asymptotic suction incompressible boundary layers developing over compliant, porous plates –in the limit of small permeability– or relatistically-modeled incompressible flows over a canopy. Results show that compliance has a stabilizing effect on the 3D most instable hydrodynamic mode but allows hydroelastic modes to emerge, which take the form of travelling wave flutter instabilities ; conversely, permeability tends to damp the latter ones but to destabilize the former ones. Transition on swept wings also locally depends on 3D unviscid instabilities called Crossflow vortices, hardly unstabilized by permeability ; this provides promizing outlets, since permeability has still a strong positive effect on 3D hydroelastic modes. In the field of incompressible parallel boundary layer flows with uniform suction through the wall, most of the existing studies are based on the assumption that plate’s porosity and flexibility are negligible. Nevertheless, proof is given here that permeability (linked to suction) exerts a strong destabilizing effect on the Tollmien-Schlichting most instable mode. Besides, compliance (that can result from lightering measures) reveals to provoke an absolute instability that is likely to contaminate the entire domain. Finally, attention is paid to incompressible flows across a canopy, that are similar to mixing layers. Linear stability of the coherent motions called monami or honami is adressed using a relatistically-computed velocity profile, then compared to the results obtained with the customary piecewise linear velocity profile. Then, drag force variations are taken into account as soon as velocity profile computing. The result is that drag happens to have a destabilizing effect on the flow, instead of the commonly admitted damping effect
Howden, Nicholas John Kenneth. „Hydrogeological controls on surface/groundwater interactions in a lowland permeable chalk catchment : implications for water quality and numerical modelling“. Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431082.
Der volle Inhalt der QuelleWOLDIE, Daniel Werede. „Understanding the Role of a Less-permeable Surface in Water Dynamics of Headwater Catchments based on Various Monitoring, Analytical Methods and a Numerical Model“. 京都大学 (Kyoto University), 2011. http://hdl.handle.net/2433/142387.
Der volle Inhalt der QuelleAmorós, Morote Carlos Enrique, und Ulloa José Carlos Bendezú. „Diseño de mezcla de concreto permeable para la construcción de la superficie de rodadura de un pavimento de resistencia de 210 kg/cm2“. Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2019. http://hdl.handle.net/10757/626313.
Der volle Inhalt der QuellePervious concrete is a special type of concrete which allows the passage of water through its structure due to its high percentage of voids unlike traditional concrete. This quality of pervious concrete allows to end the lack of permeability in traditional concrete structures thus preventing structural failures due to flooding and water runoff. This research will seek to find a mix design for pervious concrete to apply it as an alternative road surface for pavements. To verify the above, different mix designs were performed in laboratory to find the design that give us a compressive strength of 210 kg/cm2, the chosen design had the following features: water - cement ratio of 0.38, 13% air content, 1.5% additive superplasticizer and 7% of sand. To validate the research, a prototype was built with the chosen mix design, this prototype had an area of 2 m2 (1m x 2m). The fresh concrete was analyzed for its consistency, density, and void percentage; the hardened concrete was analyzed for its compressive strength, permeability and flexural strength, finally the prototype was load tested. The results indicated that the mix design used in the prototype with compressive strength of 261.58 kg/cm2 and a permeability of 0.01744 m/s can be used as an alternative rolling surface for pavements.
Tesis
Bücher zum Thema "Permeable surfaces"
Zeh, Helgard. Amenagement de surfaces herbeuses permeables: Rapport et recommandations. Berne: l'Office federal de la protection de l''environnement, 1987.
Den vollen Inhalt der Quelle findenTräubel, Harro. New Materials Permeable to Water Vapor. 1999.
Den vollen Inhalt der Quelle findenBhattacharya, Sreedeep. Consumerist Encounters. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190125561.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Permeable surfaces"
Hoyal, David C. J. D., Marcus I. Bursik, Joseph F. Atkinson und Joseph V. Depinto. „Filtration Enhances Suspended Sediment Deposition from Surface Water to Granular Permeable Beds“. In The Interactions Between Sediments and Water, 157–71. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5552-6_17.
Der volle Inhalt der QuellePeichl, Jonas, Andreas Schwab, Markus Selzer, Hannah Böhrk und Jens von Wolfersdorf. „Innovative Cooling for Rocket Combustion Chambers“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 51–64. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_3.
Der volle Inhalt der QuelleSmith, David R., Kevin Earley und Justin M. Lia. „Potential Application of ASTM C1701 for Evaluating Surface Infiltration of Permeable Interlocking Concrete Pavements“. In Pervious Concrete, 1–9. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2012. http://dx.doi.org/10.1520/stp104560.
Der volle Inhalt der QuelleCortier, O., M. Boutouil und O. Maquaire. „Quantifying Benefits of Permeable Pavement on Surface Runoff, An Agent-Based-Model with NetLogo“. In New Trends in Urban Drainage Modelling, 729–33. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99867-1_126.
Der volle Inhalt der QuelleBlois, Gianluca, James L. Best, Kenneth T. Christensen, Richard J. Hardy und Gregory H. Sambrook Smith. „Coherent Flow Structures in the Pore Spaces of Permeable Beds Underlying a Unidirectional Turbulent Boundary Layer: A Review and Some New Experimental Results“. In Coherent Flow Structures at Earth's Surface, 43–62. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118527221.ch4.
Der volle Inhalt der QuelleWalloch, Craig, Heather J. Brown und David R. Smith. „Development of a New Test Method for Determining the Surface Infiltration Rate of Permeable Unit Pavement Systems“. In Masonry 2014, 319–34. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2014. http://dx.doi.org/10.1520/stp157720130180.
Der volle Inhalt der QuelleHoenich, N., und D. Malik. „Membranes and permeable films“. In Surfaces and Interfaces for Biomaterials. CRC Press, 2005. http://dx.doi.org/10.1201/9781439823644.ch4.
Der volle Inhalt der QuelleHOENICH, N. A., und D. MALIK. „Membranes and permeable films“. In Surfaces and Interfaces for Biomaterials, 83–102. Elsevier, 2005. http://dx.doi.org/10.1533/9781845690809.1.83.
Der volle Inhalt der Quelle„Aerogels Utilizations in Batteries“. In Aerogels II, 99–120. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901298-6.
Der volle Inhalt der QuelleHecker, Sharon. „“Impressionist Sculptor”?“ In Moment's Monument. University of California Press, 2017. http://dx.doi.org/10.1525/california/9780520294486.003.0004.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Permeable surfaces"
Norasikin, Mohd Adili, Diego Martinez-Plasencia, Gianluca Memoli und Sriram Subramanian. „SonicSpray: A Technique to Reconfigure Permeable Mid-Air Displays“. In ISS '19: Interactive Surfaces and Spaces. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3343055.3359704.
Der volle Inhalt der QuelleBilchenko, Natalya. „Permeable surfaces hypersonic aircraft optimal heat protection mathematical modeling“. In 2015 International Conference "Stability and Control Processes" in Memory of V.I. Zubov (SCP). IEEE, 2015. http://dx.doi.org/10.1109/scp.2015.7342145.
Der volle Inhalt der QuelleBowen, Luke, Alper Celik, Mahdi Azarpeyvand und Carlos R. Ilario da Silva. „On the use of Tailored Permeable Surfaces for Turbulence Interaction Noise Control“. In AIAA AVIATION 2020 FORUM. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-2530.
Der volle Inhalt der QuelleEpifanov, V. M., A. A. Kurakin und A. P. Kareev. „INTEGRAL METHOD OF CALCULATING TEMPERATURE STATES OF CURVED CHANNEL PERMEABLE ENDWALL SURFACES“. In International Heat Transfer Conference 9. Connecticut: Begellhouse, 1990. http://dx.doi.org/10.1615/ihtc9.2710.
Der volle Inhalt der QuelleOwen, John R., und Jennifer S. Wayne. „Influence of Loading Conditions and the Superficial Tangential Zone in Contact Models of Articular Surfaces“. In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206143.
Der volle Inhalt der QuelleNgo, C. C., und F. C. Lai. „Study on Natural Convection From a Buried Pipe With Backfill“. In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32882.
Der volle Inhalt der QuelleBilchenko, Grigory, und Natalya Bilchenko. „The one-dimensional and two-dimensional inverse problems of heat and mass transfer on hypersonic aircraft permeable surfaces“. In 2017 Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov) (CNSA). IEEE, 2017. http://dx.doi.org/10.1109/cnsa.2017.7973940.
Der volle Inhalt der QuelleChong, William, Mircea Teodorescu, Ashlie Martini und Homer Rahnejat. „Mechanisms of Entrapment and Release of Fluid Droplets From Nano-Scale Surface Features“. In ASME/STLE 2012 International Joint Tribology Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ijtc2012-61201.
Der volle Inhalt der QuelleKendall-Torry, Christofer, und Florian Danner. „Investigations on Direct and Hybrid Sound Predictions“. In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57612.
Der volle Inhalt der QuelleRajendran, Nanthini, Bhamidi Prasad und Y. V. S. S. Sanyasiraju. „Development of Turbine Blade Profiles Using Iterative Inverse Design Methodology“. In ASME 2017 Gas Turbine India Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gtindia2017-4553.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Permeable surfaces"
Simmons, Carver S., und Jason M. Keller. Liquid Spills on Permeable Soil Surfaces: Experimental Confirmations. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/888713.
Der volle Inhalt der QuelleKeller, Jason M., und Carver S. Simmons. The Influence of Selected Liquid and Soil Properties on the Propagation of Spills over Flat Permeable Surfaces. Office of Scientific and Technical Information (OSTI), Februar 2005. http://dx.doi.org/10.2172/15011818.
Der volle Inhalt der QuelleRobert S. Bowman, Pengfei Zhang und Xian Tao. SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER. Office of Scientific and Technical Information (OSTI), März 2002. http://dx.doi.org/10.2172/824865.
Der volle Inhalt der QuelleBowman, Robert S., Pengfei Zhang, Xian Tao, Richard L. Johnson und Douglas Wolf. SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER. Office of Scientific and Technical Information (OSTI), März 2002. http://dx.doi.org/10.2172/794323.
Der volle Inhalt der QuelleRobert S. Bowman, Zhaohui Li, Stephen J. Roy, Todd Burt, Timothy L. Johnson und Richard L. Johnson. SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER. Office of Scientific and Technical Information (OSTI), August 1999. http://dx.doi.org/10.2172/772441.
Der volle Inhalt der QuelleGuidati, Gianfranco, und Domenico Giardini. Joint synthesis “Geothermal Energy” of the NRP “Energy”. Swiss National Science Foundation (SNSF), Februar 2020. http://dx.doi.org/10.46446/publication_nrp70_nrp71.2020.4.en.
Der volle Inhalt der QuelleSurface altered zeolites as permeable barriers for in situ treatment of contaminated groundwater. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/650198.
Der volle Inhalt der Quelle