Zeitschriftenartikel zum Thema „Periodic and quasi-Periodic media“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Periodic and quasi-Periodic media.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Periodic and quasi-Periodic media" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Su, Xifeng, und Rafael de la Llave. „KAM Theory for Quasi-periodic Equilibria in One-Dimensional Quasi-periodic Media“. SIAM Journal on Mathematical Analysis 44, Nr. 6 (Januar 2012): 3901–27. http://dx.doi.org/10.1137/12087160x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Pang, Gen-Di. „Optical properties of quasi-periodic media“. Journal of Physics C: Solid State Physics 21, Nr. 31 (10.11.1988): 5455–63. http://dx.doi.org/10.1088/0022-3719/21/31/016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sinai, Yakov G. „Anomalous transport in quasi-periodic media“. Russian Mathematical Surveys 54, Nr. 1 (28.02.1999): 181–208. http://dx.doi.org/10.1070/rm1999v054n01abeh000120.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Su, Xifeng, und Rafael de la Llave. „KAM theory for quasi-periodic equilibria in 1D quasi-periodic media: II. Long-range interactions“. Journal of Physics A: Mathematical and Theoretical 45, Nr. 45 (19.10.2012): 455203. http://dx.doi.org/10.1088/1751-8113/45/45/455203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kimura, S., G. Schubert und J. M. Straus. „Instabilities of Steady, Periodic, and Quasi-Periodic Modes of Convection in Porous Media“. Journal of Heat Transfer 109, Nr. 2 (01.05.1987): 350–55. http://dx.doi.org/10.1115/1.3248087.

Der volle Inhalt der Quelle
Annotation:
Instabilities of steady and time-dependent thermal convection in a fluid-saturated porous medium heated from below have been studied using linear perturbation theory. The stability of steady-state solutions of the governing equations (obtained numerically) has been analyzed by evaluating the eigenvalues of the linearized system of equations describing the temporal behavior of infinitesimal perturbations. Using this procedure, we have found that time-dependent convection in a square cell sets in at Rayleigh number Ra=390. The temporal frequency of the simply periodic (P(1)) convection at Rayleigh numbers exceeding this value is given by the imaginary part of the complex eigenvalue. The stability of this (P(1)) state has also been studied; transition to quasi-periodic convection (QP2) occurs at Ra ≈ 510. A reverse transition to a simply periodic state (P(2)) occurs at Ra ≈ 560; a slight jump in the frequency of the P(2) state occurs at Ra between 625 and 640. The jump coincides with a second narrow (in terms of Ra) region of quasi-periodicity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

de la Llave, Rafael, Xifeng Su und Lei Zhang. „Resonant Equilibrium Configurations in Quasi-Periodic Media: KAM Theory“. SIAM Journal on Mathematical Analysis 49, Nr. 1 (Januar 2017): 597–625. http://dx.doi.org/10.1137/15m1048598.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

de la Llave, Rafael, Xifeng Su und Lei Zhang. „Resonant Equilibrium Configurations in Quasi-periodic Media: Perturbative Expansions“. Journal of Statistical Physics 162, Nr. 6 (08.02.2016): 1522–38. http://dx.doi.org/10.1007/s10955-016-1464-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gao, Yixian, Weipeng Zhang und Shuguan Ji. „Quasi-Periodic Solutions of Nonlinear Wave Equation with x-Dependent Coefficients“. International Journal of Bifurcation and Chaos 25, Nr. 03 (März 2015): 1550043. http://dx.doi.org/10.1142/s0218127415500431.

Der volle Inhalt der Quelle
Annotation:
This paper is devoted to the study of quasi-periodic solutions of a nonlinear wave equation with x-dependent coefficients. Such a model arises from the forced vibration of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. Based on the partial Birkhoff normal form and an infinite-dimensional KAM theorem, we can obtain the existence of quasi-periodic solutions for this model under the general boundary conditions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pang, Gen-Di, und Fu-Cho Pu. „Non-linear optical effects in quasi-periodic multi-layered media“. Journal of Physics C: Solid State Physics 21, Nr. 22 (10.08.1988): L853—L856. http://dx.doi.org/10.1088/0022-3719/21/22/014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ben-Messaoud, Tahar, Jason Riordon, Alexandre Melanson, P. V. Ashrit und Alain Haché. „Photoactive periodic media“. Applied Physics Letters 94, Nr. 11 (16.03.2009): 111904. http://dx.doi.org/10.1063/1.3095478.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Chulaevsky, Victor. „The KAM approach to the localization in “haarsch” quasi-periodic media“. Journal of Mathematical Physics 59, Nr. 1 (Januar 2018): 013509. http://dx.doi.org/10.1063/1.4995024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Cluni, F., und V. Gusella. „Estimation of residuals for the homogenized solution of quasi-periodic media“. Probabilistic Engineering Mechanics 54 (Oktober 2018): 110–17. http://dx.doi.org/10.1016/j.probengmech.2017.09.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Werner, P. „Resonances in periodic media“. Mathematical Methods in the Applied Sciences 14, Nr. 4 (Mai 1991): 227–63. http://dx.doi.org/10.1002/mma.1670140403.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Ayoul-Guilmard, Quentin, Anthony Nouy und Christophe Binetruy. „Tensor-based multiscale method for diffusion problems in quasi-periodic heterogeneous media“. ESAIM: Mathematical Modelling and Numerical Analysis 52, Nr. 3 (Mai 2018): 869–91. http://dx.doi.org/10.1051/m2an/2018022.

Der volle Inhalt der Quelle
Annotation:
This paper proposes to address the issue of complexity reduction for the numerical simulation of multiscale media in a quasi-periodic setting. We consider a stationary elliptic diffusion equation defined on a domain D such that D̅ is the union of cells {D̅i}i∈I and we introduce a two-scale representation by identifying any function v(x) defined on D with a bi-variate function v(i,y), where i ∈ I relates to the index of the cell containing the point x and y ∈ Y relates to a local coordinate in a reference cell Y. We introduce a weak formulation of the problem in a broken Sobolev space V(D) using a discontinuous Galerkin framework. The problem is then interpreted as a tensor-structured equation by identifying V(D) with a tensor product space ℝI⊗ V(Y) of functions defined over the product set I × Y. Tensor numerical methods are then used in order to exploit approximability properties of quasi-periodic solutions by low-rank tensors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Gorshkov, A. S., und K. I. Volyak. „The Interaction Video Pulses and Quasi-Harmonic Signals in Periodic Nonlinear Media“. Japanese Journal of Applied Physics 34, Part 1, No. 9A (15.09.1995): 5070–75. http://dx.doi.org/10.1143/jjap.34.5070.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Krejčí, Pavel. „Periodic solutions to Maxwell equations in nonlinear media“. Czechoslovak Mathematical Journal 36, Nr. 2 (1986): 238–58. http://dx.doi.org/10.21136/cmj.1986.102088.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Kuznetsov, Sergey V. „Fundamental Solutions for Periodic Media“. Advances in Mathematical Physics 2014 (2014): 1–4. http://dx.doi.org/10.1155/2014/473068.

Der volle Inhalt der Quelle
Annotation:
Necessity for the periodic fundamental solutions arises when the periodic boundary value problems should be analyzed. The latter are naturally related to problems of finding the homogenized properties of the dispersed composites, porous media, and media with uniformly distributed microcracks or dislocations. Construction of the periodic fundamental solutions is done in terms of the convergent series in harmonic polynomials. An example of the periodic fundamental solution for the anisotropic porous medium is constructed, along with the simplified lower bound estimate.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Alcocer, F. J., V. Kumar und P. Singh. „Permeability of periodic porous media“. Physical Review E 59, Nr. 1 (01.01.1999): 711–14. http://dx.doi.org/10.1103/physreve.59.711.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Griffiths, David J., und Carl A. Steinke. „Waves in locally periodic media“. American Journal of Physics 69, Nr. 2 (Februar 2001): 137–54. http://dx.doi.org/10.1119/1.1308266.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Haché, Alain, Mohit Malik, Marcus Diem, Lasha Tkeshelashvili und Kurt Busch. „Measuring randomness with periodic media“. Photonics and Nanostructures - Fundamentals and Applications 5, Nr. 1 (Februar 2007): 29–36. http://dx.doi.org/10.1016/j.photonics.2006.11.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Molotkov, L. A., und A. E. Khilo. „Averaging periodic, nonideal elastic media“. Journal of Soviet Mathematics 32, Nr. 2 (Januar 1986): 186–92. http://dx.doi.org/10.1007/bf01084156.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Blank, Carsten, Martina Chirilus-Bruckner, Vincent Lescarret und Guido Schneider. „Breather Solutions in Periodic Media“. Communications in Mathematical Physics 302, Nr. 3 (01.02.2011): 815–41. http://dx.doi.org/10.1007/s00220-011-1191-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Sab, K., und F. Pradel. „Homogenisation of periodic Cosserat media“. International Journal of Computer Applications in Technology 34, Nr. 1 (2009): 60. http://dx.doi.org/10.1504/ijcat.2009.022703.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Manela, Ofer, Mordechai Segev und Demetrios N. Christodoulides. „Nondiffracting beams in periodic media“. Optics Letters 30, Nr. 19 (01.10.2005): 2611. http://dx.doi.org/10.1364/ol.30.002611.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Caffarelli, Luis A., und Rafael de la Llave. „Planelike minimizers in periodic media“. Communications on Pure and Applied Mathematics 54, Nr. 12 (2001): 1403–41. http://dx.doi.org/10.1002/cpa.10008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Mikaeeli, Ameneh, Alireza Keshavarz, Ali Baseri und Michal Pawlak. „Controlling Thermal Radiation in Photonic Quasicrystals Containing Epsilon-Negative Metamaterials“. Applied Sciences 13, Nr. 23 (04.12.2023): 12947. http://dx.doi.org/10.3390/app132312947.

Der volle Inhalt der Quelle
Annotation:
The transfer matrix approach is used to study the optical characteristics of thermal radiation in a one-dimensional photonic crystal (1DPC) with metamaterial. In this method, every layer within the multilayer structure is associated with its specific transfer matrix. Subsequently, it links the incident beam to the next layer from the previous layer. The proposed structure is composed of three types of materials, namely InSb, ZrO2, and Teflon, and one type of epsilon-negative (ENG) metamaterial and is organized in accordance with the laws of sequencing. The semiconductor InSb has the capability to adjust bandgaps by utilizing its thermally responsive permittivity, allowing for tunability with temperature changes, while the metamaterial modifies the bandgaps according to its negative permittivity. Using quasi-periodic shows that, in contrast to employing absolute periodic arrangements, it produces more diverse results in modifying the structure’s band-gaps. Using a new sequence arrangement mixed-quasi-periodic (MQP) structure, which is a combination of two quasi periodic structures, provides more freedom of action for modifying the properties of the medium than periodic arrangements do. The ability to control thermal radiation is crucial in a range of optical applications since it is frequently unpolarized and incoherent in both space and time. These configurations allow for the suppression and emission of thermal radiation in a certain frequency range due to their fundamental nature as photonic band-gaps (PBGs). So, we are able to control the thermal radiation by changing the structure arrangement. Here, the We use an indirect method based on the second Kirchoff law for thermal radiation to investigate the emittance of black bodies based on a well-known transfer matrix technique. We can measure the transmission and reflection coefficients with associated transmittance and reflectance, T and R, respectively. Here, the effects of several parameters, including the input beam’s angle, polarization, and period on tailoring the thermal radiation spectrum of the proposed structure, are studied. The results show that in some frequency bands, thermal radiation exceeded the black body limit. There were also good results in terms of complete stop bands for both TE and TM polarization at different incident angles and frequencies. This study produces encouraging results for the creation of Terahertz (THz) filters and selective thermal emitters. The tunability of our media is a crucial factor that influences the efficiency and function of our desired photonic outcome. Therefore, exploiting MQP sequences or arrangements is a promising strategy, as it allows us to rearrange our media more flexibly than quasi-periodic sequences and thus achieve our optimal result.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Eberhard, J. P., N. Suciu und C. Vamoş. „On the self-averaging of dispersion for transport in quasi-periodic random media“. Journal of Physics A: Mathematical and Theoretical 40, Nr. 4 (09.01.2007): 597–610. http://dx.doi.org/10.1088/1751-8113/40/4/002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Danilenko, V. A., und S. I. Skurativskyy. „Invariant chaotic and quasi-periodic solutions of nonlinear nonlocal models of relaxing media“. Reports on Mathematical Physics 59, Nr. 1 (Februar 2007): 45–51. http://dx.doi.org/10.1016/s0034-4877(07)80003-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Parnell, W. J., und I. D. Abrahams. „Dynamic homogenization in periodic fibre reinforced media. Quasi-static limit for SH waves“. Wave Motion 43, Nr. 6 (Juni 2006): 474–98. http://dx.doi.org/10.1016/j.wavemoti.2006.03.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Blass, Timothy, und Rafael de la Llave. „The Analyticity Breakdown for Frenkel-Kontorova Models in Quasi-periodic Media: Numerical Explorations“. Journal of Statistical Physics 150, Nr. 6 (20.02.2013): 1183–200. http://dx.doi.org/10.1007/s10955-013-0718-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Topolnikov, A. S. „Argumentation of Application if Quasi-Stationary Model to Describe the Periodic Regime of Oil Well“. Proceedings of the Mavlyutov Institute of Mechanics 12, Nr. 1 (2017): 15–26. http://dx.doi.org/10.21662/uim2017.1.003.

Der volle Inhalt der Quelle
Annotation:
In the paper the argumentation of application of quasi-stationary model of gas-liquid flow is presented to describe periodic regime of oil well operating. It is shown that this simplification actually does not affect the solution accuracy, but allows to essentially diminish the calculating time. In view of the considered problem specification the transition from non-stationary model of media to the quasi-stationary model greatly increases the computational speed, which is the necessary condition for execution the optimization calculations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

LEVENSON, J. A., und P. VIDAKOVIC. „QUANTUM NOISE REDUCTION IN TRAVELLING-WAVE QUASI-PHASE-MATCHED SECOND HARMONIC GENERATION“. Journal of Nonlinear Optical Physics & Materials 05, Nr. 04 (Oktober 1996): 879–98. http://dx.doi.org/10.1142/s0218863596000623.

Der volle Inhalt der Quelle
Annotation:
The present calculation on squeezing capabilities of quadratic nonlinear media in which the phase matching condition is achieved artificially by a periodic poling of the nonlinear susceptibility shows that interesting performance can be obtained for highly integrable and nonlinear materials, using technologies already developed. The origin of squeezing in quasi-phase matched (QPM) media is the cascading of two second order nonlinearities, which at small second harmonic conversion rates has properties similar to a more familiar, purely third order nonlinear effect—Kerr effect.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Lipton, Robert, und Robert Viator Jr. „Creating Band Gaps in Periodic Media“. Multiscale Modeling & Simulation 15, Nr. 4 (Januar 2017): 1612–50. http://dx.doi.org/10.1137/16m1083396.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Carlsson, N., A. Mahanti, Zongpeng Li und D. Eager. „Optimized Periodic Broadcast of Nonlinear Media“. IEEE Transactions on Multimedia 10, Nr. 5 (August 2008): 871–84. http://dx.doi.org/10.1109/tmm.2008.922847.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Delyon, François, Yves-Emmanuel Lévy und Bernard Souillard. „Nonperturbative Bistability in Periodic Nonlinear Media“. Physical Review Letters 57, Nr. 16 (20.10.1986): 2010–13. http://dx.doi.org/10.1103/physrevlett.57.2010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Liao, Shih-Gang, und Chin-Chin Wu. „Propagation failure in discrete periodic media“. Journal of Difference Equations and Applications 19, Nr. 8 (August 2013): 1268–75. http://dx.doi.org/10.1080/10236198.2012.739169.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Conca, Carlos, Rafael Orive und Muthusamy Vanninathan. „On Burnett coefficients in periodic media“. Journal of Mathematical Physics 47, Nr. 3 (März 2006): 032902. http://dx.doi.org/10.1063/1.2179048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Hizi, Uzi, und David J. Bergman. „Molecular diffusion in periodic porous media“. Journal of Applied Physics 87, Nr. 4 (15.02.2000): 1704–11. http://dx.doi.org/10.1063/1.372081.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Frankel, Michael, und Victor Roytburd. „Dynamics of SHS in periodic media“. Nonlinear Analysis: Theory, Methods & Applications 63, Nr. 5-7 (November 2005): e1507-e1515. http://dx.doi.org/10.1016/j.na.2005.01.046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Bankov, S. E. „Electrodynamics of Inhomogeneous 2D Periodic Media“. Journal of Communications Technology and Electronics 64, Nr. 11 (November 2019): 1159–69. http://dx.doi.org/10.1134/s1064226919110044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Saeger, R. B., L. E. Scriven und H. T. Davis. „Transport processes in periodic porous media“. Journal of Fluid Mechanics 299 (25.09.1995): 1–15. http://dx.doi.org/10.1017/s0022112095003399.

Der volle Inhalt der Quelle
Annotation:
The Stokes equation system and Ohm's law were solved numerically for fluid in periodic bicontinuous porous media of simple cubic (SC), body-centred cubic (BCC) and face-centred cubic (FCC) symmetry. The Stokes equation system was also solved for fluid in porous media of SC arrays of disjoint spheres. The equations were solved by Galerkin's method with finite element basis functions and with elliptic grid generation. The Darcy permeability k computed for flow through SC arrays of spheres is in excellent agreement with predictions made by other authors. Prominent recirculation patterns are found for Stokes flow in bicontinuous porous media. The results of the analysis of Stokes flow and Ohmic conduction through bicontinuous porous media were used to test the permeability scaling law proposed by Johnson, Koplik & Schwartz (1986), which introduces a length parameter Λ to relate Darcy permeability k and the formation factor F. As reported in our earlier work on the SC bicontinuous porous media, the scaling law holds approximately for the BCC and FCC families except when the porespace becomes nearly spherical pores connected by small orifice-like passages. We also found that, except when the porespace was connected by the small orifice-like passages, the permeability versus porosity curve of the bicontinuous media agrees very well with that of arrays of disjoint and fused spheres of the same crystallographic symmetry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Claes, I., und C. Van den Broeck. „Dispersion of particles in periodic media“. Journal of Statistical Physics 70, Nr. 5-6 (März 1993): 1215–31. http://dx.doi.org/10.1007/bf01049429.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Molotkov, L. A., und A. E. Khilo. „Effective media for periodic anisotropic systems“. Journal of Soviet Mathematics 30, Nr. 5 (September 1985): 2445–50. http://dx.doi.org/10.1007/bf02107408.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Drouot, A., C. L. Fefferman und M. I. Weinstein. „Defect Modes for Dislocated Periodic Media“. Communications in Mathematical Physics 377, Nr. 3 (19.06.2020): 1637–80. http://dx.doi.org/10.1007/s00220-020-03787-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Blonskyi, I., V. Kadan, Y. Shynkarenko, O. Yarusevych, P. Korenyuk, V. Puzikov und L. Grin’. „Periodic femtosecond filamentation in birefringent media“. Applied Physics B 120, Nr. 4 (07.08.2015): 705–10. http://dx.doi.org/10.1007/s00340-015-6186-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Kaminer, Ido, Carmel Rotschild, Ofer Manela und Mordechai Segev. „Periodic solitons in nonlocal nonlinear media“. Optics Letters 32, Nr. 21 (29.10.2007): 3209. http://dx.doi.org/10.1364/ol.32.003209.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Craster, R. V., J. Kaplunov und A. V. Pichugin. „High-frequency homogenization for periodic media“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, Nr. 2120 (10.03.2010): 2341–62. http://dx.doi.org/10.1098/rspa.2009.0612.

Der volle Inhalt der Quelle
Annotation:
An asymptotic procedure based upon a two-scale approach is developed for wave propagation in a doubly periodic inhomogeneous medium with a characteristic length scale of microstructure far less than that of the macrostructure. In periodic media, there are frequencies for which standing waves, periodic with the period or double period of the cell, on the microscale emerge. These frequencies do not belong to the low-frequency range of validity covered by the classical homogenization theory, which motivates our use of the term ‘high-frequency homogenization’ when perturbing about these standing waves. The resulting long-wave equations are deduced only explicitly dependent upon the macroscale, with the microscale represented by integral quantities. These equations accurately reproduce the behaviour of the Bloch mode spectrum near the edges of the Brillouin zone, hence yielding an explicit way for homogenizing periodic media in the vicinity of ‘cell resonances’. The similarity of such model equations to high-frequency long wavelength asymptotics, for homogeneous acoustic and elastic waveguides, valid in the vicinities of thickness resonances is emphasized. Several illustrative examples are considered and show the efficacy of the developed techniques.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Bulgakov, A. A., S. A. Bulgakov und M. Nieto-Vesperinas. „Complex polaritons in periodic layered media“. Physical Review B 52, Nr. 15 (15.10.1995): 10788–91. http://dx.doi.org/10.1103/physrevb.52.10788.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

de Sterke, C. Martijn. „Stability analysis of nonlinear periodic media“. Physical Review A 45, Nr. 11 (01.06.1992): 8252–58. http://dx.doi.org/10.1103/physreva.45.8252.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Ketcheson, David I., und Randall J. Leveque. „Shock dynamics in layered periodic media“. Communications in Mathematical Sciences 10, Nr. 3 (2012): 859–74. http://dx.doi.org/10.4310/cms.2012.v10.n3.a7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie