Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Peptidoglycan polymerization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Peptidoglycan polymerization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Peptidoglycan polymerization"
Arthur, Michel. „Regulation of Bacterial Peptidoglycan Polymerization“. Trends in Microbiology 24, Nr. 7 (Juli 2016): 519–21. http://dx.doi.org/10.1016/j.tim.2016.05.003.
Der volle Inhalt der QuelleVasudevan, Pradeep, Jessica McElligott, Christa Attkisson, Michael Betteken und David L. Popham. „Homologues of the Bacillus subtilis SpoVB Protein Are Involved in Cell Wall Metabolism“. Journal of Bacteriology 191, Nr. 19 (31.07.2009): 6012–19. http://dx.doi.org/10.1128/jb.00604-09.
Der volle Inhalt der QuelleChan, Yvonne G. Y., Matthew B. Frankel, Dominique Missiakas und Olaf Schneewind. „SagB Glucosaminidase Is a Determinant of Staphylococcus aureus Glycan Chain Length, Antibiotic Susceptibility, and Protein Secretion“. Journal of Bacteriology 198, Nr. 7 (25.01.2016): 1123–36. http://dx.doi.org/10.1128/jb.00983-15.
Der volle Inhalt der QuelleZuber, Benoît, Marisa Haenni, Tânia Ribeiro, Kathrin Minnig, Fátima Lopes, Philippe Moreillon und Jacques Dubochet. „Granular Layer in the Periplasmic Space of Gram-Positive Bacteria and Fine Structures of Enterococcus gallinarum and Streptococcus gordonii Septa Revealed by Cryo-Electron Microscopy of Vitreous Sections“. Journal of Bacteriology 188, Nr. 18 (15.09.2006): 6652–60. http://dx.doi.org/10.1128/jb.00391-06.
Der volle Inhalt der QuelleRuiz, Natividad. „Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase inEscherichia coli“. Proceedings of the National Academy of Sciences 105, Nr. 40 (01.10.2008): 15553–57. http://dx.doi.org/10.1073/pnas.0808352105.
Der volle Inhalt der QuelleYagi, Tetsuya, Sebabrata Mahapatra, Katarína Mikušová, Dean C. Crick und Patrick J. Brennan. „Polymerization of Mycobacterial Arabinogalactan and Ligation to Peptidoglycan“. Journal of Biological Chemistry 278, Nr. 29 (28.04.2003): 26497–504. http://dx.doi.org/10.1074/jbc.m302216200.
Der volle Inhalt der QuelleArbeloa, Ana, Heidi Segal, Jean-Emmanuel Hugonnet, Nathalie Josseaume, Lionnel Dubost, Jean-Paul Brouard, Laurent Gutmann, Dominique Mengin-Lecreulx und Michel Arthur. „Role of Class A Penicillin-Binding Proteins in PBP5-Mediated β-Lactam Resistance in Enterococcus faecalis“. Journal of Bacteriology 186, Nr. 5 (01.03.2004): 1221–28. http://dx.doi.org/10.1128/jb.186.5.1221-1228.2004.
Der volle Inhalt der QuelleRice, Louis B., Lenore L. Carias, Susan Rudin, Rebecca Hutton, Steven Marshall, Medhat Hassan, Nathalie Josseaume, Lionel Dubost, Arul Marie und Michel Arthur. „Role of Class A Penicillin-Binding Proteins in the Expression of β-Lactam Resistance in Enterococcus faecium“. Journal of Bacteriology 191, Nr. 11 (20.03.2009): 3649–56. http://dx.doi.org/10.1128/jb.01834-08.
Der volle Inhalt der QuelleAllen, N. E., J. N. Hobbs und T. I. Nicas. „Inhibition of peptidoglycan biosynthesis in vancomycin-susceptible and -resistant bacteria by a semisynthetic glycopeptide antibiotic.“ Antimicrobial Agents and Chemotherapy 40, Nr. 10 (Oktober 1996): 2356–62. http://dx.doi.org/10.1128/aac.40.10.2356.
Der volle Inhalt der QuelleBraddick, Darren, Sandeep Sandhu, David I. Roper, Michael J. Chappell und Timothy D. H. Bugg. „Observation of the time-course for peptidoglycan lipid intermediate II polymerization by Staphylococcus aureus monofunctional transglycosylase“. Microbiology 160, Nr. 8 (01.08.2014): 1628–36. http://dx.doi.org/10.1099/mic.0.079442-0.
Der volle Inhalt der QuelleDissertationen zum Thema "Peptidoglycan polymerization"
Yunck, Rachel. „Identification of MltG as a Potential Terminase for Peptidoglycan Polymerization in Bacteria“. Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493474.
Der volle Inhalt der QuelleMedical Sciences
Atze, Heiner. „Optimization of beta-lactamase inhibitors belonging to the diazabicyclo-octane family and design of a mass spectrometry-based approach for exploring peptidoglycan polymerization“. Electronic Thesis or Diss., Sorbonne université, 2021. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2021SORUS159.pdf.
Der volle Inhalt der QuelleBacterial peptidoglycan (PG) is a mesh like structure comprising glycan strands cross-linked by peptide stems. Since PG is a specific and essential component of bacterial cells it is an attractive and validated target for antibacterial agents. Indeed, the first antibiotic in clinical use - the β-lactam penicillin - targets the enzymes catalyzing the final transpeptidation step of PG synthesis - the Penicillin-Binding-Proteins (PBPs). A prevalent mechanism of resistance to β-lactams is the production of β-lactamases (βLs) that inactivate the drugs. A first generation of β-lactamase inhibitors (BLIs) was based on the β-lactam core followed by diazabicyclooctanes (DBOs), which entered the market in 2015 with avibactam. Emergence of mutations compromising the efficacy of DBOs prompted us to study a series of triazole-substituted DBOs that were obtained by click chemistry. The triazole ring was found to be disfavored due to the absence of a hydrogen bond connecting the carboxamide of marketed DBOs to the conserved N132 residue of βLs. However, functionalization of the triazole partially restored inhibition efficacy without impairing drug penetration. Besides the major cross-links formed by PBPs, alternative cross-links are formed by the structurally distinct l,d-transpeptidases (LDTs) mediating resistance to several β-lactams. We investigated the mechanisms of insertion of new subunits into the expanding PG mesh by developing a method based on labeling with heavy isotopes and mass spectrometry. We report the modes of PG polymerization in strains relying on PBPs and LDTs for PG cross-linking in the presence or absence of β-lactams together with the extent of PG recycling
Buchteile zum Thema "Peptidoglycan polymerization"
van Heijenoort, Jean, Dominique Mengin-Lecreulx, Yveline van Heijenoort, Didier Blanot, Bernard Flouret, Catherine Michaud, Claudine Parquet, Flore Pratviel-Sosa, Manolo Gomez und Juan A. Ayala. „Variations in the Metabolism of Peptidoglycan Prior to Polymerization“. In Bacterial Growth and Lysis, 127–38. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4757-9359-8_15.
Der volle Inhalt der Quelle