Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Peptide hydrolysates“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Peptide hydrolysates" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Peptide hydrolysates"
Jovanovic, Jelena, Andrea Stefanovic, Milena Zuza, Sonja Jakovetic, Natasa Sekuljica, Branko Bugarski und Zorica Knezevic-Jugovic. „Improvement of antioxidant properties of egg white protein enzymatic hydrolysates by membrane ultrafiltration“. Chemical Industry 70, Nr. 4 (2016): 419–28. http://dx.doi.org/10.2298/hemind150506047j.
Der volle Inhalt der QuelleAtef, Maryam, Yasmina Ait Chait, Seyed Mahdi Ojagh, Ali Mohammad Latifi, Mina Esmaeili, Riadh Hammami und Chibuike C. Udenigwe. „Anti-Salmonella Activity and Peptidomic Profiling of Peptide Fractions Produced from Sturgeon Fish Skin Collagen (Huso huso) Using Commercial Enzymes“. Nutrients 13, Nr. 8 (30.07.2021): 2657. http://dx.doi.org/10.3390/nu13082657.
Der volle Inhalt der QuelleCournoyer, Aurore, Jacinthe Thibodeau, Laila Ben Said, Zain Sanchez-Reinoso, Sergey Mikhaylin, Ismail Fliss und Laurent Bazinet. „How Discoloration of Porcine Cruor Hydrolysate Allowed the Identification of New Antifungal Peptides“. Foods 11, Nr. 24 (14.12.2022): 4035. http://dx.doi.org/10.3390/foods11244035.
Der volle Inhalt der QuelleGuo, Honghui, Zhuan Hong und Guangyu Yan. „Collagen peptide chelated zinc nanoparticles from tilapia scales for zinc supplementation“. International Food Research Journal 30, Nr. 2 (28.04.2023): 386–97. http://dx.doi.org/10.47836/ifrj.30.2.10.
Der volle Inhalt der QuellePhetchthumrongchai, Thithi, Viroj Tachapuripunya, Sutasinee Chintong, Sittiruk Roytrakul, Teerasak E-kobon und Wanwimol Klaypradit. „Properties of Protein Hydrolysates and Bioinformatics Prediction of Peptides Derived from Thermal and Enzymatic Process of Skipjack Tuna (Katsuwonus pelamis) Roe“. Fishes 7, Nr. 5 (24.09.2022): 255. http://dx.doi.org/10.3390/fishes7050255.
Der volle Inhalt der QuelleAwosika, Temitola, und Rotimi E. Aluko. „Enzymatic Pea Protein Hydrolysates Are Active Trypsin and Chymotrypsin Inhibitors“. Foods 8, Nr. 6 (10.06.2019): 200. http://dx.doi.org/10.3390/foods8060200.
Der volle Inhalt der QuelleZhang, Jianan, Yang Liu, Liwen Jiang, Tiantian Zhao, Guowan Su und Mouming Zhao. „Exploring the Release of Elastin Peptides Generated from Enzymatic Hydrolysis of Bovine Elastin via Peptide Mapping“. Molecules 28, Nr. 22 (10.11.2023): 7534. http://dx.doi.org/10.3390/molecules28227534.
Der volle Inhalt der QuelleRosida, Dedin Finatsiyatull, Teeradate Kongpichitchoke, Phattara-Orn Havanapan, Andre Yusuf Trisna Putra und Anugerah Dany Priyanto. „Chemical and Sensory Evaluation of Umami Taste Derived from Proteolytic Hydrolysate of Pila ampullacea“. Trends in Sciences 21, Nr. 1 (10.11.2023): 6827. http://dx.doi.org/10.48048/tis.2024.6827.
Der volle Inhalt der QuelleJafarpour, Ali, Simon Gregersen, Rocio Marciel Gomes, Paolo Marcatili, Tobias Hegelund Olsen, Charlotte Jacobsen, Michael Toft Overgaard und Ann-Dorit Moltke Sørensen. „Biofunctionality of Enzymatically Derived Peptides from Codfish (Gadus morhua) Frame: Bulk In Vitro Properties, Quantitative Proteomics, and Bioinformatic Prediction“. Marine Drugs 18, Nr. 12 (27.11.2020): 599. http://dx.doi.org/10.3390/md18120599.
Der volle Inhalt der QuelleBueno-Gavilá, Estefanía, Adela Abellán, Francisco Girón-Rodríguez, José María Cayuela und Luis Tejada. „Bioactivity of Hydrolysates Obtained from Chicken Egg Ovalbumin Using Artichoke (Cynara scolymus L.) Proteases“. Foods 10, Nr. 2 (26.01.2021): 246. http://dx.doi.org/10.3390/foods10020246.
Der volle Inhalt der QuelleDissertationen zum Thema "Peptide hydrolysates"
Shirako, Saki. „Structure and biological activities of hydrophobic short chain pyroglutamyl peptides in fermented foods and food protein hydrolysates“. Kyoto University, 2020. http://hdl.handle.net/2433/253335.
Der volle Inhalt der Quelle0048
新制・課程博士
博士(農学)
甲第22499号
農博第2403号
新制||農||1077(附属図書館)
学位論文||R2||N5279(農学部図書室)
京都大学大学院農学研究科応用生物科学専攻
(主査)教授 佐藤 健司, 教授 菅原 達也, 准教授 豊原 治彦
学位規則第4条第1項該当
Outman, Ahlam. „Production de peptides anticancéreux à partir des hydrolysats d'hémoglobine humaine et bovine, avec des propriétés additionnelles antibactériennes et antioxydantes“. Electronic Thesis or Diss., Université de Lille (2022-....), 2023. http://www.theses.fr/2023ULILR082.
Der volle Inhalt der QuelleHemoglobin, the predominant protein in cruor responsible for the red colour of mammalian blood, is known to be a rich source of bioactive peptides after hydrolysis by porcine pepsin. These peptides are mainly known for their antimicrobial properties. However, these peptides stand out for their ability to specifically target cancer cells while preserving rapidly proliferating healthy cells. The aim of this thesis is to develop a strategy for adding value to human and bovine haemoglobin by producing bioactive peptides and then exploring their potential in the fight against cancer, while assessing their anti-cancer, anti-bacterial and antioxidant properties.In this work, the potential of human hemoglobin to contain bioactive peptides was first studied in silico in comparison with bovine hemoglobin using bioinformatics tools. Blast results showed high identity, 88% and 85% respectively, indicating high similarity between α and β chains. The enzymatic hydrolysis conditions (23°C, E/S = 1/11, pH 3.5) were validated on human hemoglobin and enabled efficient production of the α137-141 peptide. Indeed, more than 60% of the total α137-141 peptide production was obtained in just 30 minutes of hydrolysis, reaching a production peak at 3 h. Furthermore, the mechanism of enzymatic hydrolysis of these two types of haemoglobin follows a similar pattern, according to a zipper mechanism. Enzymatic hydrolysis was also performed at high haemoglobin concentrations (1, 2, 8 and 10%, w/v), enabling large-scale production of α137-141.Next, the results showed strong antimicrobial activity of the peptide hydrolysates against six bacterial strains, independent of the initial substrate concentration level. The hydrolysates also showed strong antioxidant activity, measured by four different tests. In addition, the antimicrobial and antioxidant activities of the human and bovine haemoglobin hydrolysates showed little or no significant difference, with only the concentration level being the determining factor in their activity.The anticancer potential of bioactive peptides derived from the enzymatic hydrolysis of haemoglobin was studied. The results obtained using two distinct approaches highlighted their promising potential as anti-cancer agents. The investigation of key parameters such as the initial concentration of haemoglobin, the degree of hydrolysis and the structural characteristics of the antimicrobial peptides highlighted the influence of these factors on the antimitotic activity of the peptides. The α137-141 peptide stood out for its strong inhibition of rootlet growth, with exceptionally low IC50 values, 10 to 15 times higher than other fractions, attributed to its strong antimicrobial potential. In vitro analyses reinforced the hypothesis that inhibition of protein synthesis plays an essential role in the anti-cancer mechanism of these peptides.Finally, the results of the mass spectrometry study showed the presence of a number of bioactive peptides, the majority of which have characteristics similar to those reported in the literature. New bioactive peptides were also identified in human hemoglobin, such as the antibacterial peptides PTTKTYFPHF (α37-46), FPTTKTYFPH (α36-45), TSKYR (α137-141) and STVLTSKYR (α133-141), as well as the antioxidant TSKYR. (α137-141) including three other opioid peptides, an ACE inhibitor, an anticancer agent. This thesis offers a new innovative approach, combining antimicrobial, antioxidant and anticancer properties, paving the way for more effective and less harmful treatments for patients
Groleau, Paule Émilie. „Étude des interactions peptide-peptide dans un mélange de peptides issu d'un hydrolysat trypsique de ¿-lactoglobuline et de leur influence sur le fractionnement par nanofiltration“. Doctoral thesis, Université Laval, 2003. http://hdl.handle.net/20.500.11794/17853.
Der volle Inhalt der QuelleWhey protein enzymatic hydrolysates contain several functional and bioactive peptides which justify their fractionatation to isolate such interesting molecules. Membrane separation technologies have an excellent potential for peptide separation but peptide-peptide interactions seem to reduce their efficiency. The objectives of this study were to demonstrate the occurrence of peptide-peptide interactions in a tryptic hydrolysate of β-LG, to identify the optimal physico-chemical conditions and peptides responsible of such interactions, as well as to evaluate the influence of such interactions on the fractionation of this hydrolysate by nanofiltration. Isoelectric focusing was used to fractionate the hydrolysate and to demonstrate a peptidic aggregation phenomena at acidic pH. Turbidimetry was then used to highlight the solubility of the hydrolysate according to the pH and some physico-chemical conditions. Peptide aggregates formed at pH 4 were centrifuged and separated, and peptides responsible for this aggregation were identified. From these peptides, the presence of chymotryptic peptides has justified a study of the impact of residual chymotryptic activity in the tryptic preparation on the aggregation phenomena. The second part of this work allowed the evaluation of the effect of these aggregates on the fractionation of the tryptic hydrolysate of β-LG by nanofiltration. It was shown that peptide-peptide interactions do not impair the fractionation. On the contrary, these interactions taking place in the polarized layer may have a positive impact on the fractionation.
Cho, Myong J. „Characterization of bitter peptides from soy protein hydrolysates /“. free to MU campus, to others for purchase, 2000. http://wwwlib.umi.com/cr/mo/fullcit?p9998475.
Der volle Inhalt der QuelleOnuh, John Oloche. „Antihypertensive and Antioxidant Properties of Chicken Skin Protein Hydrolysates: In vitro, in vivo, and Metaboloics Studies“. Elsevier Publishers, Inc, 2013. http://hdl.handle.net/1993/30628.
Der volle Inhalt der QuelleOctober 2015
Le, Coeur Catherine. „Contribution à l'étude d'un hydrolysat pepsique de myoglobine de muscle squelettique rouge de thon Thunnus Albacares : caractérisation des peptides issus de l'hydrolyse étude de l'association hème-peptide“. La Rochelle, 1996. http://www.theses.fr/1996LAROS011.
Der volle Inhalt der QuelleSion, Ludivine. „Bio production à l’échelle pilote d’un hydrolysat peptidique à partir de sang entier bovin et porcin pour l’industrie du Petfood et l’alimentation animale : Identification et caractérisation des peptides actifs“. Thesis, Lille, 2019. http://www.theses.fr/2019LIL1R023.
Der volle Inhalt der QuelleRaw blood from slaughterhouses is an important source of proteins. This co-product, currently undervalued, is mainly composed of hemoglobin, a protein rich in active peptides such as antimicrobial peptides, after hydrolysis by porcine pepsin.The aim of this thesis is to propose a new strategy for the valorization of whole blood, without plasma-cruor separation. Preservation of identified bioactive peptides by pepsic hydrolysis of purified hemoglobin is required. This new way of blood valorization, developed and then optimized at laboratory scale, has been technologically transferred on a pilot scale (80 L).The pepsic hydrolysis of 70% bovine 30% porcine blood was first developed at 1% (w/v) of hemoglobin (23°C, 200 mL). This hydrolysis has demonstrated the coexistence of zipper and one by one enzymatic mechanism for the appearance of the peptide population. Hydrolysis parameters (hemoglobin concentration, industrial grade pepsin, enzyme-substrate proportion, acid allowing the sustainability of the hydrolysis pH and hydrolysis time) were optimized by fixing a complete discoloration of the hydrolysate as well as the preservation of the peptide population.The bioactive hydrolysate thus obtained contains antimicrobial and antioxidant properties. Mass spectrometry analysis has shown the hydrolysate composition in terms of peptides derived from hemoglobin. No mass above 10 kDa have been found, providing it with a good digestibility: its use in pet food as a food supplement seems promising
Mas, Capdevila Anna. „Hydrolysates and peptides from chicken foot proteins to manage hypertension“. Doctoral thesis, Universitat Rovira i Virgili, 2018. http://hdl.handle.net/10803/666287.
Der volle Inhalt der QuelleLa hipertensión arterial se considera uno de los problemas de salud pública más importante de nuestra sociedad. El tratamiento de esta patología se basa en una combinación de cambios en el estilo de vida y tratamiento farmacológico. No obstante, para esos pacientes que se encuentran en fase de desarrollo de la enfermedad i que aún no requieren de tratamiento farmacológico, el uso de nutraceuticos o alimentos funcionales con propiedades antihipertensivas está recibiendo mucha atención ya que podrían ser una buena estrategia para evitar el desarrollo de la hipertensión. En este sentido, esta tesis tiene como objetivo principal la obtención de péptidos antihipertensivos a partir de la hidrólisis de proteínas de pata de pollo, un subproducto de la industria avícola. Así, mediante la hidrólisis de las proteínas de la pata de pollo bajo condiciones de hidrólisis optimizadas se obtuvo un hidrolizado, Hpp11, que mostró efecto antihipertensivo después de una administración aguda y crónica. El hidrolizado Hpp11 administrado agudamente producía el efecto antihipertensivo mediante la reducción de la actividad de la enzima convertidora de angiotensina, mientras que después de su administración crónica, el efecto antihipertensivo estaba mediado por una mejora en la función endotelial. Adicionalmente se caracterizaron los péptidos presentes en Hpp11 y dos de ellos AVFQHNCQE y QVGPLIGRYCG mostraron efecto antihipertensivo. En particular, el péptido AVFQHNCQE no era absorbido y producía su efecto antihipertensivo mediante la interacción con receptores opioides presentes en el tracto gastrointestinal. La interacción con estos receptores desencadenaba un efecto antihipertensivo mediado por el vasodilatador óxido nítrico, del cual se veía aumentada su biodisponibilidad gracias al efecto antioxidante y de mejora de la función endotelial que también mostró el péptido. Los resultados de esta tesis abren las puertas al uso del hidrolizado y de los péptidos antihipertensivos obtenidos en alimentos funcionales o nutraceuticos que permitirían el control y prevención del desarrollo el a hipertensión.
Hypertension is considered one of the most important public health problems in our society. The treatment of this pathology is based on lifestyle modifications and pharmacology treatment. However, for those patients developing hypertension, whose blood pressure is not high enough to warrant pharmacology treatment, the use nutraceuticals or functional foods with antihypertensive properties have attracted considerable interest as good strategy to avoid the development of hypertension In this regard, this thesis aims to obtain antihypertensive peptides through the hydrolysis of chicken foot proteins, a by-product from poultry industries. Thus, through the hydrolysis of chicken foot proteins, it was obtained an hydrolysate, Hpp11, exerting antihypertensive effect after acute and chronic administration. Hpp11 administered acutely produced antihypertensive effect by reducing the activity of angiotensin converting enzyme, while when administered chronically the antihypertensive effect was mediated by an improvement in the endothelial function. Additionally the peptides contained in Hpp11 were characterised and two of them, AVFQHNCQE and QVGPLIGRYCG, showed antihypertensive effect. In particular, the peptide AVFQHNCQE was not absorbed and produced its antihypertensive effect through the interaction with opioid receptors from the gastrointestinal tract. The interaction with those receptors leaded to a nitric oxide-mediated antihypertensive effect. Moreover, the peptide contributed to enhance nitric oxide by exhibiting antioxidant effect and improving endothelial function. The results of this thesis open the doors to the use of the antihypertensive hydrolysate and peptides in functional foods or nutraceuticals for the control and prevention of hypertension.
Geisenhoff, Heidi. „Bitterness of soy protein hydrolysates according to molecular weight of peptides“. [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1473208.
Der volle Inhalt der QuelleGibbs, Bernard F. „Production and characterization of bioactive peptides from soy fermented foods and their hydrolysates“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ50171.pdf.
Der volle Inhalt der QuelleBuchteile zum Thema "Peptide hydrolysates"
McCalla, Jeff, Terry Waugh und Eric Lohry. „Protein Hydrolysates/Peptides in Animal Nutrition“. In Protein Hydrolysates in Biotechnology, 179–90. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6674-0_10.
Der volle Inhalt der QuelleHou, Yongqing, Zhenlong Wu, Zhaolai Dai, Genhu Wang und Guoyao Wu. „Protein Hydrolysates in Animal Nutrition“. In Bioactive Peptides from Food, 209–32. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003106524-14.
Der volle Inhalt der QuelleBatista, Irineu. „Biological Activities of Fish-protein Hydrolysates“. In Marine Proteins and Peptides, 111–38. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118375082.ch6.
Der volle Inhalt der QuelleFitzgerald, R. J., und H. Meisel. „Milk Protein Hydrolysates and Bioactive Peptides“. In Advanced Dairy Chemistry—1 Proteins, 675–98. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-8602-3_20.
Der volle Inhalt der QuelleNongonierma, A. B., M. B. O’Keeffe und R. J. FitzGerald. „Milk Protein Hydrolysates and Bioactive Peptides“. In Advanced Dairy Chemistry, 417–82. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2800-2_15.
Der volle Inhalt der QuelleShiratsuchi, Eri, Misako Nakaba, Yasutaka Shigemura, Michio Yamada und Kenji Sato. „Fish-elastin Hydrolysate: Development and Impact on the Skin and Blood Vessels“. In Marine Proteins and Peptides, 467–86. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118375082.ch23.
Der volle Inhalt der QuelleFoltz, Martin, Mylene Portier und Daniel Tomé. „Food Proteins or Their Hydrolysates as Regulators of Satiety“. In Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals, 135–48. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9780813811048.ch10.
Der volle Inhalt der QuelleSaiga, Ai, und Toshihide Nishimura. „Antioxidative Peptides in Porcine Myofibrillar Protein Hydrolysates by Protease Treatment“. In ACS Symposium Series, 289–96. Washington, DC: American Chemical Society, 2003. http://dx.doi.org/10.1021/bk-2003-0851.ch025.
Der volle Inhalt der QuelleAnal, Anil Kumar, Athapol Noomhorm und Punchira Vongsawasdi. „Protein Hydrolysates and Bioactive Peptides from Seafood and Crustacean Waste: Their Extraction, Bioactive Properties and Industrial Perspectives“. In Marine Proteins and Peptides, 709–35. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118375082.ch36.
Der volle Inhalt der QuelleMaehashi, K., und S. Arai. „Taste Evaluation for Peptides in Protein Hydrolysates from Soybean and Other Plants“. In Analysis of Taste and Aroma, 47–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04857-3_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Peptide hydrolysates"
Baba, Waqas, und Sajid Maqsood. „Novel antihypertensive and anticholesterolemic peptides from peptic hydrolysates of camel whey proteins“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/qecs2081.
Der volle Inhalt der QuelleBjørlie, Mads, Rachel Irankunda, Jean-Michel Girardet, Sandrine Boschi-Müller, Betül Yesiltas, Charlotte Jacobsen und Laetitia Canabady-Rochelle. „Screening of Metal-chelating Peptides and Hydrolysates Using Surface Plasmon Resonance and Switchsense“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/zszk2778.
Der volle Inhalt der QuelleKumrungsee, Thanutchaporn, Norihisa Kato, Toshiro Matsui und Yongshou Yang. „Plant and gut microbiota-derived protein metabolites and potential health functions“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/envt3719.
Der volle Inhalt der QuelleLammi, Carmen. „From the bench to the bedside: the history of lupin bioactive peptides as useful ingredient for the prevention of metabolic syndrome“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/bwgm4089.
Der volle Inhalt der QuelleReinoso, Zain Sanchez, Jacinthe Thibodeau, Laila Ben Said, Ismail Fliss, Laurent Bazinet und Sergey Mikhaylin. „Bioactive Peptide Production from Slaughterhouse Blood Proteins: Impact of Pulsed Electric Fields and Ph on Enzyme Inactivation, Antimicrobial and Antioxidant Activities of Peptic Hydrolysates from Bovine and Porcine Hemoglobins“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/fsht2150.
Der volle Inhalt der QuelleNovogrodskii, A. S., I. A. Khadyko, O. Iu Khoroshev und K. Iu Terentev. „Primary analysis of peptide profiles of whey protein hydrolysates cow milk“. In ТЕНДЕНЦИИ РАЗВИТИЯ НАУКИ И ОБРАЗОВАНИЯ. НИЦ «Л-Журнал», 2018. http://dx.doi.org/10.18411/lj-12-2018-183.
Der volle Inhalt der QuelleHamin-Neto, Y. A. A., und H. Cabral. „Angiotensin I-Converting Enzyme Inhibitory Activity of Enzymatic Hydrolysates of Whey Milk, Casein and Egg Albumin by Microbial Enzymes and a Commercial Enzyme“. In The 24th American Peptide Symposium. Prompt Scientific Publishing, 2015. http://dx.doi.org/10.17952/24aps.2015.054.
Der volle Inhalt der QuelleAbioye, Raliat, Caleb Acquah, Chibuike Udenigwe, Nico Huttmann und Pei Chun Queenie Hsu. „Self-assembly and hydrogelation properties of egg white-derived peptides“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/jzku2300.
Der volle Inhalt der QuelleJacobsen, Charlotte, Ann-Dorit Moltke Sorensen und Dimitra Marinou. „Enzymatic production of antioxidative and antimicrobial hydrolysates from cod solid side-streams“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/qmqf3129.
Der volle Inhalt der QuelleHatakenaka, Toshiya, Tamaki Kato und Kouji Okamoto. „Novel Oligopeptides with angiotensin I-converting enzyme inhibitory activity found in an elastase-treated hydrolysate of porcine aortic elastin“. In 35th European Peptide Symposium. Prompt Scientific Publishing, 2018. http://dx.doi.org/10.17952/35eps.2018.251.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Peptide hydrolysates"
Wong, Eric A., und Zehava Uni. Nutrition of the Developing Chick Embryo: Nutrient Uptake Systems of the Yolk Sac Membrane and Embryonic Intestine. United States Department of Agriculture, Juni 2012. http://dx.doi.org/10.32747/2012.7697119.bard.
Der volle Inhalt der QuelleAbeyrathne, Sandun, Hyun yong Lee und Dong Uk Uk Ahn. Enzymatic Hydrolysis of Ovomucin and the Functional and Structural Characteristics of Peptides in the Hydrolysates. Ames (Iowa): Iowa State University, Januar 2017. http://dx.doi.org/10.31274/ans_air-180814-374.
Der volle Inhalt der Quelle