Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Peas Diseases and pests“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Peas Diseases and pests" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Peas Diseases and pests"
Singh, S. K., S. J. Rahman, B. R. Gupta und C. S. Kalha. „An integrated approach to the management of the major diseases and insect pests of peas in India“. Tropical Pest Management 38, Nr. 3 (Januar 1992): 265–67. http://dx.doi.org/10.1080/09670879209371706.
Der volle Inhalt der QuellePostovalov, A. A., und S. F. Sukhanova. „INFLUENCE OF ENVIRONMENTAL FACTORS ON DISEASE RESISTANCE AND YIELD OF PEAS“. Vestnik of Ulyanovsk state agricultural academy 212 (25.12.2021): 96–101. http://dx.doi.org/10.18286/1816-4501-2021-4-96-101.
Der volle Inhalt der QuelleShchukis, S. K., und E. R. Shchukis. „THE ESTIMATION OF PEAS COLLECTION IN THE ALTAI“. Grain Economy of Russia, Nr. 3 (17.07.2019): 48–52. http://dx.doi.org/10.31367/2079-8725-2019-63-3-48-52.
Der volle Inhalt der QuelleTruzina, Lyudmila, und Larissa Korovina. „TO THE ANNIVERSARY OF THE FEDERAL WILLIAMS RESEARCH CENTER OF FORAGE PRODUCTION AND AGROECOLOGY: ABOUT THE PLANT PROTECTION DEPARTMENT“. Adaptive Fodder Production 2022, Nr. 1 (05.05.2022): 59–70. http://dx.doi.org/10.33814/afp-2222-5366-2022-1-59-70.
Der volle Inhalt der QuelleRen, Yifeng, Qingyan Li und Zhe Liu. „The Fast Detection of Crop Disease Leaves Based on Single-Channel Gravitational Kernel Density Clustering“. Applied Sciences 13, Nr. 2 (15.01.2023): 1172. http://dx.doi.org/10.3390/app13021172.
Der volle Inhalt der QuelleBorzykh, А., und M. Krut. „Database of investment and innovative developments on grain crop protection in Ukraine“. Interdepartmental Thematic Scientific Collection of Plant Protection and Quarantine, Nr. 65 (20.12.2019): 3–16. http://dx.doi.org/10.36495/1606-9773.2019.65.3-16.
Der volle Inhalt der QuelleHorodyska, Inna Mykolaivna, Yurii Ternovyi, Artem Chub, Alla Lishchuk und Maryana Draga. „Technologies of Protection and Nutrition in Agrophytocenoses of Legumes for Organic Seed Production“. Environmental Research, Engineering and Management 77, Nr. 1 (30.03.2021): 47–58. http://dx.doi.org/10.5755/j01.erem.77.1.23459.
Der volle Inhalt der QuelleShchukin, N. N. „ADAPTABILITI AND ECONOMIC BIOLOGICAL EVLUATION OF INTENSIVE VARIETIES OF GRAIN CROPS ON SOD _ PODZOLIC SOILS OF NON - BLACK EARTH REGION“. Innovations and Food Safety, Nr. 3 (28.09.2018): 127–37. http://dx.doi.org/10.31677/2311-0651-2018-0-3-127-137.
Der volle Inhalt der QuelleWang, Bo. „Identification of Crop Diseases and Insect Pests Based on Deep Learning“. Scientific Programming 2022 (19.01.2022): 1–10. http://dx.doi.org/10.1155/2022/9179998.
Der volle Inhalt der QuelleVelickovic, Milovan, und Jelena Golijan. „Concept of integral protection of apple and pear“. Journal of Agricultural Sciences, Belgrade 60, Nr. 4 (2015): 381–93. http://dx.doi.org/10.2298/jas1504381v.
Der volle Inhalt der QuelleDissertationen zum Thema "Peas Diseases and pests"
Robbs, Steven Lynn 1961. „Genotypic variation in susceptibility of Pisum sativum to crown gall and characterization of one cultivar of pea with reduced susceptibility to crown gall“. Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/277008.
Der volle Inhalt der QuelleAli, Akhtar. „Pathology and molecular comparison of a range of pea seed-borne mosaic virus isolates“. Title page, contents and summary only, 1999. http://web4.library.adelaide.edu.au/theses/09ACP/09acpa398.pdf.
Der volle Inhalt der QuelleUpadhaya, Arjun. „Plant-Parasitic Nematodes in Field Pea and Potato and their Effect on Plant Growth and Yield“. Thesis, North Dakota State University, 2018. https://hdl.handle.net/10365/28875.
Der volle Inhalt der QuelleMazarei, Mitra. „Pseudomonas on peas : ice nucleation, identification and pathogenicity“. Title page, contents and summary only, 1991. http://web4.library.adelaide.edu.au/theses/09PH/09phm475.pdf.
Der volle Inhalt der QuelleLigat, Julio S. „Pathology and distribution in the host of pea seed-borne mosaic virus“. Title page, contents and summary only, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phl723.pdf.
Der volle Inhalt der QuelleTorok, Valeria Anna. „Biological and molecular variation among isolates of pea seed borne mosaic virus“. Title page, contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09pht686.pdf.
Der volle Inhalt der QuelleOdendaal, Deidre. „Orchard and bin treatment with entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) for the control of the codling moth (Cydia pomonella)“. Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97962.
Der volle Inhalt der QuelleENGLISH ABSTRACT: The codling moth, Cydia pomonella (Lepidoptera: Tortricidae), is the key pest of apples and pears worldwide. The withdrawal of certain fundamental chemicals from codling moth management spray programmes, due to concerns about human, environmental and ecosystem health, has resulted in the search for softer, more environmentally friendly, and safer control measures. Entomopathogenic nematodes (EPNs), naturally occur in the soil, and actively search for hosts. The interest in using EPNs from the families Heterorhabditidae and Steinernematidae as a control measure was sparked in 1953, when an EPN was discovered in an insect. The aim is to incorporate EPNs in an integrated pest management (IPM) programme, to ensure minimal residue and eventually residue-free pome fruit production in South Africa. In order to ensure EPN success, both the environmental and technical factors influencing their efficacy, were investigated in this study. The biocontrol potential of three imported EPN isolates, being Steinernema feltiae and two isolates of Heterorhabditis bacteriophora (Hb1, Hb2), as well as a local isolate, Steinernema yirgalemense, were evaluated for the control of the codling moth under local conditions. All concentrations of S. yirgalemense, applied by immersion in a suspension of nematodes, gave > 98% control. The two formulated isolates of H. bacteriophora, Hb1-f and Hb2-f, gave < 30% control. When using the same nematode isolates, produced in vivo, S. yirgalemense still resulted in a higher codling moth control of > 90%, compared to 54% and 31% control of the H. bacteriophora Hb1 and Hb2 isolates, respectively. In follow up field trials, S. feltiae resulted in ≥ 80% control, and was thus more effective than both S. yirgalemense and the H. bacteriophora (Hb1) isolates, with 66% and 24%, and 24% and 9% control, for two separate trials, respectively. To validate the data obtained from the field trials, subsequent laboratory bioassays were conducted evaluating temperature regimes, following the same cycle as under natural conditions, with a constant humidity of 100%. Steinernema feltiae proved to be most effective, causing > 90% mortality, followed by S. yirgalemense, with 78% mortality. The two H. bacteriophora isolates (Hb1, Hb2) under the above-mentioned laboratory conditions, resulted in 73% and 59% control, respectively. Humidity thus seems to be the most important factor affecting EPN efficacy during above-ground applications. Steinernema feltiae proved to be a better candidate than S. yirgalemense for the control of the codling moth. The efficacy of different EPN isolates in controlling diapausing codling moth larvae at different temperatures was also evaluated, under local conditions, using spray application. Steinernema feltiae and two isolates of H. bacteriophora Hb1 and Hb2, including two local isolates, S. yirgalemense and Steinernema jeffreyense, were evaluated. The use of S. jeffreyense resulted in the most effective control, with 67% mortality, followed by H. bacteriophora (Hb1) with 42%, and then by S. yirgalemense with 41%. Laboratory bioassays simulating field conditions revealed that S. feltiae was most virulent to codling moth larvae, with 67% mortality by infection, followed by S. yirgalemense with 58%, the H. bacteriophora strain Hb1 with 48%, and the Hb2 strain with 24%. A comparison of the infection and penetration rate of two isolates of H. bacteriophora (Hb1, Hb2), S. feltiae and S. yirgalemense, which was carried out in multiwell plates at 14°C and 25°C, respectively, confirms the dramatic effect of temperature on EPN efficacy. At 14°C, all treatments with EPN species resulted in slower codling moth mortality than they did at 25°C, as after 48 h, < 15% mortality was recorded for all species, whereas at the warmer temperature, > 98% mortality was recorded for all species. After the exposure of washed, cool-treated larvae to 25°C for 24 h, the application of both S. feltiae and S. yirgalemense resulted in 100% mortality, whereas the application of the two H. bacteriophora isolates, Hb1 and Hb2, resulted in 68% and 54% control, respectively, over the same time period. At 14°C, S. feltiae had the highest average penetration rate of 20 IJs/insect, followed by S. yirgalemense with 14 IJs/insect, whereas S. yirgalemense had the highest penetration rate at 25°C, with 39 IJs/insect, followed by S. feltiae, with 9 IJs/insect. The two H. bacteriophora isolates had higher average penetration rates at the higher temperature. This study has highlighted the biocontrol potential of S. jeffreyense, as well as showing that S. feltiae is a cold-active nematode, whereas the other three EPN isolates prefer warmer temperatures. Stacked wooden fruit bins are regarded as preferred overwintering sites for codling moth diapausing larvae. Control strategies against the codling moth in South Africa have been hampered by the reinfestation of orchards by nearby stacked infested fruit bins or by the movement of bins between orchards. Worldwide, wooden fruit bins are systematically being replaced with plastic bins, which, in South Africa, will only be phased out over a few years. The objective of this study was to evaluate the potential of H. bacteriophora, S. feltiae, and S. yirgalemense, to disinfest miniature wooden fruit bins under controlled conditions in the laboratory. After dipping minibins in a suspension of 25 IJs/ml of all three EPN species, under optimum conditions of temperature and humidity, the highest percentage of control was obtained using S. feltiae (75%) followed by S. yirgalemense (57%), and then by H. bacteriophora (Hb1) (27%). The addition of adjuvants significantly increased (p < 0.001) S. feltiae infectivity to > 95%, whereas it did not result in a significant increase in H. bacteriophora or S. yirgalemense infectivity. The results indicated that H. bacteriophora would not be a suitable candidate to use for the control of the codling moth larvae in wooden fruit bins. The current preferred candidate for control would be S. feltiae, whose efficacy could be increased by means of the addition of an adjuvant. During winter, when the whole codling moth population are larvae and in diapause, no control measures are applied in orchards. This study has shown that EPNs can be sprayed in orchards to lower the codling moth cohort emerging after winter, as well as be included in an IPM programme. EPNs can act as a second line of defence, through supplementary control, and ensure effective control of the codling moth larvae which survived chemical spray applications, to safeguard against resistant codling moth populations in the next season.
AFRIKAANSE OPSOMMING: Kodlingmot, Cydia pomonella (Lepidoptera: Tortricidae), is ‘n belangrike plaag van appels en pere wêreldwyd. Die onttrekking van sekere fundamentele chemikalieë vanuit die kodlingmot beheerprogram weens die kommer oor menslike, omgewings en ekosisteemgesondheid, het gelei tot die soektog na sagter, meer omgewingsvriendelike en veiliger beheermaatreëls. Entomopatogeniese nematodes (EPNs) kom natuurlik in die grond voor en soek aktief na gashere. Die belangstelling in die gebruik van EPNs van die families Heterorhabditidae en Steinernematidae as 'n beheermaatreël is te danke aan die ontdekking van 'n EPN in ‘n insek in 1953. Die doel is om EPNs in 'n geïntegreerde plaagbeheerprogram (GPB) te inkorporeer om sodoende minimale residue te verseker en uiteindelik residu vrye produksie van kernvrugte in Suid-Afrika. Ten einde die sukses van EPNs te verseker, is beide die omgewings- en tegniese faktore wat hul doeltreffendheid beïnvloed in die studie ondersoek. Die biologiese beheer potensiaal van drie ingevoerde EPN isolate, Steinernema feltiae en twee Heterorhabditis bacteriophora (Hb1, Hb2) isolate, sowel as 'n plaaslike isolaat, Steinernema yirgalemense, is vir die beheer van kodlingmot onder plaaslike toestande geëvalueer. Alle konsentrasies van S. yirgalemense, wat deur indompeling in ‘n suspensie van nematodes toegedien is, het > 98% beheer tot gevolg gehad. Die twee geformuleerde isolate van H. bacteriophora, Hb1-f en Hb2-f, het < 30% beheer gegee. Met die gebruik van dieselfde nematode isolate, wat in vivo geproduseer is, het S. yirgalemense nog steeds 'n hoër kodlingmot beheer van > 90% opgelewer, in vergelyking met die 54% en 31% beheer van die H. bacteriophora Hb1 en Hb2 isolate, onderskeidelik. Steinernema feltiae het in opvolg veldproewe ≥ 80% beheer tot gevolg gehad en was dus meer effektief as beide S. yirgalemense en die H. bacteriophora (Hb1) isolate, met 66% en 24% en 24% en 9% beheer onderskeidelik in twee afsonderlike veldproewe. Om die resultate van die veldproewe te bevestig, is daaropvolgende laboratorium biotoetse uitgevoer en temperatuur regimes is geëvalueer deur die selfde siklus as onder natuurlike toestande te volg, met 'n konstante humiditeit van 100%. Die studie het bewys dat S. feltiae die mees doeltreffende isolate was met > 90% mortaliteit, S. yirgalemense het gevolg met 78% mortaliteit. Die twee H. bacteriophora isolate (Hb1, Hb2) het onderskeidelik onder bogenoemde laboratorium toestande 73% en 59% beheer tot gevolg gehad. Humiditeit blyk dus die belangrikste faktor te wees wat EPN se doeltreffendheid tydens bogrondse toediening affekteer. Die studie het bewys dat S. feltiae 'n beter kandidaat as S. yirgalemense vir die beheer van kodlingmot is. Die doeltreffendheid van verskillende EPN isolate vir die beheer van diapause kodlingmot larwes sowel as EPN se aktiwiteit by verskillende temperature is ook onder plaaslike toestande, deur bogrondse bespuitings, geëvalueer. Steinernema feltiae en twee isolate van H. bacteriophora (Hb1, Hb2), S. yirgalemense en ‘n ander plaaslike isolaat, Steinernema jeffreyense, is geëvalueer. Die gebruik van S. jeffreyense, het tot die mees effektiewe beheer gelei, met 67% mortaliteit, gevolg deur H. bacteriophora (Hb1) met 42%, en dan S. yirgalemense met 41%. Laboratorium biotoetse wat veldtoestande simuleer, het bewys dat S. feltiae die mees doeltreffend teen kodlingmot larwes is, met 67% mortaliteit tydens infeksie, gevolg deur S. yirgalemense met 58%, die H. bacteriophora Hb1 isolaat met 48%, en die Hb2 isolaat met 24%. 'n Vergelyking van die infeksie- en penetrasie tempo van twee isolate van H. bacteriophora (Hb1, Hb2), S. feltiae en S. yirgalemense wat in 12-put plate teen 14°C en 25°C uitgevoer is, het die dramatiese effek van temperatuur op EPN doeltreffendheid bevestig. By 14°C het alle EPN spesies behandelings stadiger kodlingmot mortaliteit as by 25°C na 48h tot gevolg gehad. ‘n Mortaliteit van < 15% is vir alle spesies aangeteken terwyl by die warmer temperature is > 98% mortaliteit vir alle spesies aangeteken. Na die blootstelling van afgespoelde, koel behandelde larwes aan 25°C vir 24 uur, het die toediening van beide S. feltiae en S. yirgalemense, 100% mortaliteit van larwes tot gevolg gehad terwyl die toediening van die twee H. bacteriophora isolate, Hb1 en Hb2, onderskeidelik 68% en 54% beheer tot gevolg gehad, oor dieselfde tydperk. By 14°C, het S. feltiae die hoogste gemiddelde penetrasie tempo van 20 ILs/ larwe, gevolg deur S. yirgalemense met 14 ILs/ larwe tot gevolg gehad, terwyl S. yirgalemense die hoogste penetrasie tempo getoon het by 25°C met 39 ILs/ insek, gevolg deur S. feltiae met 9 ILs/ insek. Die twee H. bacteriophora isolate (Hb1 en Hb2) het ook hoër gemiddelde penetrasie tempo by die hoër temperatuur getoon. Hierdie studie het die biobeheer potensiaal van S. jeffreyense beklemtoon, asook weereens bevestig dat S. feltiae ‘n koue-aktiewe nematode is, terwyl die ander drie EPN isolate warmer temperature verkies. Hout vrugtekratstapels, word beskou as ‘n ideale oorwintering skuiling vir kodlingmot diapause larwes. In Suid-Afrika word beheerstrategieë teen kodlingmot in die wiele gery deur die herbesmetting van boorde deur nabygeleë besmette hout vrugtekratte of deur die beweging van kratte tussen boorde. Hout vrugtekratte word wêreldwyd stelselmatig vervang met plastiek kratte. Dit sal egter eers oor ‘n aantal jare in Suid-Afrika uitgefaseer word. Die doel van hierdie studie was om die potensiaal van H. bacteriophora, S. feltiae, en S. yirgalemense te evalueer deur miniatuur hout vrugtekratte onder gekontroleerde toestande in die laboratorium te disinfekteer. Na die onderdompeling van die mini vrugtekratte in 'n nematode suspensie van 25 ILs/ml van al drie EPN spesies, onder optimale toestande van temperatuur en humiditeit, is die hoogste persentasie van beheer met die gebruik van S. feltiae (74,85% ± 3.64%) verkry. Die byvoeging van toevoegings middels het S. feltiae se vermoë om te infekteer betekenisvol (p <0,001) tot > 95% verhoog, maar dit het nie tot 'n betekenisvolle toename in die infektiwiteit van H. bacteriophora of S. yirgalemense gelei nie. Die resultate dui daarop dat H. bacteriophora nie 'n geskikte kandidaat is om te gebruik vir die beheer van kodlingmot larwes in besmette hout kratte nie. Die voorkeurkandidaat tans vir beheer is S. feltiae, waarvan die doeltreffendheid verhoog kan word deur middel van die byvoeging van 'n bymiddel. Gedurende die winter wanneer die hele kodlingmot populasie as larwes in diapause is, word geen beheer in boorde toegepas nie. Hierdie studie het getoon dat EPNs in boorde gespuit kan word om sodoende die opkomende kodlingmot populasie na die winter te verlaag en kan ook ingesluit word in 'n GPB program. Die EPNs kan as 'n tweede verdedigingslinie optree en doeltreffende beheer van kodlingmot larwes verseker wat chemiese bespuitings oorleef het, en sodoende beskerming teen weerstandige kodlingmot populasies in die volgende seisoen bied.
Pedrotti, Carine. „Prospecção de óleos essenciais com atividade antifúngica para alternativa no controle de Botrytis cinerea (PERS) e Colletotrichum acutatum (SIMMONDS) em videira“. reponame:Repositório Institucional da UCS, 2016. https://repositorio.ucs.br/handle/11338/1678.
Der volle Inhalt der QuelleMade available in DSpace on 2017-02-22T11:46:32Z (GMT). No. of bitstreams: 1 Dissertacao Carine Pedrotti.pdf: 4832419 bytes, checksum: bf4214c905c5590c77de8be666a4dea1 (MD5) Previous issue date: 2017-02-22
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES.
Wessels, Andries Bernardus. „Genetic characterization and fungicide resistance profiles of Botrytis cinerea in rooibos nurseries and pear orchards in the Western Cape of South Africa“. Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20070.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Botrytis cinerea Pers. Fr. [teleomorph Botryotinia fuckeliana (de Bary) Whetzel] causes serious losses of over 200 crops worldwide, including rooibos seedlings and pears. This pathogen is characterized by morphological, physiological and genetic diversity. The genetic diversity and population structure have not been investigated for B. cinerea populations in South Africa. Botrytis cinerea collected from rooibos seedlings and in pear orchards in the Western Cape of South Africa were investigated in the present study. The study was done with the aid of microsatellite markers, the amplification of mating type alleles MAT1-1 and MAT1-2 and determination of resistance towards various fungicides. Population dynamics was inferred and a similar picture emerged in both production systems. Botrytis cinerea annually causes severe losses of rooibos seedlings (Aspalathus linearis) in nurseries situated in the Clanwilliam region. Sampling was done in five nurseries and the cryptic species status of the isolates obtained was determined through restriction enzyme digestion of the Bc-hch gene. All but one (206 out of 207) of the isolates belonged to Group II or B. cinerea ‘sensu stricto’. Analysis of the B. cinerea Group II population, using seven microsatellite loci, was performed to assess the genetic population structure. Total gene diversity (H) was high, with a mean of 0.67. Two of the nurseries populations’ sample sizes were severely limited after clone correction, yet 100 genotypes were discerned among the 206 isolates genotyped. The percentage of maximal genotypic diversity (G) ranged between 16 and 68 for the five populations, with a total value of 17 for the 100 genotypes. One genotype, represented by 27 clones, was isolated from four nurseries. Relatively low but significant population differentiation was observed in total between nurseries (mean FST = 0.030, P = 0.001). The distribution of mating types MAT1-1 and MAT1-2 differed significantly from the ratio of 1:1 for the total population plus two of the nurseries’ populations. Three nursery populations had an equal mating type distribution. The index of association (IA) analyses suggests that the populations are asexually reproducing. Analysis of molecular variance (AMOVA) indicated that 97% of the total genetic variation is distributed within subpopulations. Fungicide resistance frequency against iprodione for 198 of the genotyped isolates displayed highly varying levels of resistance amongst the five nurseries. The mean total incidence of resistance towards iprodione was 43%, ranging from 0% to 81% for the five nurseries. Baseline sensitivity towards pyrimethanil yielded an average EC50 value of 0.096 mg/L. Botrytis cinerea isolates were collected from pear blossoms (Pyrus communis) in four orchards. Two orchards in the Ceres area and two in the Grabouw area were sampled from. A total of 181 isolates were collected from the four orchards. Incidence of blossom infection in the orchards ranged from 3% to 17%. Overall, there was a high incidence of isolates that had only the Boty transposable element (74%) compared to those harbouring both (Boty and Flipper), simultaneously (transposa, 24%). One isolate examined had the Flipper element only. Cryptic species status according to restriction enzyme digestion of the Bc-hch gene indicated that all the isolates belonged to Group II or B. cinerea ‘sensu stricto’. Analysis of the Group II population, through the use of seven microsatellite loci, was performed to assess the genetic population structure. Total gene diversity (H) was high, with a mean of 0.69 across all populations. Although two of the subpopulations displayed a high clonal proportion, overall 91 genotypes were discerned among the 181 isolates. The percentage of maximal genotypic diversity (G) ranged between 18 and 33 for the four populations, with a total value of 14 for the 91 genotypes. One genotype, represented by 27 clones, was isolated from all orchards. Moderate, but significant population differentiation was present in total among orchards (mean FST = 0.118, P = 0.001). The distribution of the mating types, MAT1-1 and MAT1-2, did not differ significantly from a 1:1 ratio for the total population as well as the subpopulations. Index of association (IA) analyses, on the other hand, suggests that the populations reproduce asexually. Analysis of molecular variance (AMOVA) indicated that 88% of the total genetic variation is distributed within subpopulations, 9% between subpopulations and only 3% between production areas. Fungicide resistance frequency against fenhexamid, iprodione and benomyl varied, with the highest levels of resistance present against benomyl and low levels of resistance seen towards iprodione and fenhexamid. In conclusion, this study has shown that there exist within the studied populations of B. cinerea, obtained from rooibos nurseries and pear orchards, an adaptive capacity to overcome current means of control. The use of population genetics to further our understanding of how plant pathogens interact and spread throughout a given environment is of cardinal importance in aiding the development of sustainable and integrated management strategies. Knowledge of the dispersal of B. cinerea in the two studied cropping systems has shed light on the inherent risk that it poses, and this together with knowledge of the levels of resistance that occurs should serve as an early warning to help divert possible loss of control in future.
AFRIKAANSE OPSOMMING: Botrytis cinerea Pers. Fr. [teleomorf Botryotinia fuckeliana (de Bary) Whetzel] veroorsaak ernstige verliese van meer as 200 gewasse wêreldwyd, insluitende rooibossaailinge en pere. Hierdie patogeen word deur morfologiese, fisiologiese, asook genetiese diversiteit gekenmerk. Die genetiese diversiteit en populasie-struktuur van B. cinerea populasies wat in Suid-Afrika voorkom, is nog nie ondersoek nie. Botrytis cinerea verkryg vanaf rooibossaailinge en in peerboorde in die Wes-Kaap van Suid-Afrika is ondersoek. Hierdie studie is met behulp van mikrosatellietmerkers, amplifikasie van die twee paringstipe gene (MAT1-1 en MAT1-2), asook die bepaling van weerstandsvlakke teenoor verskeie swamdoders, uitgevoer. Populasie-dinamika is afgelei en ‘n soortgelyke tendens is in beide produksie-sisteme waargeneem. Botrytis cinerea veroorsaak jaarliks ernstige verliese van rooibossaailinge (Aspalathus linearis) in kwekerye in die Clanwilliam-area. Monsters is in vyf kwekerye versamel en die kriptiese spesiestatus van die verkrygde isolate is deur restriksie-ensiemvertering van die Bc-hch geen bepaal. Almal behalwe een (206 uit 207) isolaat het aan Groep II of B. cinerea ‘sensu stricto’ behoort. Analise van die B. cinerea Groep II populasie, deur middel van sewe mikrosatellietmerkers, is uitgevoer om die genetiese populasiestruktuur te bepaal. Totale geendiversiteit (H) was hoog, met ‘n gemiddelde van 0.67. Alhoewel twee van die kwekerye se monstergrootte erg ingeperk is ná kloonverwydering, is daar nogtans 100 genotipes onder die 206 isolate wat geïsoleer is, waargeneem. Die persentasie van maksimale genotipiese diversiteit (G) het tussen 16 en 68, vir die vyf populasies, gewissel, met ‘n totaal van 17 vir die 100 genotipes. Een genotipe, verteenwoordig deur 27 klone, is uit vier kwekerye geïsoleer. Relatief lae dog noemenswaardige populasie-differensiasie is in totaal tussen kwekerye waargeneem (gem. FST = 0.030, P = 0.001). Die verspreiding van die twee paringstipes (MAT1-1 en MAT1-2) het beduidend verskil van ‘n 1:1 verhouding vir die totale populasie, asook twee van die kwekerye se populasies. Die drie oorblywende kwekerye se populasies het egter ‘n gelyke verdeling van die twee paringstipes getoon. Die indeks van assosiasie (IA) analises toon dat die populasies ongeslagtelik voortplant. Analise van molekulêre variasie (AMOVA) het aangedui dat 97% van die totale genetiese variasie binne die subpopulasies versprei is. Hoogs variërende vlakke van weerstand tussen die vyf kwekerye teenoor die swamdoder iprodioon, is vir die 198 isolate wat getoets is, gevind. Die totale gemiddelde frekwensie van weerstand teenoor iprodioon was 43%, wat tussen 0% en 81% vir die vyf kwekerye gevarieer het. Fondasie-vlak-sensitiwiteit vir pyrimethanil het ‘n gemiddelde EC50 waarde van 0.096 mg/L opgelewer. Botrytis cinerea isolate is ook vanuit peerbloeisels (Pyrus communis L.) vanuit vier boorde versamel, twee uit elk van die Ceres- en Grabouw-areas. In totaal is 181 isolate vanuit die vier boorde versamel. Die frekwensie van bloeiselinfeksie het tussen 3% en 17% gewissel. Oor die algemeen was daar ‘n hoë frekwensie van isolate wat slegs die Boty transponeerbare element teenwoordig gehad het (74%) in vergelyking met dié wat tegelykertyd beide (Boty en Flipper) teenwoordig gehad het. Een isolaat het slegs die Flipper element gehad. Bepaling van die kriptiese spesiestatus met behulp van restriksie-ensiemvertering van die Bc-hch geen het aangedui dat alle versamelde isolate tot Groep II of B. cinerea ‘sensu stricto’ behoort het. Analise van die Groep II populasie, deur middel van sewe mikrosatellietmerkers, is uitgevoer om genetiese populasie-struktuur te bepaal. Totale geendiversiteit (H) was hoog, met ‘n gemiddelde van 0.69 oor alle populasies. Alhoewel twee subpopulasies ‘n hoë klonale fraksie getoon het, is 91 genotipes tussen die 181 isolate wat verkry is, onderskei. Die persentasie van maksimale genotipiese diversiteit (G) het tussen 18 en 33 vir die vier populasies gewissel, met ‘n totale waarde van 14 vir die 91 genotipes. Een genotipe, verteenwoordig deur 27 klone, was in al vier boorde teenwoordig. Gematigde dog beduidende populasie differensiasie was in totaal tussen boorde teenwoordig (gem. FST = 0.118, P = 0.001). Die verspreiding van die paringstipes (MAT1-1 en MAT1-2) het nie betekenisvol van ‘n 1:1 verhouding vir die totale populasie, insluitende die subpopulasies, verskil nie. Indeks van assosiasie (IA) analises het egter aangedui dat die populasies ongeslagtelik voortplant. Analise van molekulêre variasie (AMOVA) het aangedui dat 88% van die totale genetiese variasie in subpopulasies te vinde was, 9% tussen subpopulasies en slegs 3% tussen produksie-areas. Frekwensie van swamdoder weerstandbiedendheid vir fenhexamid, iprodioon en benomyl het gewissel, met die hoogste vlakke teenoor benomyl waargeneem, maar baie lae vlakke teenoor fenhexamid en iprodioon. Samevattend het hierdie studie getoon dat die populasies van B. cinerea wat in hierdie twee produksie-sisteme, op rooibossaailinge en in peer boorde, ondersoek is, ‘n aanpasbaarheid toon om huidige metodes van beheer te oorkom. Die gebruik van populasiegenetika as ‘n hulpmiddel om ons kennis van patogeen-interaksies en -verspreiding te verbreed, is van kardinale belang in die ontwikkeling van geïntegreerde en volhoubare beheermaatreëls. Kennis van die verspreiding van B. cinerea in die bestudeerde gewasproduksiestelsels, werp lig op die inherente risiko wat dié patogeen inhou. Dít, tesame met kennis van die weerstandsvlakke wat voorkom, kan as ‘n vroegtydige waarskuwing dien ten einde moontlike verlies van beheer in die toekoms te help teenwerk.
Mudavanhu, Pride. „An investigation into the integrated pest management of the obscure mealybug, Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae), in pome fruit orchards in the Western Cape Province, South Africa“. Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2620.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae) (obscure mealybug), is a common and serious pest of apples and pears in South Africa. Consumer and regulatory pressure to produce commodities under sustainable and ecologically compatible conditions has rendered chemical control options increasingly limited. Information on the seasonal occurrence of pests is but one of the vital components of an effective and sustainable integrated pest management system needed for planning the initiation of monitoring and determining when damage can be expected. It is also important to identify which orchards are at risk of developing mealybug infestations while development of effective and early monitoring tools for mealybug populations will help growers in making decisions with regards to pest management and crop suitability for various markets. It is also essential to determine the presence and efficacy of naturally occurring biological control agents in orchards so as to ascertain the potential of biological control as a viable alternative in orchards. However, under the current integrated pest management protocol, it has been difficult to determine this, due to the sporadic and relatively low incidence of mealybug infestations in some orchards, or by simply relying on naturally occurring field populations of biocontrol agents. Knowledge of the environmental conditions under which P. viburni population levels may become destructive is also essential for timing the release of insectary reared natural enemies as well as understanding the population ecology of this pest and its natural enemies. Information was gathered regarding the seasonal phenology of P. viburni and its natural enemies in pome fruit orchards in the Western Cape Province during the 2007/08 and 2008/09 growing seasons. Seasonal population studies showed that P. viburni has multiple overlapping generations with all life stages present throughout the year. The highest orchard infestations occurred during the summer period until early winter (January to early June). This was followed by a decrease in population from late June to November, before another increase in December. Presence-absence sampling of mealybugs on the host plant revealed that woody parts of the tree, such as the trunk and old stems were the most preferred sites for mealybug habitation, due to the availability of protected refuge sites. Migration of mealybug populations to newer growth and the upper sections of the tree crown, such as the new stems, leaves and eventually the fruit, was observed from December throughout the summer period until the early winter in June. Fruit colonization in both apples and pears commenced in January, when the fruit had developed a size sufficient for P. viburni to penetrate and occupy spaces such as the fruit core, calyx and stem end. There was no evidence of P. viburni occurring beneath the soil surface or on the roots of host trees. Two natural enemies of mealybugs, namely Pseudaphycus maculipennis (Mercet) and Coccidoxenoides perminutus (Girault), were found to be active in apple and pear orchards in the Western Cape. However, the status of C. perminutus as a parasite of P. viburni still needs to be verified despite evidence of emergence from P. viburni mummies, which was not sufficient enough to suggest that it is a useful biological control agent. Seasonal abundance trends of the two natural enemies revealed that their lifecycle is synchronized with that of the host. However, there was no evidence of P. maculipennis activity in Ceres. No predators were found during the course of this study. The rate of P. viburni parasitism at harvest was 46.52%, with P. maculipennis and C. perminutus constituting 98.966% and 1.034% of the parasitoids recovered from mealybug mummies, respectively. Studies on the use of pheromone traps as early monitoring tools for P. viburni showed that there was a positive and significant relationship between the fruit infestation and number of P. viburni adult males caught in pheromone-baited traps (r2 = 0.454). The action threshold level was estimated to be 2.5 male P. viburni caught per trap per fortnight at an economic threshold of 2% fruit infestation.
AFRIKAANSE OPSOMMING: Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae) (ligrooswitluis), is ‘n algemene en ernstige plaag van appels en pere in Suid-Afrika. Druk deur verbruikers en regulasies om kommoditeite onder volhoubare en ekologies verenigbare toestande te produseer het chemiese beheeropsies toenemend beperk. Inligting oor die seisoenale voorkoms van plae is een van die essensiële komponente van ‘n effektiewe en volhoubare geïntegreerde plaagbestuurprogram. Dit is in die aanvanklike beplanning van monitering en om te bepaal wanneer skade verwag kan word. Dit is ook belangrik om boorde vroegtydig te identifiseer wat die risiko het om witluisbesmettings te ontwikkel. Die ontwikkeling van effektiewe en vroeë moniteringstegnieke vir witluisbevolkings sal produsente help met besluitneming rakende plaagbestuur en die geskiktheid van gewasse vir verskeie markte. Dit is ook noodsaaklik om die teenwoordigheid en effektiwiteit van biologiese beheer agente wat natuurlik in boorde voorkom te bepaal ten einde die potensiaal van biologiese beheer as ‘n lewensvatbare alternatief vas te stel. Onder die huidige geïntegreerde plaagbestuurprotokol was dit egter moeilik om laasgenoemde te bepaal weens die sporadiese en relatiewe lae voorkoms van witluisbesmettings in sommige boorde of deur bloot staat te maak op die veldpopulasies van biologiese beheer agente wat natuurlik voorkom. Kennis van die omgewingstoestande waaronder P. viburni bevolkingsvlakke skadelik raak is ook noodsaaklik vir die beplanning van vrylating van biologiese beheer agente, asook om die bevolkingsekologie van hierdie plaag en sy natuurlike vyande te verstaan. Inligting oor die seisoenale fenologie van P. viburni en sy natuurlike vyande in sagtevrugte boorde in die Westelike Kaapprovinsie is gedurende die 2007/08 en 2008/09 groeiseisoene versamel. Seisoenale bevolkingstudies het getoon dat P. viburni verskeie oorvleuelende generasies het met alle stadia teenwoordig regdeur die jaar.
Bücher zum Thema "Peas Diseases and pests"
E, Thomas J. Diseases of peas and beans. Cambridge: NIAB, 1990.
Den vollen Inhalt der Quelle findenBiddle, A. J. Pests, diseases, and disorders of peas and beans: A colour handbook. London: Manson, 2007.
Den vollen Inhalt der Quelle findenBiddle, A. J. Pests, diseases, and disorders of peas and beans: A color handbook. Burlington, MA: Academic Press, 2007.
Den vollen Inhalt der Quelle findenStegmark, Rolf. Breeding for partial resistance to downy mildew in peas. Svalöv: Dept. of Plant Breeding Research, Swedish University of Agricultural Sciences, 1992.
Den vollen Inhalt der Quelle findenInglis, Debbie. Pea cyst nematode: Biology and prevention. [Pullman, Wash.]: Washington State University, Cooperative Extension, 1998.
Den vollen Inhalt der Quelle findenDugan, Frank M. Pink seed of pea. [Pullman, Wash.]: Cooperative Extension, Washington State University, 2003.
Den vollen Inhalt der Quelle findenSutton, Turner B., A. Agnello, James F. Walgenbach und H. S. Aldwinckle. Compendium of apple and pear diseases and pests. St. Paul, Minn: APS Press/The American Phytopathological Society, 2014.
Den vollen Inhalt der Quelle findenHuettel, Robin L. Pest risk analysis for pea cyst nematode. Riverdale, Md.?: APHIS, 1993.
Den vollen Inhalt der Quelle findenAntonelli, Arthur L. Pear slug. Pullman, [Wash.]: Cooperative Extension, College of Agriculture and Home Economics, Washington State University, 1986.
Den vollen Inhalt der Quelle findenOlkowski, William. Least-toxic pest management: Fleas. Berkeley, CA: Bio-Integral Resource Center, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Peas Diseases and pests"
Gratwick, Marion. „Thrips on peas“. In Crop Pests in the UK, 88–90. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1490-5_17.
Der volle Inhalt der QuelleGirling, Simon J. „Common Avian Diseases“. In Veterinary Nursing of Exotic Pets, 185–208. West Sussex, UK: Blackwell Publishing, Ltd,., 2013. http://dx.doi.org/10.1002/9781118782941.ch13.
Der volle Inhalt der QuelleGirling, Simon J. „Common Reptile and Amphibian Diseases“. In Veterinary Nursing of Exotic Pets, 297–318. West Sussex, UK: Blackwell Publishing, Ltd,., 2013. http://dx.doi.org/10.1002/9781118782941.ch21.
Der volle Inhalt der QuelleGirling, Simon J. „Common Diseases of Small Mammals“. In Veterinary Nursing of Exotic Pets, 59–90. West Sussex, UK: Blackwell Publishing, Ltd,., 2013. http://dx.doi.org/10.1002/9781118782941.ch5.
Der volle Inhalt der QuelleLescun, Timothy. „Specific Diseases of Large Animals and Man“. In Learning from Disease in Pets, 71–100. Boca Raton : Taylor & Francis, 2020. | Series: CRC one health one welfare: CRC Press, 2020. http://dx.doi.org/10.1201/9780429056178-3.
Der volle Inhalt der QuelleBruyette, David. „Companion Animals Models of Human Disease“. In Learning from Disease in Pets, 13–70. Boca Raton : Taylor & Francis, 2020. | Series: CRC one health one welfare: CRC Press, 2020. http://dx.doi.org/10.1201/9780429056178-2.
Der volle Inhalt der QuelleKrimins, Rebecca A. „The Contribution of Pets to Human and Veterinary Medicine“. In Learning from Disease in Pets, 1–12. Boca Raton : Taylor & Francis, 2020. | Series: CRC one health one welfare: CRC Press, 2020. http://dx.doi.org/10.1201/9780429056178-1.
Der volle Inhalt der QuelleFroehlich, Jacob Michael, Alice Ignaszewski und Anna O’Brien. „The FDA New Animal Drug Approval Process“. In Learning from Disease in Pets, 185–208. Boca Raton : Taylor & Francis, 2020. | Series: CRC one health one welfare: CRC Press, 2020. http://dx.doi.org/10.1201/9780429056178-10.
Der volle Inhalt der QuelleVermillion, Krista K. „Clinical Trials, Patient Recruitment and Advertising“. In Learning from Disease in Pets, 209–24. Boca Raton : Taylor & Francis, 2020. | Series: CRC one health one welfare: CRC Press, 2020. http://dx.doi.org/10.1201/9780429056178-11.
Der volle Inhalt der QuelleDavis, Radford G. „One Health“. In Learning from Disease in Pets, 225–50. Boca Raton : Taylor & Francis, 2020. | Series: CRC one health one welfare: CRC Press, 2020. http://dx.doi.org/10.1201/9780429056178-12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Peas Diseases and pests"
Munkvold, Gary P. „Managing Diseases and Pests with Seed Treatments“. In Proceedings of the 16th Annual Integrated Crop Management Conference. Iowa State University, Digital Press, 2007. http://dx.doi.org/10.31274/icm-180809-893.
Der volle Inhalt der QuelleTumang, Gina S. „Pests and Diseases Identification in Mango using MATLAB“. In 2019 5th International conference on Engineering, Applied Sciences and Technology (ICEAST). IEEE, 2019. http://dx.doi.org/10.1109/iceast.2019.8802579.
Der volle Inhalt der QuelleWang, Qiyao, Guiqing He, Feng Li und Haixi Zhang. „A novel database for plant diseases and pests classification“. In 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). IEEE, 2020. http://dx.doi.org/10.1109/icspcc50002.2020.9259502.
Der volle Inhalt der QuellePatel, Pruthvi P., und Dineshkumar B. Vaghela. „Crop Diseases and Pests Detection Using Convolutional Neural Network“. In 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). IEEE, 2019. http://dx.doi.org/10.1109/icecct.2019.8869510.
Der volle Inhalt der QuelleKulikov, M. A., A. N. Kulikova und A. V. Goncharov. „Resistance of sunflower hybrids to herbicides, diseases, pests and weeds“. In Растениеводство и луговодство. Тимирязевская сельскохозяйственная академия, 2020. http://dx.doi.org/10.26897/978-5-9675-1762-4-2020-158.
Der volle Inhalt der QuelleAlfarisy, Ahmad Arib, Quan Chen und Minyi Guo. „Deep learning based classification for paddy pests & diseases recognition“. In ICMAI '18: 2018 International Conference on Mathematics and Artificial Intelligence. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3208788.3208795.
Der volle Inhalt der QuelleXiaopeng, Dai, und Li Donghui. „Research on Rice Pests and Diseases Warning Based on CBR“. In 2013 Fifth International Conference on Computational and Information Sciences (ICCIS). IEEE, 2013. http://dx.doi.org/10.1109/iccis.2013.454.
Der volle Inhalt der QuelleZhang, Ning, Zuochang Ye und Yan Wang. „An End-to-end System for Pests and Diseases Identification“. In IVSP '20: 2020 2nd International Conference on Image, Video and Signal Processing. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3388818.3389155.
Der volle Inhalt der QuelleShavanov, M. V., I. I. Shigapov und A. Niaz. „Biological methods for pests and diseases control in agricultural plants“. In ACTUAL PROBLEMS OF ORGANIC CHEMISTRY AND BIOTECHNOLOGY (OCBT2020): Proceedings of the International Scientific Conference. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0070487.
Der volle Inhalt der QuelleNurlaeli und Subiyanto. „Forward chaining method on diagnosis of diseases and pests corn crop“. In ENGINEERING INTERNATIONAL CONFERENCE (EIC) 2016: Proceedings of the 5th International Conference on Education, Concept, and Application of Green Technology. Author(s), 2017. http://dx.doi.org/10.1063/1.4976902.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Peas Diseases and pests"
Solomon, J. D., T. D. Leininger, A. D. Wilson, R. L. Anderson, L. C. Thompson und F. I. McCracken. Ash pests: a guide to major insects, diseases, air pollution injury, and chemical injury. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, 1993. http://dx.doi.org/10.2737/so-gtr-096.
Der volle Inhalt der QuelleSolomon, J. D., T. D. Leininger, A. D. Wilson, R. L. Anderson, L. C. Thompson und F. I. McCracken. Ash pests: a guide to major insects, diseases, air pollution injury, and chemical injury. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, 1993. http://dx.doi.org/10.2737/so-gtr-96.
Der volle Inhalt der QuelleKosiba, Alexandra, Emma Tait, Gene Desideraggio, Alyx Belisle, Clarke Cooper und James Duncan. Threats to the Urban Forest: The potential economic impacts of invasive forest pests and diseases in the Northeast. Forest Ecosystem Monitoring Cooperative, Juni 2020. http://dx.doi.org/10.18125/8w9j42.
Der volle Inhalt der QuelleDavis, Cristina, Amots Hetzroni, Alexander Aksenov, Michael J. Delwiche, Victoria Soroker und Victor Alchanatis. Development of a universal volatile compound detection technology for early recognition of pests and diseases in fruit trees. United States Department of Agriculture, Januar 2015. http://dx.doi.org/10.32747/2015.7600016.bard.
Der volle Inhalt der QuelleAmanor, Kojo, Joseph Yaro, Joseph Teye und Steve Wiggin. Ghana’s Cocoa Farmers Need to Change Gear: What Policymakers Need to Know, and What They Might Do. Institute of Development Studies (IDS), März 2022. http://dx.doi.org/10.19088/apra.2022.008.
Der volle Inhalt der QuelleCohen, Yuval, Christopher A. Cullis und Uri Lavi. Molecular Analyses of Soma-clonal Variation in Date Palm and Banana for Early Identification and Control of Off-types Generation. United States Department of Agriculture, Oktober 2010. http://dx.doi.org/10.32747/2010.7592124.bard.
Der volle Inhalt der QuelleA 40-Year Retrospective of APHIS, 1972–2012. United States Department of Agriculture, Animal and Plant Health Inspection Service, Januar 2012. http://dx.doi.org/10.32747/2012.7204068.aphis.
Der volle Inhalt der QuellePlant Protection and Quarantine: Helping U.S. Agriculture Thrive--Across the Country and Around the World, 2016 Annual Report. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, März 2017. http://dx.doi.org/10.32747/2017.7207241.aphis.
Der volle Inhalt der QuelleSafeguarding through science: Center for Plant Health Science and Technology 2008 Accomplishments. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Dezember 2009. http://dx.doi.org/10.32747/2009.7296842.aphis.
Der volle Inhalt der Quelle