Dissertationen zum Thema „Pea (Pisum sativum)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Pea (Pisum sativum)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Byrne, Oonagh Marie Therese. „Incorporation of pea weevil resistance from wild pea (Pisum fulvum) into cultivated field pea (Pisum sativum)“. University of Western Australia, 2005. http://theses.library.uwa.edu.au/adt-WU2005.0132.
Der volle Inhalt der QuelleDunn, Steven Mark. „The 5'-methylthioadenosine nucleosidase of pea (Pisum sativum)“. Thesis, University of Exeter, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314442.
Der volle Inhalt der QuelleDoulis, Andreas G. „Antioxidant responses of pea (Pisum sativum L.) protoplasts“. Diss., This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-09192008-063125/.
Der volle Inhalt der QuelleGould, Kevin. „Control of leaf morphogenesis in Pisum sativum L“. Thesis, University of Manchester, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370417.
Der volle Inhalt der QuelleTomlinson, Kim Louise. „Starch synthesis in leaves of pea (Pisum sativum L.)“. Thesis, University of East Anglia, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297009.
Der volle Inhalt der QuelleJones, Craigh G. „Molecular studies of pea (Pisum sativum L.) seed proteases“. Thesis, University of Nottingham, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358347.
Der volle Inhalt der QuelleAmarakoon, Amarakoon Rajapakse Wasala Mohotti Mudiyanselage Darshika. „Iron Biofortification Potential of Field Pea (Pisum Sativum L.)“. Thesis, North Dakota State University, 2012. https://hdl.handle.net/10365/26518.
Der volle Inhalt der QuelleEdwards, E. Anne. „Characterisation of glutathione reductase from Pisum sativum L“. Thesis, University of East Anglia, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278197.
Der volle Inhalt der QuelleMayer, Melinda Jane. „Gene expression during late embryogenesis in pea (Pisum sativum L)“. Thesis, Durham University, 1993. http://etheses.dur.ac.uk/5722/.
Der volle Inhalt der QuelleGoodlad, J. S. „Digestion and large intestinal fermentation of pea (Pisum sativum) carbohydrates“. Thesis, University of Newcastle Upon Tyne, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234536.
Der volle Inhalt der QuelleAlcalde, Jose Antonio. „Genetic characterisation of photothermal flowering responses in pea (Pisum sativum)“. Thesis, University of Reading, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264414.
Der volle Inhalt der QuelleDavies, Nanette Dulcie. „Study of initiation of DNA replication in pea (Pisum sativum)“. Thesis, University of Exeter, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235970.
Der volle Inhalt der QuelleJohnson, Claire Felicity. „Polar auxin transport in the intact pea (Pisum sativum L.)“. Thesis, University of Southampton, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293614.
Der volle Inhalt der QuelleKlak, Cornelia. „The expression of LEA proteins in Pisum sativum (pea) seeds“. Thesis, University of Cape Town, 1994. http://hdl.handle.net/11427/26393.
Der volle Inhalt der QuelleHillbur, Ylva. „Tracking the tiny : identification of the sex pheromone of the pea midge as a prerequisite for pheromone-based monitoring /“. Alnarp : Swedish Univ. of Agricultural Sciences (Sveriges lantbruksuniv.), 2001. http://epsilon.slu.se/avh/2001/91-576-5810-2.pdf.
Der volle Inhalt der QuelleMattsson, Johanna. „Purification of the recombinant SAD-C protein from Pisum sativum (pea)“. Thesis, Örebro University, Institutionen för naturvetenskap Department of Natural Sciences, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-2201.
Der volle Inhalt der QuelleSAD-C, a gene belonging to the small short-chain alcohol dehydrogenase-like protein (SAD) gene family, is up-regulated in Pisum sativum (pea) when the plant is exposed to UV-B (280-320 nm) radiation. SAD-C has a molecular weight of about 28 kDa and adopts a tetrameric structure. The aim of this work was to purify the protein SAD-C from Pisum sativum when overexpressed in E. coli strain BL21 StarTM (DE3) One Shot®.
The purification was facilitated by the presence of a His-tag consisting of six histidine residues at the C-terminal end of the protein. The purification trials of SAD-C were faced with problems since the sample fractions contained several other proteins as well. Several purification steps seem to be necessary for future trials. A crystallization trial was still set up and crystals were formed, but the crystals formed were probably not of SAD-C.
Hamilton, James Clarke. „Characterisation of a thermostable cationic isoperoxidase from pea seeds (Pisum sativum)“. Thesis, Royal Holloway, University of London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.481818.
Der volle Inhalt der QuelleRoder, Neil Alexander. „Development of starch structure in different pea (Pisum sativum L.) mutants“. Thesis, University of East Anglia, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398560.
Der volle Inhalt der QuelleLloyd, James. „Effect and interactions of rugosus genes on pea (Pisum sativum) seeds“. Thesis, University of East Anglia, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.633047.
Der volle Inhalt der QuelleFiebelkorn, Danielle. „Characterization of Selected Winter Hardiness Traits in Pea (Pisum Sativum L.)“. Thesis, North Dakota State University, 2013. https://hdl.handle.net/10365/27208.
Der volle Inhalt der QuelleHauxwell, Angela Jane. „In situ hybridisation for studying embryo development in Pisum sativum L“. Thesis, University of East Anglia, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279676.
Der volle Inhalt der QuelleO'Neill, Michelle. „A role for lipoxygenase in stress responses in Pisum sativum L“. Thesis, University of East Anglia, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389268.
Der volle Inhalt der QuelleMoot, Derrick J. „Harvest index variability within and between field pea (Pisum sativum L.) crops“. Lincoln University, 1993. http://hdl.handle.net/10182/1285.
Der volle Inhalt der QuelleChan, Sherwin Yum-Yat. „The intracellular distribution of folate derivatives in pea (Pisum sativum L.) leaves“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ40034.pdf.
Der volle Inhalt der QuellePervez, M. A. „Studies on the growth and development of the pea (Pisum sativum L.)“. Thesis, Bangor University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282262.
Der volle Inhalt der QuelleNajamussahar. „Seed production and storage of pea (Pisum sativum L.) for improved quality“. Thesis, Bangor University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298635.
Der volle Inhalt der QuelleStewart, Gregor James. „The expression of pea (Pisum sativum) vicilin in the yeast, Saccharomyces cerevisiae“. Thesis, Durham University, 1989. http://etheses.dur.ac.uk/9350/.
Der volle Inhalt der QuelleBurton, Sara Katherine. „DNA-binding proteins associated with DNA polymerase alpha in pea (Pisum sativum)“. Thesis, University of Exeter, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357961.
Der volle Inhalt der QuelleScegura, Amy. „Marker Assisted Backcross Selection for Virus Resistance in Pea (Pisum Sativum L.)“. Thesis, North Dakota State University, 2017. https://hdl.handle.net/10365/28401.
Der volle Inhalt der QuelleSivritepe, Huseyin Ozkan. „Genetic deterioration and repair in pea (Pisum sativum L.) seeds during storage“. Thesis, University of Bath, 1992. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314596.
Der volle Inhalt der QuelleJohansson, Inga-Maj. „Pea carbonic anhydrase : a kinetic study“. Doctoral thesis, Umeå universitet, Kemiska institutionen, 1994. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-118926.
Der volle Inhalt der QuelleDiss. (sammanfattning) Umeå : Umeå universitet, 1994, härtill 4 uppsatser
digitalisering@umu
Lin, Hao-jan. „Studies of chemoattractants from pea border cells and the release of pea (Pisum sativum) root border cells“. Thesis, The University of Arizona, 1991. http://hdl.handle.net/10150/144632.
Der volle Inhalt der QuelleLiu, Liansen. „Regulation of gene expression in pea (Pisum sativum L.) by ultraviolet-B radiation“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0019/NQ49275.pdf.
Der volle Inhalt der QuelleČesnulevičienė, Rūta. „Harmfulness of field pea (Pisum sativum L.) fungal diseases, their prevention and control“. Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121123_125900-41231.
Der volle Inhalt der QuelleTyrimų tikslas ir uždaviniai. Tyrimais siekta ištirti šaknų, pašaknio puvinių ir askochitozės išplitimą bei žalingumą sėjamojo žirnio pasėliuose, nustatyti Ascochyta komplekso patogenų sukeliamų ligų prevencijos ir kontrolės priemones. Tyrimų uždaviniai: - Nustatyti įvairių sėjamojo žirnio veislių jautrumą šaknų, pašaknio puviniams ir askochitozei skirtingomis agroekologinėmis sąlygomis. - Nustatyti meteorologinių faktorių įtaką šaknų, pašaknio puvinių ir askochitozės intensyvumui žirniuose. - Nustatyti Ascochyta komplekso patogenų aptikimo dažnį ant įvairių veislių žirnių. - Įvertinti Ascochyta komplekso patogenų sukeliamų ligų kontrolės galimybę naudojant beicus ir fungicidus. - Įvertinti beicų ir fungicidų įtaką žirnių derlingumui ir derliaus komponentams. - Ištirti galimą cheminių beicų šalutinį poveikį žirnių rizosferos bei dirvožemio mikroflorai.
Cuesta, Esperanza-Raquel Gonzalez. „Responses of cultivated pea (Pisum sativum L.) to UV-B radiation (280-315nm)“. Thesis, Lancaster University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337579.
Der volle Inhalt der QuelleKnox, Maggie. „The regional control of chiasmata and recombinant frequency in pea (Pisum sativum L.)“. Thesis, University of East Anglia, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423389.
Der volle Inhalt der QuelleTashtemirov, Behzod. „Inheritance of Partial Resistance to White Mold in Field Pea (Pisum sativum L.)“. Thesis, North Dakota State University, 2012. https://hdl.handle.net/10365/26387.
Der volle Inhalt der QuelleMacedo, Francynês da Conceição Oliveira. „Avaliação do comportamento competitivo de raízes de ervilha (Pisum sativum) cv. Mikado“. Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/11/11144/tde-28062011-143945/.
Der volle Inhalt der QuelleThe Plant Neurobiology is a recent branch of plant science that aims to clarify the complex patterns of behavior vegetable, with respect to perception, processing, storage and transmission of signals in plant and between plants. The detection of neighbors, is a capacity that involves self-recognition and an individual will only be successful in competitive interactions if it is capable of self/non-self discrimination. Thus, the objective was to determine whether roots of pea (Pisum sativum) cv. Mikado grow differently in the presence of the same plant roots, and roots of other plants, but within the same genotype, so that we can determine its capacity for self/non-self discrimination. In addition, we assessed also the growth of the shoot to see to what degree the presence of neighboring plants can influence the vegetative growth of pea plants. Five days from germination, seedlings of Pisum sativum cv. Mikado had the seminal root severed 5 mm below the hypocotyl. After seven days, all but two of these roots were removed, leaving only two roots of equal size per plant (split-root). Plants with two equal roots were replanted, with each pot containing two roots of the same plant (treatment self) or two roots of different plants (Treatment non-self). Pots were grouped in triplets. The experiment was kept in an incubator camera under controlled conditions of temperature and photoperiod and after 18 days were evaluated for growth of shoots and roots. It was measure plant height (cm), fresh weight of shoot and root (g), dry weight of shoot and root (g), leaf area (cm2), root area (cm2), total length of root (cm) and average root diameter (cm). The analysis of data considering the average values of each triplets showed no significant difference between treatments self and non-self in relation to the growth of shoots. With respect to root growth, except for the diameter, the other variables differed significantly, and plants belonging to treatment self had values of dry weight, surface area and total length of 36.71%, 27.84 % and 23.18%, respectively, higher than the treatment plants non-self. That is, plants that were not under competition had higher root growth. However, when we observe the behavior of plants in each triplet, it was found that the treatment non-self, the plants had sizes of shoot and root differ. It was also found that the root of the same plant grew differently depending on the identity of neighboring roots. While in treatment self, the three plants that constituted a triplet had, approximately, the same size of shoot and root. Thus, we can say that the growth of plants to treatment non-self was influenced by the interactions between roots and more that this was dependent on the identity of neighboring roots implying self/non-self discrimination and kin recognition.
Beeck, Cameron. „Simultaneous improvement in black spot resistance and stem strength in field pea (Pisum sativum L.)“. University of Western Australia. School of Plant Biology, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0057.
Der volle Inhalt der QuelleRagab, R. A. K. „Studies on the molecular biology and inheritance of major albumins of Pisum sativum L“. Thesis, Durham University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370361.
Der volle Inhalt der QuelleTurner, S. R. „The effect of the r locus on the synthesis of storage proteins in Pisum sativum“. Thesis, University of East Anglia, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382846.
Der volle Inhalt der QuelleEk, Louise. „The effect of nitrogen starvation on PSI and PSII activity in pea (Pisum sativum)“. Thesis, Halmstad University, School of Business and Engineering (SET), 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-143.
Der volle Inhalt der QuelleThis investigation addresses how photosynthetic efficiency is affected when pea (Pisum sativum) plants are restricted to a sole nitrogen source (i.e. ammonium or nitrate). The pea plants were watered with different nutrient solutions without NO3- or NH4+ for different time-periods in order to assay for nitrogen content. The soluble ammonium and nitrate content was measured throughout the entire growth period. No major differences were observed in nitrogen content during the starvation period up to 25 days. For technical reasons, cultivation of plants could not be extended beyond this time. The chloroplasts and thylakoids were isolated after 25 days and assayed for chlorophyll contents and photosynthetic activity.
The outcome of these tests indicates a small but unambiguous decrease in the photosynthesis activity for all treatments, relative the control.
Heisinger, Krista Gayle. „Effect of Penicillium bilaii on root morphology and architecture of pea (Pisum sativum L.)“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ32128.pdf.
Der volle Inhalt der QuelleLaflamme, Paul. „Diseases of field pea, Pisum sativum L., in the Peace River Region of Alberta“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ37569.pdf.
Der volle Inhalt der QuelleKuznetsova, Elena. „Characterization of Pea (Pisum Sativum L.) genes implicated in arbuscular mycorrhiza formation and function“. Phd thesis, Université de Bourgogne, 2010. http://tel.archives-ouvertes.fr/tel-00583434.
Der volle Inhalt der QuelleMiranda, Andre Luis Rodrigues. „Genome Mapping and Molecular Markers for Ascochyta Blight Resistance in Pea (Pisum Sativum L.)“. Thesis, North Dakota State University, 2012. https://hdl.handle.net/10365/26798.
Der volle Inhalt der QuelleZhang, Jiesheng. „Cloning and Characterization of an Invertase Gene From the Garden Pea (Pisum sativum L.)“. Ohio University / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1051476890.
Der volle Inhalt der QuelleKuznetsova, Elena Vladislavovna. „Characterization of Pea (Pisum Sativum L.) genes implicated in arbuscular mycorrhiza formation and function“. Thesis, Dijon, 2010. http://www.theses.fr/2010DIJOS023/document.
Der volle Inhalt der QuelleThe arbuscular mycorrhizal (AM) association results from a successful interaction between the genomes of the two symbiotic partners. In this context, the aim of my research was to better characterize the role of the late stage symbiosis-related pea genes PsSym36, PsSym33 and PsSym40 in the functional AM (i) by investigating the effect of mutations in the three genes on fungal and plant gene responses and (ii) by creating conditions for the localization of two of the genes, PsSym36 and PsSym40, on the pea genetic map for future map-based cloning. The expression of a subset of ten fungal and eight plant genes,previously reported to be activated during mycorrhiza development, was compared in Glomus intraradices-inoculated roots of wild type and Pssym36, Pssym33 and Pssym40 mutant pea plants. Most of the fungal genes were down-regulated in roots of the Pssym36 mutant where arbuscule formation is defective, and several were upregulated with more rapid fungal development in roots of the Pssym40 mutant. Microdissection of mycorrhizal PsSym40 roots corroborated preferential expression of the three G. intraradices genes SOD, DESAT and PEPISOM in arbuscule-containing cells. Inactivation of PsSym36 also resulted in down regulation of plant genes whilst mutation of the PsSym33 and PsSym40 genes affected plant gene responses in a more time-dependent way. Results thus indicate an implication of the investigated pea SYM genes in the modulation of plant and fungal molecular interactions linked to signaling, nutrient exchange or stress response regulation during AM symbiosis formation and functioning. Conditions for localization of the PsSym36 and PsSym40 genes on the pea genetic map were developed for their future map-based cloning. Based on the molecular markers obtained, it was possible to conclude that localization of the PsSym40 gene most likely resides outside the linkage groups I, II, III or V of the genetic map of pea
Формирование арбускулярной микоризы (АМ) является результатом успешного взаимодействия между геномами двух симбиотических партнёров. Целью моего исследования являлось изучение роли поздних симбиотических генов гороха PsSym36, PsSym33 и PsSym40 в формировании функционального АМ симбиоза. Для этого было проведено исследование эффекта мутаций в генах PsSym36, PsSym33 и PsSym40 на экспрессию грибных и растительных генов, предположительно (по литературным данным) вовлечённых в процессы формирования АМ, а так же проведена работа по локализации генов PsSym36 и PsSym40 на генетической карте гороха для последующего более точного картирования и позиционного клонирования данных генов. Экспрессия десяти грибных и восьми растительных генов была определена в корнях растений дикого типа и PsSym36, PsSym33 и PsSym40 мутантов, инокулированных G. intraradices. В корнях PsSym36 мутанта, имеющего дефект развития арбускул, большая часть грибных генов была супрессирована, в то время как в корнях PsSym40 мутанта, для которого характерна более быстрая по сравнению с диким типом микоризация, был отмечен более высокий уровень экспрессии грибных генов. Использование метода микродиссекций позволило выделить клетки, содержащие арбускулы, из микоризованных корней мутанта PsSym40 и подтвердить, что гены G. intraradices SOD, DESAT и PEPISOM преимущественно экспрессируются в клетках, содержащих арбускулы. Мутация в гене PsSym36 также привела к подавлению экспрессии большинства вовлечённых в анализ растительных генов, тогда как мутации в генах PsSym33 и PsSym40 оказали влияние на ксперессию растительных генов в меньшей степени. Полученные результаты свидетельствуют о роли исследуемых SYM генов гороха в контролировании растительно-грибных молекулярных взаимодействий, связанных с сигналингом, обменом питательными веществами и стрессовыми реакциями в процессе формирования и функционирования АМ симбиоза. Проведённое генетическое картирование не привело к локализации генов PsSym36 и PsSym40 на генетической карте гороха. Однако разработка и использование молекулярных маркеров для картирования позволили исключить локализацию гена PsSym40 в I, II, III и V группах сцепления с высокой долей вероятности
Hadavizadeh, Alireza. „The effect of mother plant nutrition on seed yield, quality and vigour in peas (Pisum sativum)“. Thesis, University of Bath, 1986. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233622.
Der volle Inhalt der QuelleBuchman, Natalie L. „Influences of Pea Morphology and Interacting Factors on Pea Aphids (Acyrthosiphon pisum)“. Ohio : Ohio University, 2008. http://www.ohiolink.edu/etd/view.cgi?ohiou1218819576.
Der volle Inhalt der Quelle