Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „PCB printed circuit board“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "PCB printed circuit board" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "PCB printed circuit board"
Petkov, Nikolay, und Malinka Ivanova. „Printed circuit board and printed circuit board assembly methods for testing and visual inspection: a review“. Bulletin of Electrical Engineering and Informatics 13, Nr. 4 (01.08.2024): 2566–85. http://dx.doi.org/10.11591/eei.v13i4.7601.
Der volle Inhalt der QuelleHsia, Kuo-Hsien, und Jr-Hung Guo. „Estimation of the PCB Production Process Using a Neural Network“. Proceedings of Engineering and Technology Innovation 15 (27.04.2020): 01–07. http://dx.doi.org/10.46604/peti.2020.4265.
Der volle Inhalt der QuelleKhan, Noor Mohmmed, Shubhangi Patil, Tushar Diggewadi und Anand Gudnavar. „Cinch and Sterling Analog Circuits for Laboratory“. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 6, Nr. 01 (25.06.2017): 51–58. http://dx.doi.org/10.15662/ijareeie.2017.0601007.
Der volle Inhalt der QuelleNoor Yulita Dwi Setyaningsih, Moh Rizal und Budi Cahyo Wibowo. „CNC Plotter Printed Circuit Board“. Jurnal Media Elektrik 21, Nr. 2 (08.05.2024): 116–22. http://dx.doi.org/10.59562/metrik.v21i2.2145.
Der volle Inhalt der QuelleLambture, Rahul. „Printed Circuit Board (PCB) Fault Detection“. International Journal for Research in Applied Science and Engineering Technology 12, Nr. 6 (30.06.2024): 542–48. http://dx.doi.org/10.22214/ijraset.2024.63142.
Der volle Inhalt der QuelleWang, Qianyue. „A new frontier in electronics manufacturing: Optimized deep learning techniques for PCB image reconstruction“. Applied and Computational Engineering 51, Nr. 1 (25.03.2024): 267–73. http://dx.doi.org/10.54254/2755-2721/51/20241591.
Der volle Inhalt der QuelleMyers, Sharon A., Troy D. Cognata und Hugh Gotts. „FTIR analysis of printed-circuit board residue“. Proceedings, annual meeting, Electron Microscopy Society of America 54 (11.08.1996): 264–65. http://dx.doi.org/10.1017/s0424820100163782.
Der volle Inhalt der QuelleCraven, Jeffery D., Ariel R. Oldag und Robert N. Dean. „A Technique for Detecting Moisture Absorption in Printed Circuit Boards“. Journal of Microelectronics and Electronic Packaging 17, Nr. 1 (01.01.2020): 28–33. http://dx.doi.org/10.4071/imaps.1014123.
Der volle Inhalt der QuelleUmbetov, S. V., und S. P. Pronin. „COMPREHENSIVE METHOD FOR MONITORING PCB CORROSION PROCESS“. Kontrol'. Diagnostika, Nr. 309 (März 2024): 50–57. http://dx.doi.org/10.14489/td.2024.03.pp.050-057.
Der volle Inhalt der QuelleSchmidt, H., M. Käß, R. Lichtinger und M. Hülsebrock. „Model updating for the simulation of surface strains on printed circuit boards considering parameter uncertainty“. Journal of Physics: Conference Series 2647, Nr. 21 (01.06.2024): 212006. http://dx.doi.org/10.1088/1742-6596/2647/21/212006.
Der volle Inhalt der QuelleDissertationen zum Thema "PCB printed circuit board"
Chan, Ching-Yuen. „Cell controller for printed circuit board assembly rework“. Thesis, University of Salford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386432.
Der volle Inhalt der QuelleWang, Lei. „Printed Circuit Board Design for Frequency Disturbance Recorder“. Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/30917.
Der volle Inhalt der QuelleThe FDR (Frequency Disturbance Recorder) is a data acquisition device for the power system. The device is portable and can be used with any residential wall outlet for frequency data collection. Furthermore, the FDR transmits calculated frequency data to the web for access by authorized users via Ethernet connection. As a result, Virginia Tech implemented Frequency Monitoring Network (FNET) with these FDR devices. FNET is a collection of identical FDRs placed in different measurement sites to allow for data integration and comparison. Frequency is an important factor for power system control and stabilization. With funding and support provided by ABB, TVA and NSF the FDRs are placed strategically all over the United States for frequency analysis, power system protection and monitoring.
The purpose of this study is to refine the current FDR hardware design and establish a new design that will physically fit all the components on one Printed Circuit Board (PCB). At the same time, the software that is to be implemented on the new board is to be kept similar if not the same as that of the current design. The current FDR uses the Axiom CME555 development board and it is interfaced to the external devices through its communication ports. Even through the CME555 board is able to meet the demands of the basic FDR operations, there are still several problems associated with this design. This paper will address some of those hardware problems, as well as propose a new board design that is specifically aimed for operations of FDR.
Master of Science
Sandron, Marco. „Mils - Stampante per la creazione di PCB (printed circuit board) con polimero“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19757/.
Der volle Inhalt der Quellemaamoun, Adam. „A SURROGATE MEASURE OF CUSTOMER SATISFACTION IN THE MANUFACTURE OF PRINTED WIRING BOARDS“. Doctoral diss., University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2428.
Der volle Inhalt der QuellePh.D.
Department of Industrial Engineering and Management Systems
Engineering and Computer Science
Industrial Engineering PhD
Rajagopal, Abhilash. „Printed circuit board (PCB) loss characterization up-to 20 GHz and modeling, analysis and validation“. Diss., Rolla, Mo. : University of Missouri-Rolla, 2007. http://scholarsmine.umr.edu/thesis/pdf/Rajagopal_09007dcc803bf920.pdf.
Der volle Inhalt der QuelleVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed November 26, 2007) Includes bibliographical references (p. 112-113).
Subbarayan, Guhan. „A systematic approach for selection of best PB-free printed circuit board (PCB) surface finish“. Diss., Online access via UMI:, 2007.
Den vollen Inhalt der Quelle findenAhmed, Ahmed Sabry Eltaher. „High-performance cooling of power semiconductor devices embedded in a printed circuit board“. Electronic Thesis or Diss., Lyon, INSA, 2024. http://www.theses.fr/2024ISAL0100.
Der volle Inhalt der QuelleThe integration of power semiconductor devices within a printed circuit board (PCB) stack is a promising solution to reduce circuit parasitics, simplifying device packaging, and lowering costs. However, the continuous reduction in the chip size of the semiconductors, combined with the low thermal conductivity of the dielectric layers of PCBs, present more thermal challenges, and require more efficient thermal management solutions. The thermal management and cooling solutions must offer low thermal resistance between the chip junction and its environment and be capable of handling a high-power loss density at the chip level without exceeding the upper limit of the chip junction temperature. Most silicon devices are limited to 175°C to account for the temperature limits of packaging materials. The ultimate goal of this thesis is to achieve a power-loss density of 1000 W/cm² without exceeding the junction temperature limit of 175°C. This goal is constrained by other considerations such as low power consumption, compact size and weight, high reliability, low cost, and minimal maintenance. Finally, the cooling solutions studied here must be compatible with PCB manufacturing processes and embedding technology, as we aim to apply them to chips integrated into PCBs. In this research project, two thermal management solutions are studied. First, a graphite heat spreader with high thermal conductivity (1300 W/(m.K) in-plane, and 15 W/(m.K) cross-plane) is integrated into the PCB stack. Second, a heat extraction solution based on water jet impingement cooling technique is implemented to collect heat at the PCB surface. For the heat spreading solution, the junction-to-ambient and junction-to-case thermal resistances values (RthJA and RthJC, respectively) of the PCB variants with embedded diodes and MOSFET chips, are reduced by up to 38 % in RthJA and 30 % in RthJC. For the heat extraction solution, the presented water jet cooler (JIC) experimentally reduces RthJA by 33% compared to a conventional cold plate. The effective heat transfer coefficient (HTC) of the JIC is calculated through simulations and found to be about 43 kW/(m².K) with a pressure drop of 9.7 kPa. This performance allows achieving a power loss density of 865 W/cm² without exceeding the junction temperature limit of 175°C. Increasing the thermal conductivity of the isolation layer by 10 times will allow to reach 993 W/cm² (very close to the target of 1000 W/cm²)
Caillaud, Rémy. „Integration of a 3.3 kW, AC/DC bidirectional converter using printed circuit board embedding technology“. Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI001/document.
Der volle Inhalt der QuelleWith the endangering of the environment due to the use of fossil fuels, the power electronics market is growing through the years. The number of applications is increasing in numerous field as, for example, transport (electric car, "more electric" aircraft) or energy (photovoltaic, smart grid). Beyond meeting the volume, efficiency and reliability specifications for each application, power electronics should also reduce substantially costs. Today, the managing of the electric energy uses power electronic converters. The conception of a converter is a multiphysic problem. The converter has to ensure electrical functionality, mechanical support and proper thermal management.The new wide-band gap components are limited in performance by their package. The integration of a converter should use new interconnection methods to avoid the use of packaged components. The trend is to integrate the maximum of components into a single system. This integration can offer benefits such as size and weight reduction, cost saving and reliability improvement by managing the complexity and the high density of interconnection. Among many integration technologies available, Printed Circuit Board (PCB) is well known in the industry, allowing mass production with automated manufacturing and assembly. The PCB integration was developed with the “Die Embedding” technology in which a bare die in embedded directly in the PCB to not use package. This thesis studied the embedding technology on others components necessary to the realization of a converter (Capacitors, Magnetics, …). An optimization of the converter is done taking into account the advantages of this new technology. A prototype of an AC/DC bidirectional converter fully integrated using this technology was realized
Zhang, Jingbing. „On flexibly integrating machine vision inspection systems in PCB manufacture“. Thesis, Loughborough University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314613.
Der volle Inhalt der QuelleMachuca, Julían, und Thomas Tuvesson. „PCB design of Power Distributor Unit (PDU)“. Thesis, Uppsala universitet, Institutionen för elektroteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415474.
Der volle Inhalt der QuelleBücher zum Thema "PCB printed circuit board"
Beaulieu, Dan. Printed circuit board basics: An introduction to the PCB industry. 4. Aufl. Atlanta, GA: UP Media Group, 2003.
Den vollen Inhalt der Quelle findenTheresa, Kiko, Hrsg. Printed circuit board basics: An introduction to the PCB industry. 2. Aufl. San Francisco: Miller Freeman, 1992.
Den vollen Inhalt der Quelle findenLaura, Scholten, Hrsg. PCB preproduction tooling: Preproduction automation and intelligent tooling for printed circuit board manufacturing. San Francisco: Miller Freeman Books, 1994.
Den vollen Inhalt der Quelle findenHossain, Akram. Computer-aided electronic circuit board design and fabrication: Using OrCAD/SDT and OrCAD/PCB software tools. Englewood Cliffs, N.J: Prentice Hall, 1996.
Den vollen Inhalt der Quelle findenStanton, Martin Gray. Printed circuit board manual: How to design, make and assemble top quality PCBs using inexpensive equipment. Birmingham: Frank Stanton, 1988.
Den vollen Inhalt der Quelle findenNoble, P. J. W. Printed circuit board assembly. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-6234-0.
Der volle Inhalt der QuelleW, Jawitz Martin, Hrsg. Printed circuit board materials handbook. New York: McGraw-Hill, 1997.
Den vollen Inhalt der Quelle findenCastrovilla, Joseph A. The printed circuit board industry. Stamford, Conn., U.S.A: Business Communications Co., 1985.
Den vollen Inhalt der Quelle findeninc, International Resource Development, Hrsg. Printed circuit board market opportunities. Norwalk, Conn., U.S.A. (6 Prowitt St., Norwalk 06855): International Resource Development Inc., 1986.
Den vollen Inhalt der Quelle findenMontrose, Mark I. EMC and the Printed Circuit Board. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1998. http://dx.doi.org/10.1002/047172310x.
Der volle Inhalt der QuelleBuchteile zum Thema "PCB printed circuit board"
Archambeault, Bruce R. „Printed Circuit Board Layout“. In PCB Design for Real-World EMI Control, 187–97. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3640-3_11.
Der volle Inhalt der QuellePau, L. F. „Printed Circuit Board (PCB) Inspection“. In Computer Vision for Electronics Manufacturing, 141–60. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0507-1_11.
Der volle Inhalt der QuelleTran, Thanh T. „Printed Circuit Board (PCB) Layout“. In High-Speed DSP and Analog System Design, 187–94. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6309-3_10.
Der volle Inhalt der QuelleTran, Thanh T. „Printed Circuit Board (PCB) Layout“. In High-Speed System and Analog Input/Output Design, 193–202. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04954-5_14.
Der volle Inhalt der QuelleNing, Chao, Carol Sze Ki Lin, David Chi Wai Hui und Gordon McKay. „Waste Printed Circuit Board (PCB) Recycling Techniques“. In Topics in Current Chemistry Collections, 21–56. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-90653-9_2.
Der volle Inhalt der QuelleDumpert, Dwight T. „Infrared Techniques for Printed Circuit Board (PCB) Evaluation“. In Infrared Methodology and Technology, 253–64. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003420200-9.
Der volle Inhalt der QuelleKaya, Muammer. „Printed Circuit Boards (PCBs)“. In Electronic Waste and Printed Circuit Board Recycling Technologies, 33–57. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26593-9_2.
Der volle Inhalt der QuelleGoosey, Martin. „Polymers in Printed Circuit Board (PCB) and Related Advanced Interconnect Applications“. In Plastics for Electronics, 293–332. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2700-6_9.
Der volle Inhalt der QuelleArumugam, M., G. Arun, R. Mekala und K. Anusuya. „Detection of Printed Circuit Board (PCB) Defects Using Deep Learning Approach“. In Lecture Notes in Networks and Systems, 319–33. Singapore: Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-7710-5_24.
Der volle Inhalt der QuelleArchambeault, Bruce R. „Introduction to EMI/EMC Design for Printed Circuit Boards“. In PCB Design for Real-World EMI Control, 1–7. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3640-3_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "PCB printed circuit board"
Ju, Huafang, Jimmy Hsu, Meng Wang, Ryan Chang, Xiang Li, Mengen Zan, Shaozheng Hou et al. „Enhancing Printed Circuit Board (PCB) Electrical Characteristics under Immersion Cooling Condition“. In 2024 19th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 61–64. IEEE, 2024. https://doi.org/10.1109/impact63555.2024.10818954.
Der volle Inhalt der QuelleZeng, Qi, Chongren Zhao, Pengfei He und Hongchao Gao. „LSDM-PCB: A Lightweight Small Defect Detection Model for Printed Circuit Board“. In 2024 IEEE International Conference on Image Processing (ICIP), 673–79. IEEE, 2024. http://dx.doi.org/10.1109/icip51287.2024.10647590.
Der volle Inhalt der QuelleCraig, Patrick, Jonathan Pearson, Shajib Ghosh, Nitin Varshney, Sanjeev J. Koppal und Navid Asadizanjani. „Optical Automated Interconnect Inspection of Printed Circuit Boards“. In ISTFA 2024, 22–27. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.istfa2024p0022.
Der volle Inhalt der QuellePark, Junyong, Chaofeng Li, Eddie Mok, Joe Dickson, Joan Tourné und Donghyun Bill Kim. „Vertical Interconnect Technology in Silicon, Package, and Printed Circuit Board (PCB) with Coaxial Structure“. In 2024 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI), 39–44. IEEE, 2024. http://dx.doi.org/10.1109/emcsipi49824.2024.10705593.
Der volle Inhalt der QuelleSlee, Daren T. „Printed Circuit Board Propagating Faults“. In ISTFA 2004. ASM International, 2004. http://dx.doi.org/10.31399/asm.cp.istfa2004p0436.
Der volle Inhalt der QuelleHuang, Chien-Yi, Chen-Liang Ku, Hao-Chun Hsieh, Tzu-Min Chien und Hui-Hua Huang. „Reliability Assessment for Printed Circuit Board in Lead-Free Process“. In ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89253.
Der volle Inhalt der QuelleIyengar, Anirudh, Nareen Vobilisetti und Swaroop Ghosh. „Authentication of Printed Circuit Boards“. In ISTFA 2016. ASM International, 2016. http://dx.doi.org/10.31399/asm.cp.istfa2016p0605.
Der volle Inhalt der QuelleBachoo, Richard, Shurland Balliram und Jacqueline Bridge. „EXPERIMENTAL AND NUMERICAL VIBRATION ANALYSIS OF PRINTED CIRCUIT BOARDS“. In International Conference on Emerging Trends in Engineering & Technology (IConETech-2020). Faculty of Engineering, The University of the West Indies, St. Augustine, 2020. http://dx.doi.org/10.47412/umtw9840.
Der volle Inhalt der QuelleWang, Mu-Chun, Zhen-Ying Hsieh, Ting-Yu Yang, Chia-Hao Tu und Shuang-Yuan Chen. „Improvement of Printed Circuit Board Assembly Process in 2.4GHz RF Circuit Products“. In 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2008. http://dx.doi.org/10.1115/micronano2008-70093.
Der volle Inhalt der QuelleLee, El-Hang, S. G. Lee, B. H. O, S. G. Park und K. H. Kim. „Fabrication of a hybrid electrical-optical printed circuit board (EO-PCB) by lamination of an optical printed circuit board (O-PCB) and an electrical printed circuit board (E-PCB)“. In Integrated Optoelectronic Devices 2006, herausgegeben von Allen M. Earman und Ray T. Chen. SPIE, 2006. http://dx.doi.org/10.1117/12.650521.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "PCB printed circuit board"
Booth, Janice C., Tracy Hudson, Brian A. English, Michael R. Whitley und Michael S. Kranz. Integrated Printed Circuit Board (PCB) Active Cooling With Piezoelectric Actuator. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada567661.
Der volle Inhalt der QuelleBacon, L. D., und R. P. Toth. LineCAP (Line/Circuit Analysis Program): Cross-coupling on PC (printed circuit) board traces including discontinuities and circuit elements. Office of Scientific and Technical Information (OSTI), Juni 1989. http://dx.doi.org/10.2172/6038898.
Der volle Inhalt der QuelleAnderson, J. T. Document Template for Printed Circuit Board Layout. Office of Scientific and Technical Information (OSTI), Januar 1998. http://dx.doi.org/10.2172/1032099.
Der volle Inhalt der QuelleHolder, Darryl. Prototype and Short-Run Printed Circuit Board Creation. Fort Belvoir, VA: Defense Technical Information Center, März 1993. http://dx.doi.org/10.21236/ada263245.
Der volle Inhalt der QuelleEdwards, H. W., M. F. Kostrzewa und G. P. Looby. Pollution prevention assessment for a printed circuit board plant. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/125058.
Der volle Inhalt der QuelleNestleroth. L52298 Augmenting MFL Tools With Sensors that Assess Coating Condition. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 2009. http://dx.doi.org/10.55274/r0010396.
Der volle Inhalt der QuelleNeilsen, Michael K., Kevin N. Austin, Douglas Brian Adolf, Scott W. Spangler, Matthew Aaron Neidigk und Robert S. Chambers. Packaging strategies for printed circuit board components. Volume I, materials & thermal stresses. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1022184.
Der volle Inhalt der QuelleOxley, J. E., und R. J. Smialek. Electrolytic regeneration of acid cupric chloride printed circuit board etchant. Final report, August 1, 1995--October 31, 1996. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/510548.
Der volle Inhalt der QuelleHEWITT AND ASSOCIATES INC ALBUQUERQUE NM. EM Visualization of Printed Circuit Board Assemblies. A Phase 1 SBIR on behalf of USAF; SA-ALC/LDAE. Fort Belvoir, VA: Defense Technical Information Center, Juni 1994. http://dx.doi.org/10.21236/ada293355.
Der volle Inhalt der QuelleOxley, J. E., und R. J. Smialek. Electrolytic regeneration of acid cupric chloride printed circuit board etchant. Quarterly report No. 4, April 30, 1996--July 30, 1996. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/378168.
Der volle Inhalt der Quelle