Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Pathogen (Ralstonia solanacearum)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Pathogen (Ralstonia solanacearum)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Pathogen (Ralstonia solanacearum)"
Wang, Hui, Ying Luo, Haofu Dai und Wenli Mei. „Antibacterial Activity against Ralstonia solanacearum of Phenolic Constituents Isolated from Dragon's Blood“. Natural Product Communications 8, Nr. 3 (März 2013): 1934578X1300800. http://dx.doi.org/10.1177/1934578x1300800316.
Der volle Inhalt der QuelleLi, Mei, Thomas Pommier, Yue Yin, Jianing Wang, Shaohua Gu, Alexandre Jousset, Joost Keuskamp et al. „Indirect reduction of Ralstonia solanacearum via pathogen helper inhibition“. ISME Journal 16, Nr. 3 (20.10.2021): 868–75. http://dx.doi.org/10.1038/s41396-021-01126-2.
Der volle Inhalt der QuelleSaha, A., H. Mandal und D. Saha. „Isolation and identification of a virulent Ralstonia solanacearum by fliC gene amplification and induction of chitinase by 2-amino butyric acid for control of bacterial wilt in tomato plants“. NBU Journal of Plant Sciences 7, Nr. 1 (2013): 95–100. http://dx.doi.org/10.55734/nbujps.2013.v07i01.013.
Der volle Inhalt der QuelleFlores-Cruz, Zomary, und Caitilyn Allen. „Ralstonia solanacearum Encounters an Oxidative Environment During Tomato Infection“. Molecular Plant-Microbe Interactions® 22, Nr. 7 (Juli 2009): 773–82. http://dx.doi.org/10.1094/mpmi-22-7-0773.
Der volle Inhalt der QuelleFeng, Jinlin. „ITRAQ-Based Proteomic Analysis of The Response to Ralstonia solanacearum in Potato“. Pakistan Journal of Agricultural Sciences 59, Nr. 02 (01.01.2022): 165–71. http://dx.doi.org/10.21162/pakjas/22.1347.
Der volle Inhalt der QuelleTeli, Kalavati, H. M. Shweta, M. K. Prasanna Kumar, Bharath Kunduru und B. S. Chandra Shekar. „Isolation, identification and molecular characterization of Ralstonia solanacerum isolates collected from Southern Karnataka“. Journal of Applied and Natural Science 10, Nr. 3 (01.09.2018): 886–93. http://dx.doi.org/10.31018/jans.v10i3.1747.
Der volle Inhalt der QuelleSalanoubat, M., S. Genin, F. Artiguenave, J. Gouzy, S. Mangenot, M. Arlat, A. Billault et al. „Genome sequence of the plant pathogen Ralstonia solanacearum“. Nature 415, Nr. 6871 (Januar 2002): 497–502. http://dx.doi.org/10.1038/415497a.
Der volle Inhalt der QuelleOjesola, C. O., A. K. Akintokun, P. O. Akintokun und A. R. Oloyede. „In-Vitro Antagonistic Effect of Bacillus thuringiensis on Ralstonia solanacearum, the Causal Agent of Bacterial Wilt Disease of Tomato (Lycopersicon esculentum Mill).“ Nigerian Journal of Biotechnology 37, Nr. 2 (23.03.2021): 177–93. http://dx.doi.org/10.4314/njb.v37i2.18.
Der volle Inhalt der QuelleMachado, Patrícia da S., Acelino C. Alfenas, Marcelo M. Coutinho, Cláudio M. Silva, Ann H. Mounteer, Luiz A. Maffia, Rodrigo G. de Freitas und Camila da S. Freitas. „Eradication of Plant Pathogens in Forest Nursery Irrigation Water“. Plant Disease 97, Nr. 6 (Juni 2013): 780–88. http://dx.doi.org/10.1094/pdis-08-12-0721-re.
Der volle Inhalt der QuelleZhao, Cuizhu, Huijuan Wang, Yao Lu, Jinxue Hu, Ling Qu, Zheqing Li, Dongdong Wang et al. „Deep Sequencing Reveals Early Reprogramming of Arabidopsis Root Transcriptomes Upon Ralstonia solanacearum Infection“. Molecular Plant-Microbe Interactions® 32, Nr. 7 (Juli 2019): 813–27. http://dx.doi.org/10.1094/mpmi-10-18-0268-r.
Der volle Inhalt der QuelleDissertationen zum Thema "Pathogen (Ralstonia solanacearum)"
Puigvert, Sànchez Marina. „Control strategies and gene expression dynamics of the plant pathogen Ralstonia solanacearum = Estratègies de control i dinàmica d'expressió gènica en el fitopatogen Ralstonia solanacearum“. Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/586253.
Der volle Inhalt der QuelleRalstonia solanacearum és l’agent causant del marciment bacterià en plantes, una malaltia altament agressiva i responsable de considerables pèrdues econòmiques d’impacte mundial. Molts factors de virulència de R. solanacearum han sigut identificats, però la seva regulació transcripcional al llarg del desenvolupament de la malaltia encara es desconeixia. En un intent de caracteritzar els canvis en l’expressió genètica que modulen la virulència del bacteri, en primer lloc hem proporcionat la seqüència completa del genoma de la soca de patateres R. solanacearum UY031 com a eina per a dur a terme transcriptomes robustos dins de la planta. Gràcies a la nova tecnologia de seqüenciació anomenada SMRT, també proporcionem algunes pistes sobre el seu perfil de metilació i la contribució d’aquest en l’expressió de gens de virulència a UY031. En aquest estudi hem realitzat dos transcriptomes del bacteri en patateres en diferents estadis d’infecció. Per una banda hem analitzat l’expressió genètica bacteriana durant la colonització de l’arrel i hem demostrat que, malgrat ser poc rentable, és possible analitzar el transcriptoma del bacteri dins de la planta sense enriquir prèviament les mostres amb ARN procariota. Així mateix, hem identificat un nou membre que regula l’eficàcia biològica del bacteri durant els estadis inicials de la infecció que hem anomenat RepR, de Repressor Regulador, ja que hem descobert que reprimeix rutes metabòliques concretes. Per altra banda, hem fet un transcriptoma a diferents estadis de la infecció i demostrem que l’expressió de factors de virulència i del metabolisme de R. solanacearum és dinàmica al llarg del procés infectiu. Amb el nostre sistema, hem validat els patrons d’expressió de factors de virulència ja coneguts, com el Sistema de Secreció de Tipus III (SST3) o el flagel, i hem desxifrat els perfils d’altres factors com el dels pilus de tipus IVb o el SST6. En contra de l’assumpció que el SST3 juga principalment un paper als estadis primerencs de la infecció, hem demostrat que la transcripció de molts efectors és extremadament alta en estadis avançats de la malaltia. Finalment, hem dut a terme una prova pilot per a identificar inhibidors del SST3 i hem demostrat que algunes salicidèn-acilhidrazides tenen potencial per a prevenir malalties bacterianes de plantes mitjançant la inhibició de la transcripció del SST3. Aquest treball afegeix nou coneixement en el comportament i la fisiologia del patogen en diferents estadis de la malaltia, que amb el temps podria contribuir a la identificació de nous fàrmacs dirigits en passos claus en el desenvolupament de la malaltia.
Ailloud, Florent. „Le pouvoir pathogène chez Ralstonia solanacearum phylotype II génomique intégrative et paysages transcriptomiques en relation avec l'adaptation à l'hôte“. Thesis, La Réunion, 2015. http://www.theses.fr/2015LARE0009/document.
Der volle Inhalt der QuelleRalstonia solanacearum is a plant pathogenic bacterium globally distributed with a particularly broad host range. This organism is biologically diverse and is adapted to all types of soil, to planktonic lifestyle and to many plant hosts and natural reservoirs. This bacterium is a species complex and its genetic, phenotypic and host range diversity is a direct consequence of adaptation mechanisms. Phylogenetic analyses have divided this species complex into four distinct phylotypes correlating mostly with strains’ geographical origin. This thesis focuses on using phylotype II strains as an experimental model due to their adaptation to specific hosts: Moko strains pathogenic to banana, ‘Brown rot’ strains adapted to potatoes and emergent pathological variant NPB strains. Our main research topic is the understanding of host adaptation processes. In order to tackle this problematic we sequenced about ten genomes as a starting point of (i) a taxonomic revision of the species complex (ii) a comparative genomic analysis and (iii) an in planta transcriptomic analysis. Together, these complementary approaches allow a more systemic view of this organism’s genetic and phenotypic complexity
Bliss, Elizabeth Katherine. „Strain variation and response to environmental factors in the plant pathogen ralstonia solanacearum“. Thesis, Imperial College London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.497230.
Der volle Inhalt der QuelleDanial, Janathan. „Studies on the genetic diversity of the potato brown rot pathogen Ralstonia solanacearum race 3/biovar 2A“. Thesis, Heriot-Watt University, 2010. http://hdl.handle.net/10399/2384.
Der volle Inhalt der QuelleBringel, Jose Magno Martins. „Caracterização bioquímica, patogênica e molecular de isolados de Ralstonia solanacearum biovar 2 de batata e berinjela“. Universidade de São Paulo, 2002. http://www.teses.usp.br/teses/disponiveis/11/11135/tde-09012003-081030/.
Der volle Inhalt der QuelleThe bacterial wilt disease caused by Ralstonia solonacearum affects mainly the solanaceous species, specially potato, eggplant, peppers, tomato and brazilian gilo (Solanum gilo). This work reports the molecular characterization of R. solanacearum biovar 2 isolates and the possible relationship of this molecular data with other characteristics related to morphology, biochemistry, pathogenicity, aggressiveness and geographical distribution. Fifty-one biovar 2 isolates were studied, 9 isolated from eggplant and 42 from potato, all of them collected from different regions of Brazil. According to the molecular analysis, the isolates were clustered in four different groups, with distinct band patterns to the primers BOX and ERIC, and five groups to the primers REP. There was no relationship between the groups clustered through molecular analyses and phenotypic characteristics, such as colony size, presence of mutants, melanin presence, capability of root system colonization and antibiotic/fungicide resistance. The identification of potato isolates as the biovar 2-A, and the eggplant isolates as biovar 2-T, based on biochemical tests using trealose were confirmed with the molecular analyses. There was no variation of aggressiveness in the isolates inoculated on potato an eggplant, except the avirulent isolate CNPH-65. Consequently, isolates of biovars 2-A and 2-T are able to infect both hosts with the same aggressiveness under high temperatures. The population of all isolates developed in significant levels at the root system of susceptible cultivars of both hosts, potato and eggplant. However, considering each cultivar tested, there was no difference between isolates. Interesting results were observed when the isolates clustered based on molecular data were associated with the geographical region of their collection. The group I clustered only the isolates collected in Paraná. The group II clustered the isolates collected in Bahia, Federal District and some in Paraná. The group III clustered all isolates from eggplant and only one of potato, all of them collected in the Federal District. The group IV, as the group II, clustered isolates from different regions, like Paraná, Goiás, Rio Grande do Sul and Federal District. These results suggest a relationship between the isolates clustered through molecular analysis in the groups II and III and their geographical region of collection. The isolates clustered in the same way, with similar genetic background in the groups II and IV, were however collected in different regions, showing the great genetic variation of this pathogen.
Pradhanang, Prakash Man. „Bacterial wilt of potato caused by Ralstonia solanacearum biovar 2A : a study of the ecology and taxonomy of the pathogen in Nepal“. Thesis, University of Reading, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245336.
Der volle Inhalt der QuelleSulak, Ondrej. „Études structure-fonction de lectines de bactéries opportunistes“. Grenoble 1, 2009. http://www.theses.fr/2009GRE10324.
Der volle Inhalt der QuelleLectins are carbohydrate-binding proteins of non-immune origin that bind specifically to complex carbohydrates. The presented Ph. D. Thesis is approaching the study of molecular mechanisms of interactions between lectins produced by pathogenic bacteria Burkholderia cenocepacia and Ralstonia solanacearum and their carbohydrate ligands. Cristallography, surface plasmon resonance, titration microcalorimetry and other tools were used for the characterisation of two lectins. The plant bacterial pathogen Ralstonia solanacearum produces three soluble lectins RSL, RS-IIL and RS20L. All of them have been previously studied but the characterisation of RS20L was not complete. During this thesis, the production of the RS20L lectin was optimised and its physicochemical behaviour analysed by 2D SDS-PAGE / MALDI-MS analysis and DSC. However, different assays for determining carbohydrate specificity and affinity were not successful and different strategies have to be designed. The second part of the thesis is devoted to a lectin from the human opportunistic pathogen Burkholderia cenocepacia, responsible of high mortality in patients with cystic fibrosis or chronic granulomatous diseases. The BC2L-C lectin is a 28 kDa protein composed of two distinct domains that were separately cloned and produced in E. Coli and characterised. The C-terminal domain shows sequence and structure similarity to the Pseudomonas aeruginosa lectin (PA-IIL) and recognises with high affinity D-mannosylated glycans. The N-terminal domain also displays sugar-binding ability with a strong preference for L-fucosylated oligosaccharides such as H-type and Lewis histo-blood group determinants. The N-terminal domain complexed with selenio-methyl-fucoside crystallises as a trimeric assembly that has not been observed for lectins earlier but that is highly similar to the TNF- α or C1q complement structures. The BC2L-C lectin is therefore a new superlectin with two different carbohydrate-biding domains and specificities
Dodd, Helen Jean. „Interactions of pathogenic and saphrophytic pseudomonads with photoautotrophic and in vitro potato plants“. Thesis, Queensland University of Technology, 1996. https://eprints.qut.edu.au/106897/1/T%28S%29%20110%20Interactions%20of%20pathogenic%20and%20saprophytic%20pseudomonads%20with%20photoautotrophic%20and%20in%20vitro%20potato%20plants.pdf.
Der volle Inhalt der QuelleZhou, Binbin. „Identification and characterization of target genes of RRS1-R, a protein conferring resistance in Arabidopsis thaliana to the pathogenic bacterium Ralstonia solanacearum“. Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2604/.
Der volle Inhalt der QuelleIn nature, plants are constantly exposed to microbial pathogens and have evolved an effective and dynamic immune system in order to survive. R. Solanacearum, the causing agent of wilt disease, is a soil-borne bacteria pathogenic on more than 200 plant species. Bacteria enter roots, invade xylem vessels and then spread rapidly to aerial parts of the plant through the vasculature. In A. Thaliana Nd-1 plants, RRS1-R, with its partner RPS4 allows resistance to strains of R. Solanacearum that deliver PopP2, a type III effector, into the plant cells. Previous studies showed that RRS1 and RPS4 are two NBS-LRR receptor proteins involved in the perception of the effector. Interestingly, RRS1 also harbors a WRKY transcription factor domain in its C-terminal end. In a susceptible Arabidopsis ecotype Col 0, RRS1-S is an allelic gene of RRS1-R, which encodes a similar structure. The recognition of bacterial and plant proteins leads to RRS1 protein accumulation in the nucleus, triggering possibly transcriptional gene regulation. Important genomic reprogramming of the infected plant cells has indeed been shown. My work shows that the RRS1-S and RRS1-R genes are expressed mainly in mature roots and basal hypocotyls, in pericycle cells and passage cells from the endoderm. These cells correspond to entry sites of the invading R. Solanacearum bacteria within the vascular tissues. We also demonstrated the binding of WRKY domain of RRS1-R and RRS1-S, in vitro, to W boxes which are cis-regulatory elements recognized by WRKY transcription factors. In order to identify the in vivo target sequences of RRS1-R and RRS1-S, a DamID (DNA adenine methyltransferase IDentification) approach, detecting transitory DNA-protein associations was developed. DamID is based on the fusion of a protein of interest to a DNA Adenine Methyl-transferase from E. Coli, which will methylate DNA in the vicinity of the binding sites of this protein. The fingerprints can be further mapped by DNA restriction with methylation sensitive enzymes, and cloned or directly sequenced. Analysis was focused on RRS1-R, by cloning FARMs (Fragment Associated to RRS1 driven Methylation) from Nd-1 plants expressing or not an inducible PopP2 gene. This allowed the identification of several putative targets of RRS1-R and led us to propose a model for its function as a transcription factor. High throughput sequencing was then initiated at a whole genome scale analysis. The function and transcriptional regulation of a putative RRS1 target gene was evaluated. Taken together, the results of this study illustrate the important role of RRS1-R in the regulation of the plant response to R. Solanacearum
Angot, Aurélie. „Caractérisation d’une famille d’effecteurs de type III de la bactérie phytopathogène Ralstonia solanacearum et identification de ses cibles végétales“. Toulouse 3, 2006. http://www.theses.fr/2006TOU30159.
Der volle Inhalt der QuelleRalstonia solanacearum type III effector candidate repertory contains a gene family coding for proteins designated GALA. The GALA proteins possess a protein structure characteristic of eukaryotic F-box proteins. F-box proteins are subunits of SCF complexes involved in protein ubiquitination; a process controlling eukaryotic cellular homeostasis. In the course of this work, we demonstrated that GALA proteins are genuine effectors, and that they collectively play a role in R. Solanacearum virulence. Within the family, we identified the first effector from this bacteria controlling virulence on a specific host. Our studies revealed that GALA effectors behave as plant F-box proteins and that they could mediate ubiquitination of target proteins in the host cell. A target has been identified. We identified for the first time a plant protein potentially involved in a signaling pathway controlling Bacterial wilt establishment. We propose a model for the molecular activity of GALA effectors
Buchteile zum Thema "Pathogen (Ralstonia solanacearum)"
Morel, Arry, Nemo Peeters, Fabienne Vailleau, Patrick Barberis, Gaofei Jiang, Richard Berthomé und Alice Guidot. „Plant Pathogenicity Phenotyping of Ralstonia solanacearum Strains“. In Host-Pathogen Interactions, 223–39. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7604-1_18.
Der volle Inhalt der QuellePerrier, Anthony, Patrick Barberis und Stéphane Genin. „Introduction of Genetic Material in Ralstonia solanacearum Through Natural Transformation and Conjugation“. In Host-Pathogen Interactions, 201–7. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7604-1_16.
Der volle Inhalt der QuelleKharayat, Bhupendra S., und Yogendra Singh. „Ralstonia solanacearum: Pathogen Biology, Host Pathogen Interaction, and Management of Tomato Wilt Disease“. In The Vegetable Pathosystem, 85–116. Series statement: Innovations in horticultural science: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429022999-5.
Der volle Inhalt der QuelleLonjon, Fabien, Nemo Peeters, Stéphane Genin und Fabienne Vailleau. „In Vitro and In Vivo Secretion/Translocation Assays to Identify Novel Ralstonia solanacearum Type 3 Effectors“. In Host-Pathogen Interactions, 209–22. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7604-1_17.
Der volle Inhalt der QuelleStead, D. E., S. A. Simpkins, J. E. Elphinstone, N. C. Smith, J. Hennessy und S. A. Weller. „Real — Time PCR for Ralstonia solanacearum“. In Pseudomonas syringae and related pathogens, 513–21. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0133-4_57.
Der volle Inhalt der QuelleKanda, A., H. Hasegawa, H. Takahashi, Y. Hikichi und T. Okuno. „Roles of popA for the Pathogenicity of Ralstonia solanacearum Pathogenic to Tobacco“. In Plant Pathogenic Bacteria, 233–36. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0003-1_53.
Der volle Inhalt der QuelleSimpkins, S. A., A. Friscina, K. Madagan, J. G. Elphinstone und D. E. Stead. „Generation of Microarrays for the Study of Gene Expression Patterns in Ralstonia solanacearum“. In Pseudomonas syringae and related pathogens, 399–403. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0133-4_43.
Der volle Inhalt der QuelleSingh, U., und C. Trevors. „Serological Detection of Ralstonia solanacearum in Potatoes by ELISA and Immunofluorescence, and Comparison to PCR“. In Plant Pathogenic Bacteria, 428–33. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0003-1_96.
Der volle Inhalt der QuelleLópez, M. M., J. M. Quesada, R. Penyalver, E. G. Biosca, P. Caruso, E. Bertolini und P. Llop. „Current Technologies for Pseudomonas spp. And Ralstonia solanacearum Detection and Molecular Typing“. In Pseudomonas syringae Pathovars and Related Pathogens – Identification, Epidemiology and Genomics, 3–19. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6901-7_1.
Der volle Inhalt der QuelleTawfik, A. E., A. M. M. Mahdy und A. A. O. El Hafez. „Sensitive Detection of Ralstonia solanacearum Using Serological Methods and Biolog Automated System“. In Pseudomonas syringae Pathovars and Related Pathogens – Identification, Epidemiology and Genomics, 45–53. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6901-7_4.
Der volle Inhalt der Quelle