Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Passive thermal control“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Passive thermal control" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Passive thermal control"
TSUTSUI, Fumiya, Toshiyuki SHISHIDO, Tatsuya SATO, Hiroyoshi ONO und Kentaro SHOJI. „Passive Thermal Control of Pressurized Modules of JEM“. Proceedings of the JSME annual meeting 2000.4 (2000): 543–44. http://dx.doi.org/10.1299/jsmemecjo.2000.4.0_543.
Der volle Inhalt der QuelleVenneri, Paolo F., Michael Eades und Yonghee Kim. „Passive Reactivity Control of Nuclear Thermal Propulsion Reactors“. Nuclear Technology 197, Nr. 1 (02.01.2017): 64–74. http://dx.doi.org/10.13182/nt16-80.
Der volle Inhalt der QuelleOmar, M., und Y. Zhou. „Automotive Production Control, Using Thermal Vision Systems – A Passive Thermal Imagery for Process Control“. SAE International Journal of Materials and Manufacturing 1, Nr. 1 (14.04.2008): 279–84. http://dx.doi.org/10.4271/2008-01-0681.
Der volle Inhalt der QuelleAggogeri, Francesco, Alberto Borboni, Angelo Merlo und Nicola Pellegrini. „Machine Tools Thermostabilization Using Passive Control Strategies“. Advanced Materials Research 590 (November 2012): 252–57. http://dx.doi.org/10.4028/www.scientific.net/amr.590.252.
Der volle Inhalt der QuelleBivolarova, Mariya, Arsen Melikov, Tereza Snaselova und Chong Shen. „Passive Control Of The Bed Micro-Environment By Quilts“. E3S Web of Conferences 111 (2019): 02064. http://dx.doi.org/10.1051/e3sconf/201911102064.
Der volle Inhalt der QuelleBudnik, S. A., A. N. Nenarokomov und D. M. Titov. „Investigation of Passive Systems for Thermal Control of Spacecraft“. Journal of Engineering Physics and Thermophysics 91, Nr. 6 (November 2018): 1565–72. http://dx.doi.org/10.1007/s10891-018-1894-9.
Der volle Inhalt der QuelleKenisarin, Murat, und Khamid Mahkamov. „Passive thermal control in residential buildings using phase change materials“. Renewable and Sustainable Energy Reviews 55 (März 2016): 371–98. http://dx.doi.org/10.1016/j.rser.2015.10.128.
Der volle Inhalt der QuelleCheng, Sun, Liu, Liu, Li, Li und Hu. „Engineering Design of an Active–Passive Combined Thermal Control Technology for an Aerial Optoelectronic Platform“. Sensors 19, Nr. 23 (28.11.2019): 5241. http://dx.doi.org/10.3390/s19235241.
Der volle Inhalt der QuelleFořt, Jan, Jan Kočí, Jaroslav Pokorný, Luboš Podolka, Michal Kraus und Robert Černý. „Characterization of Responsive Plasters for Passive Moisture and Temperature Control“. Applied Sciences 10, Nr. 24 (20.12.2020): 9116. http://dx.doi.org/10.3390/app10249116.
Der volle Inhalt der QuelleYOSHINO, Hiroshi, und Ken AOZASA. „MEASUREMENT ON THERMAL ENVIRONMENT OF THE ATRIUM WITH PASSIVE CONTROL SYSTEM“. AIJ Journal of Technology and Design 2, Nr. 3 (1996): 207–10. http://dx.doi.org/10.3130/aijt.2.207.
Der volle Inhalt der QuelleDissertationen zum Thema "Passive thermal control"
Zhou, Guo. „Predictive optimal control of active and passive building thermal storage inventory“. Connect to online resource, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1453539.
Der volle Inhalt der QuelleMorgan, Steve. „Experimental analysis of optimal control of passive and active building thermal storage inventory“. Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1442942.
Der volle Inhalt der QuelleCheng, Calvin Hwakong. „Impacts on the cost savings potential for using passive thermal storage for cooling control“. Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1435224.
Der volle Inhalt der QuelleLi, Y. „Thermal performance analysis of a PCM combined solar chimney system for natural ventilation and heating/cooling“. Thesis, Coventry University, 2013. http://curve.coventry.ac.uk/open/items/0bca9412-8b49-4d3c-84e5-453e315d4c6b/1.
Der volle Inhalt der QuelleTran, Nicolas. „Influence de la condition limite acoustique amont sur les instabilités de combustion de grande amplitude : conception d’un système robuste de contrôle d’impédance“. Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2009. http://www.theses.fr/2009ECAP0013/document.
Der volle Inhalt der QuelleCombustion instabilities induced by a resonant flame-acoustic coupling are commonly observed in most applications of combustion from gas turbines to domestic or industrial boilers. These oscillations are detrimental by nature, and are still very difficult to predict at the design stage of a combustor. They imply numerous physical phenomena at multiple scales. They mainly result from a resonant coupling between the unsteady combustion and the acoustics of the system. The basic driving and coupling mechanisms have been extensively studied: acoustics in complex geometries and combustion dynamics of turbulent swirled flames are now reasonably well understood. However the effects of the acoustic boundary conditions on the system stability are less well documented, as they are not easy to access or to control in practical systems. They are however of prime importance as they determine the acoustic fluxes at the inlets and outlets of the combustor, as well as the preferential eigenfrequencies of the system. The main objective of this study is to investigate experimentally the influence of the inlet boundary condition of a generic turbulent burner on the observed self-sustained thermoacoustic oscillations. To carry out this investigation, a passive control solution has been developed. An innovative use of perforated panels with bias flow backed by tunable cavities allows to control the acoustic impedance at the inlet of a lean swirled-stabilized staged combustor (CTRL-Z facility). This impedance control system (ICS) has been initially designed and tested in a high load impedance tube. This facility also allowed to develop a robust impedance measurement technique, along with experimental protocols to measure acoustic velocities and fluxes. The acoustic response of perforates in both linear and nonlinear regimes was investigated as function of the plate porosity, bias flow velocity, back-cavity depth and incident pressure wave amplitude and frequency. The transition between the linear regime and the detrimental nonlinear regime has been linked to the perforates geometrical and operational parameters. As a result the ICS enables control of its acoustic reflection coefficient from 1 to 0 in a wide frequency range, 100 to 1000 Hz, for low and large incident pressure amplitudes (from 100 to 150 dB). The ICS, once implemented on the CTRL-Z facility, allowed to passively control the inlet boundary condition of the combustion rig. The impedance measurement technique was successfully used in harsh combustion situations, with high noise levels, to obtain in-situ measurements of the ICS impedance. Spectral analysis of the pressure and heat-release rate fluctuations demonstrated damping of the main self-sustained oscillation by up to 20 dB. A quantitative estimation of the acoustic energy balance was then obtained, highlighting the importance of the inlet acoustic flux. In this configuration, this term is of the same order of magnitude as the driving Rayleigh source term. Finally, an acoustic analysis of the combustion rig was led to determine the nature of the observed combustion instabilities modes and examine conditions required for an effective use of the ICS
Malik, Naveed ur Rehman. „Modelling, Analysis, and Control Aspects of a Rotating Power Electronic Brushless Doubly-Fed Induction Generator“. Doctoral thesis, KTH, Elektrisk energiomvandling, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-174349.
Der volle Inhalt der QuelleQC 20151006
Mateášik, Timko Marek. „Experimentální ověření pasivních prvků tepelné regulace družic“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443228.
Der volle Inhalt der QuelleVidal, Fábio Duarte. „Modelling ventilation phenomena in passive houses“. Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/17314.
Der volle Inhalt der QuelleThe present dissertation aims to combine the use of Computational Fluid Dynamics (CFD) software, to support the design of ventilation systems in passive houses. Sustainable construction is an increasing concern in the current construction market, finding in these houses a valid alternative in order to enhance energy savings in this sector. A passive house is known for achieving high levels of thermal comfort without consuming too much energy. In addition to an extremely rigorous thermal insulation, the use of highly efficient ventilation systems is one of the main factors in achieving such levels of comfort. Therefore, this dissertation intends to study the circulation of air associated to the mechanical ventilation system of a passive house in Portugal and consequent analysis of its thermal comfort. To achieve such purpose, a CFD commercial program called FLOW-3D® will be used. It was necessary to perform a validation of the program by comparing air velocities obtained numerically by the program and experimentally through the registration of air velocities in the studied passive house with the use of digital anemometers. Lastly, after the validation described above, an analysis over the thermal comfort of the building was performed, based on temperature registrations obtained experimentally and velocity values obtained from the numerical simulations.
A presente dissertação visa aliar o uso de programas de simulação numérica de fluidos, mais concretamente a mecânica dos fluidos computacional (CFD), no apoio à conceção de sistemas de ventilação em casas passivas. A construção sustentável é cada vez mais uma preocupação no mercado atual da construção, encontrando nessas casas uma alternativa muito válida no que toca a poupanças de energia neste setor. Uma casa passiva é reconhecida por obter altos níveis de conforto térmico sem necessidade de grandes consumos de energia. Para além de um isolamento térmico rigoroso, o uso de sistemas de ventilação de elevada eficiência é um dos principais fatores para atingir tais níveis de conforto. Esta dissertação pretende, por isso, fazer um estudo da circulação de ar resultante de um sistema de ventilação mecânica numa casa passiva construída em Portugal e a consequente análise do conforto térmico que nela se obtém, tendo sido utilizado um programa comercial de CFD, o FLOW-3D®. Foi necessário realizar uma validação do programa através da comparação de valores de velocidade do ar obtidos numericamente pelo respetivo algoritmo de cálculo e experimentalmente através do registo de velocidades do ar na casa passiva objeto de estudo, tendo-se utilizado para o efeito anemómetros digitais. Por fim, após a validação descrita anteriormente, foi feita uma análise do conforto térmico do edifício em estudo com base em registos de temperatura obtidos experimentalmente e de velocidades do ar obtidos da simulação efetuada.
Farina, Jordan T. „Application of Multi-Port Mixing for Passive Suppression of Thermo-Acoustic Instabilities in Premixed Combustors“. Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/50533.
Der volle Inhalt der QuelleThe research presented here aimed to develop new technology for premixer designs, along with an application strategy, to avoid resonant thermo-acoustic events driven by FAR fluctuations. A passive fuel control technique was selected for investigation and implementation. The selected technique utilized fuel injections at multiple, strategically placed axial locations to target and inhibit FAR fluctuations at the dominant resonant mode of the combustor. The goal of this research was to provide an understanding of the mixing response inside a realistic premixer geometry and investigate the effectiveness of the proposed suppression technique.
The mixing response was investigated under non-reacting flow conditions using a unique modular premixer. The premixer incorporated variable axial fuel injection locations, as well as interchangeable mixing chamber geometries. Two different chamber designs were tested: a simple annular chamber and one incorporating an axial swirler. The mixing response of the simple annular geometry was well characterized, and it was found that multiple injections could be effectively configured to suppress the onset of an unstable event at very lean conditions. Energy dense flame zones produced at higher equivalence ratios, however, were found to be uncontrollable using this technique. Additionally, the mixing response of the swirl geometry was difficult to predict. This was found to be the result of large spatial gradients formed in the dynamic velocity field as acoustic waves passed through the swirl vanes.
Ph. D.
Sadrizadeh, Sasan. „Design of Hospital Operating Room Ventilation using Computational Fluid Dynamics“. Doctoral thesis, KTH, Strömnings- och klimatteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-181053.
Der volle Inhalt der QuelleTidigt i mänsklighetens utveckling har kirurgin funnits med i bilden. Hantering av infektioner har genom tiderna varit en oundviklig del av alla kirurgiska ingrepp, och finns kvar ännu idag som en viktig utmaning i operationssalar på sjukhus. För patienter som genomgår kirurgi finns alltid en risk att de efter ingreppet utvecklar någon behandlingsrelaterad komplikation. Allmänt accepterat är att de luftburna bakterier som når operationsområdet huvudsakligen består av stafylokocker frigjorda från hudfloran av operationspersonalen i operationssalen, och att endast en liten del av dessa partiklar behövs för att initiera en allvarlig infektion i det behandlade området. Sårinfektioner innebär inte bara en enorm börda för hälso- och sjukvårdsresurser, utan utgör också en betydande risk för patienten. På sjukhus förvärvad infektion finns bland de främsta dödsorsakerna i kirurgiska patientgrupper.. En bred kunskap och förståelse av spridningsmekanismer och källor till infektionsspridande partiklar kan ge värdefulla möjligheter att kontrollera och minimera postoperativa infektioner. Denna avhandling bidrar till lösningar genom analys av en rad olika ventilationssystem tillsammans med undersökning av andra faktörer som kan påverka infektionsspridningen på sjukhus, främst i operationssalar. Syftet med arbetet är att med hjälp av CFD-teknik (Computational Fluid Dynamics) få bättre förståelse för olika luftspridningsmekanismers betydelse vid ventilation av operationssalar och vårdinrättningar på sjukhus, så att halten av bacteriebärande partiklar i luften kan minskas samtidigt som termisk komfort och luftkvalité förbättras. Flera luftflödesprinciper för ventilation inklusive omblandade strömning, riktad (laminär) strömning och hybridstrategier har studerats. Simuleringar av luft-, partikel- och spårgasflöden gjordes för alla fallstudier för att undersöka partikelevakuering och luftomsättning i rummet. Flera viktiga parametrar som påverkar detta undersöktes och relevanta förbättringar föreslås i samarbete med industrin. Av resultaten framgår att mängden genererade bakterier i en operationssal kan begränsas genom att minska antalet personer i operationsteamet. Infektionsbenägna operationer skall utföras med så lite personal som möjligt. Den initiala källstyrkan (mängden kolonibildande enheter som en person avger per tidsenhet) från operationsteamet kan avsevärt minskas om högskyddande kläder används. Av resultaten framgår också att ett horisontellt (laminärt) luftflöde kan vara ett bra alternativ till det ofta använda vertikala luftflödet. Ett horisontellt luftflöde är mindre känsligt för termisk påverkan från omgivningen, enkelt att installera och underhålla, relativt kostnadseffektivt och kräver vanligen ingen förändring av befintlig belysningsarmatur. Framför allt begränsar inte denna ventilationsprincip kirurgernas rörelsemönster. De kan luta kroppen över operationsområdet utan att hindra luftflödet. En flyttbar flexibel skärm för horisontell spridning av ultraren ventilationsluft i tillägg till ordinarie ventilation undersöktes också. Man fann att denna typ av tilläggsventilation kan minska antalet luftburna partiklar som bär mikroorganismer om operationspersonalen följer en strikt arbetsordning. Bra samarbete och förståelse mellan ventilationsexperter och operationsteamet på sjukhuset är nyckeln till att få ner infektionsfrekvensen. Det är också viktigt med effektiva och frekventa utvarderingar av bakteriehalten i luften, för såväl nya som befintliga ventilationssystem.
QC 20160129
Bücher zum Thema "Passive thermal control"
Bansal, N. K. Passive building design: A handbook of natural climatic control. Amsterdam: Elsevier Science B.V., 1994.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Passive thermal control"
Long, E. L., und J. P. Zarling. „Passive Techniques for Ground Temperature Control“. In Thermal Analysis, Construction, and Monitoring Methods for Frozen Ground, 77–165. Reston, VA: American Society of Civil Engineers, 2004. http://dx.doi.org/10.1061/9780784407202.ch04.
Der volle Inhalt der QuelleHilton, Harry H. „Aeroviscoelasticity Designer FGMs: Passive Control Through Tailored Functionally Graded Materials“. In Encyclopedia of Thermal Stresses, 78–87. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_550.
Der volle Inhalt der QuellePal, D., und Y. K. Joshi. „Application of Phase Change Materials (PCMs) to the Passive Thermal Control of a Plastic Quad Flat Package: Effect of Orientation of the Package“. In Thermal Management of Electronic Systems II, 227–42. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5506-9_22.
Der volle Inhalt der QuelleHay, Harold R. „100% NATURAL THERMAL CONTROL – PLUS“. In Passive and Low Energy Ecotechniques, 532–45. Elsevier, 1985. http://dx.doi.org/10.1016/b978-0-08-031644-4.50034-5.
Der volle Inhalt der Quelle„Passive Thermal Control of Electronic Equipment“. In Applied Computational Fluid Dynamics, 317–50. CRC Press, 1998. http://dx.doi.org/10.1201/9781482270006-8.
Der volle Inhalt der Quelle„5 Thermal design: passive controls“. In Introduction to Architectural Science, 61–83. Routledge, 2008. http://dx.doi.org/10.4324/9780080878942-11.
Der volle Inhalt der QuelleC. Ngwuluka, Ndidi, Nedal Y. Abu-Thabit, Onyinye J. Uwaezuoke, Joan O. Erebor, Margaret O. Ilomuanya, Riham R. Mohamed, Soliman M. A. Soliman, Mahmoud H. Abu Elella und Noura A. A. Ebrahim. „Natural Polymers in Micro- and Nanoencapsulation for Therapeutic and Diagnostic Applications: Part I: Lipids and Fabrication Techniques“. In Nano- and Microencapsulation - Techniques and Applications [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94856.
Der volle Inhalt der QuelleC. Ngwuluka, Ndidi, Nedal Y. Abu-Thabit, Onyinye J. Uwaezuoke, Joan O. Erebor, Margaret O. Ilomuanya, Riham R. Mohamed, Soliman M.A. Soliman, Mahmoud H. Abu Elella und Noura A.A. Ebrahim. „Natural Polymers in Micro- and Nanoencapsulation for Therapeutic and Diagnostic Applications: Part I: Lipids and Fabrication Techniques“. In Nano- and Microencapsulation - Techniques and Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.94856.
Der volle Inhalt der QuelleBOND, GERARD C., MICHELLE A. KOMINZ, MICHAEL S. STECKLER und JOHN P. GROTZINGER. „ROLE OF THERMAL SUBSIDENCE, FLEXURE, AND EUSTASY IN THE EVOLUTION OF EARLY PALEOZOIC PASSIVE-MARGIN CARBONATE PLATFORMS“. In Controls on Carbonate Platforms and Basin Development, 39–61. SEPM (Society for Sedimentary Geology), 1989. http://dx.doi.org/10.2110/pec.89.44.0039.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Passive thermal control"
Citron, Robert, Thomas C. Taylor, Dr E. Vallerani und Lazzaro Costamagna. „The SPACEHAB Module Passive Thermal Control“. In Intersociety Conference on Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987. http://dx.doi.org/10.4271/871508.
Der volle Inhalt der QuellePergande, Albert, und Janice C. Rock. „Advances in passive PCB thermal control“. In 2011 IEEE Aerospace Conference. IEEE, 2011. http://dx.doi.org/10.1109/aero.2011.5747312.
Der volle Inhalt der QuellePerrygo, Charles M., Michael Choi, Keith A. Parrish, R. Greg Schunk, Diane Stanley und Eve M. Wooldridge. „Passive thermal control of the NGST“. In Astronomical Telescopes & Instrumentation, herausgegeben von Pierre Y. Bely und James B. Breckinridge. SPIE, 1998. http://dx.doi.org/10.1117/12.324510.
Der volle Inhalt der QuelleWhalley, A. M. „Improvements in Passive Thermal Control for Spacecraft“. In Intersociety Conference on Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1988. http://dx.doi.org/10.4271/881022.
Der volle Inhalt der QuelleYoung, Eliot F., Bret P. Lamprecht, Ginger A. Drake, Kelly D. Smith, Robert A. Woodruff und David A. Crotser. „Passive thermal control of balloon-borne telescopes“. In 2015 IEEE Aerospace Conference. IEEE, 2015. http://dx.doi.org/10.1109/aero.2015.7119011.
Der volle Inhalt der QuelleYoung, Jennifer, Scott Inlow und Brett Bender. „Solving Thermal Control Challenges for CubeSats: Optimizing Passive Thermal Design“. In 2019 IEEE Aerospace Conference. IEEE, 2019. http://dx.doi.org/10.1109/aero.2019.8741754.
Der volle Inhalt der QuelleSchor, Matthew J. „Passive thermal control with passive sun shield for low temperature sensors“. In Aerospace Sensing, herausgegeben von Brian J. Horais. SPIE, 1992. http://dx.doi.org/10.1117/12.138028.
Der volle Inhalt der QuelleWARREN, A., F. EDELSTEIN, L. ROYCE und W. TIMLEN. „Passive thermal control for IR sensor in space“. In 26th Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-1424.
Der volle Inhalt der QuelleTyliszczak, Artur, Agnieszka Wawrzak und Jakub Stempka. „APPLICATION OF ACTIVE AND PASSIVE CONTROL METHODS FOR DIFFUSION JET FLAMES“. In 4th Thermal and Fluids Engineering Conference. Connecticut: Begellhouse, 2019. http://dx.doi.org/10.1615/tfec2019.cbf.027461.
Der volle Inhalt der QuellePhoenix, Austin A., und Evan Wilson. „Variable Thermal Conductance Metamaterials for Passive or Active Thermal Management“. In ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3767.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Passive thermal control"
Gregor P. Henze und Moncef Krarti. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/894509.
Der volle Inhalt der QuelleGregor P. Henze und Moncef Krarti. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory. Office of Scientific and Technical Information (OSTI), Dezember 2003. http://dx.doi.org/10.2172/894510.
Der volle Inhalt der QuelleGregor P. Henze und Moncef Krarti. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory. Office of Scientific and Technical Information (OSTI), Januar 2003. http://dx.doi.org/10.2172/894511.
Der volle Inhalt der Quelle