Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Particle Swarm algorithms“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Particle Swarm algorithms" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Particle Swarm algorithms"
Kong, Fanrong, Jianhui Jiang und Yan Huang. „An Adaptive Multi-Swarm Competition Particle Swarm Optimizer for Large-Scale Optimization“. Mathematics 7, Nr. 6 (06.06.2019): 521. http://dx.doi.org/10.3390/math7060521.
Der volle Inhalt der QuelleLiu, Hong Ying. „Utilize Improved Particle Swarm to Predict Traffic Flow“. Advanced Materials Research 756-759 (September 2013): 3744–48. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.3744.
Der volle Inhalt der QuelleLenin, K. „CROWDING DISTANCE BASED PARTICLE SWARM OPTIMIZATION ALGORITHM FOR SOLVING OPTIMAL REACTIVE POWER DISPATCH PROBLEM“. International Journal of Research -GRANTHAALAYAH 6, Nr. 6 (30.06.2018): 226–37. http://dx.doi.org/10.29121/granthaalayah.v6.i6.2018.1369.
Der volle Inhalt der QuelleBaktybekov, K. „PARTICLE SWARM OPTIMIZATION WITH INDIVIDUALLY BIASED PARTICLES FOR RELIABLE AND ROBUST MAXIMUM POWER POINT TRACKING UNDER PARTIAL SHADING CONDITIONS“. Eurasian Physical Technical Journal 17, Nr. 2 (24.12.2020): 128–37. http://dx.doi.org/10.31489/2020no2/128-137.
Der volle Inhalt der QuelleWeikert, Dominik, Sebastian Mai und Sanaz Mostaghim. „Particle Swarm Contour Search Algorithm“. Entropy 22, Nr. 4 (02.04.2020): 407. http://dx.doi.org/10.3390/e22040407.
Der volle Inhalt der QuelleYao, Wenting, und Yongjun Ding. „Smart City Landscape Design Based on Improved Particle Swarm Optimization Algorithm“. Complexity 2020 (01.12.2020): 1–10. http://dx.doi.org/10.1155/2020/6693411.
Der volle Inhalt der QuelleYan, Zheping, Chao Deng, Benyin Li und Jiajia Zhou. „Novel Particle Swarm Optimization and Its Application in Calibrating the Underwater Transponder Coordinates“. Mathematical Problems in Engineering 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/672412.
Der volle Inhalt der QuelleFan, Shu-Kai S., und Chih-Hung Jen. „An Enhanced Partial Search to Particle Swarm Optimization for Unconstrained Optimization“. Mathematics 7, Nr. 4 (17.04.2019): 357. http://dx.doi.org/10.3390/math7040357.
Der volle Inhalt der QuelleLenin, K. „TAILORED PARTICLE SWARM OPTIMIZATION ALGORITHM FOR SOLVING OPTIMAL REACTIVE POWER PROBLEM“. International Journal of Research -GRANTHAALAYAH 5, Nr. 12 (30.06.2020): 246–55. http://dx.doi.org/10.29121/granthaalayah.v5.i12.2017.500.
Der volle Inhalt der QuelleZhao, Jing Ying, Hai Guo und Xiao Niu Li. „Research on Algorithm Optimization of Hidden Units Data Centre of RBF Neural Network“. Advanced Materials Research 831 (Dezember 2013): 486–89. http://dx.doi.org/10.4028/www.scientific.net/amr.831.486.
Der volle Inhalt der QuelleDissertationen zum Thema "Particle Swarm algorithms"
Sun, Yanxia. „Improved particle swarm optimisation algorithms“. Thesis, Paris Est, 2011. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1000395.
Der volle Inhalt der QuelleParticle Swarm Optimisation (PSO) is based on a metaphor of social interaction such as birds flocking or fish schooling to search a space by adjusting the trajectories of individual vectors, called "particles" conceptualized as moving points in a multidimensional space. This thesis presents several algorithms/techniques to improve the PSO's global search ability. Simulation and analytical results confirm the efficiency of the proposed algorithms/techniques when compared to the other state of the art algorithms.
Brits, Riaan. „Niching strategies for particle swarm optimization“. Diss., Pretoria : [s.n.], 2002. http://upetd.up.ac.za/thesis/available/etd-02192004-143003.
Der volle Inhalt der QuelleRahman, Izaz Ur. „Novel particle swarm optimization algorithms with applications in power systems“. Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/12219.
Der volle Inhalt der QuelleMuthuswamy, Shanthi. „Discrete particle swarm optimization algorithms for orienteering and team orienteering problems“. Diss., Online access via UMI:, 2009.
Den vollen Inhalt der Quelle findenGardner, Matthew J. „A Speculative Approach to Parallelization in Particle Swarm Optimization“. BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/3012.
Der volle Inhalt der QuelleKelman, Alexander. „Utilizing Swarm Intelligence Algorithms for Pathfinding in Games“. Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-13636.
Der volle Inhalt der QuelleLatiff, Idris Abd. „Global-adaptive particle swarm optimisation algorithms for single and multi-objective optimisation problems“. Thesis, University of Sheffield, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.548633.
Der volle Inhalt der QuelleZukhruf, Febri. „FREIGHT TRANSPORT NETWORK DESIGN WITH SUPPLY CHAIN NETWORK EQUILIBRIUM MODELS AND PARTICLE SWARM OPTIMISATION ALGORITHMS“. 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/192168.
Der volle Inhalt der QuelleSzöllösi, Tomáš. „Evoluční algoritmy“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219654.
Der volle Inhalt der QuelleMorcos, Karim M. „Genetic network parameter estimation using single and multi-objective particle swarm optimization“. Thesis, Kansas State University, 2011. http://hdl.handle.net/2097/9207.
Der volle Inhalt der QuelleDepartment of Electrical and Computer Engineering
Sanjoy Das
Stephen M. Welch
Multi-objective optimization problems deal with finding a set of candidate optimal solutions to be presented to the decision maker. In industry, this could be the problem of finding alternative car designs given the usually conflicting objectives of performance, safety, environmental friendliness, ease of maintenance, price among others. Despite the significance of this problem, most of the non-evolutionary algorithms which are widely used cannot find a set of diverse and nearly optimal solutions due to the huge size of the search space. At the same time, the solution set produced by most of the currently used evolutionary algorithms lacks diversity. The present study investigates a new optimization method to solve multi-objective problems based on the widely used swarm-intelligence approach, Particle Swarm Optimization (PSO). Compared to other approaches, the proposed algorithm converges relatively fast while maintaining a diverse set of solutions. The investigated algorithm, Partially Informed Fuzzy-Dominance (PIFD) based PSO uses a dynamic network topology and fuzzy dominance to guide the swarm of dominated solutions. The proposed algorithm in this study has been tested on four benchmark problems and other real-world applications to ensure proper functionality and assess overall performance. The multi-objective gene regulatory network (GRN) problem entails the minimization of the coefficient of variation of modified photothermal units (MPTUs) across multiple sites along with the total sum of similarity background between ecotypes. The results throughout the current research study show that the investigated algorithm attains outstanding performance regarding optimization aspects, and exhibits rapid convergence and diversity.
Bücher zum Thema "Particle Swarm algorithms"
Choi-Hong, Lai, und Wu Xiao-Jun, Hrsg. Particle swarm optimisation: Classical and quantum perspectives. Boca Raton: CRC Press, 2011.
Den vollen Inhalt der Quelle findenLópez, Javier. Optimización multi-objetivo. Editorial de la Universidad Nacional de La Plata (EDULP), 2015. http://dx.doi.org/10.35537/10915/45214.
Der volle Inhalt der QuelleBuchteile zum Thema "Particle Swarm algorithms"
Slowik, Adam. „Particle Swarm Optimization“. In Swarm Intelligence Algorithms, 265–77. First edition. | Boca Raton : Taylor and Francis, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429422614-20.
Der volle Inhalt der QuelleBrabazon, Anthony, Michael O’Neill und Seán McGarraghy. „Particle Swarm Algorithms“. In Natural Computing Algorithms, 117–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-43631-8_8.
Der volle Inhalt der QuelleBadar, Altaf Q. H. „Particle Swarm Optimization“. In Evolutionary Optimization Algorithms, 89–114. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003206477-5.
Der volle Inhalt der QuelleSlowik, Adam. „Particle Swarm Optimization - Modifications and Application“. In Swarm Intelligence Algorithms, 273–84. First edition. | Boca Raton : Taylor and Francis, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429422607-20.
Der volle Inhalt der QuelleTan, Ying, und Junqi Zhang. „Magnifier Particle Swarm Optimization“. In Nature-Inspired Algorithms for Optimisation, 279–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00267-0_10.
Der volle Inhalt der QuelleKaveh, A. „Particle Swarm Optimization“. In Advances in Metaheuristic Algorithms for Optimal Design of Structures, 11–43. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46173-1_2.
Der volle Inhalt der QuelleKaveh, A. „Particle Swarm Optimization“. In Advances in Metaheuristic Algorithms for Optimal Design of Structures, 9–40. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05549-7_2.
Der volle Inhalt der QuelleKaveh, Ali. „Particle Swarm Optimization“. In Advances in Metaheuristic Algorithms for Optimal Design of Structures, 13–46. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59392-6_2.
Der volle Inhalt der QuelleOkwu, Modestus O., und Lagouge K. Tartibu. „Particle Swarm Optimisation“. In Metaheuristic Optimization: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and Applications, 5–13. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61111-8_2.
Der volle Inhalt der QuelleKim, D. H., Ajith Abraham und K. Hirota. „Hybrid Genetic: Particle Swarm Optimization Algorithm“. In Hybrid Evolutionary Algorithms, 147–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73297-6_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Particle Swarm algorithms"
Chen, Cheng-Hung, Ken W. Bosworth und Marco P. Schoen. „Investigation of Particle Swarm Optimization Dynamics“. In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41343.
Der volle Inhalt der QuellePiccand, Sébastien, Michael O'Neill und Jacqueline Walker. „Scalability of particle swarm algorithms“. In the 9th annual conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1276958.1276993.
Der volle Inhalt der QuelleKang, Lanlan, und Ying Cui. „Uniform Opposition-Based Particle Swarm“. In 2018 9th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP). IEEE, 2018. http://dx.doi.org/10.1109/paap.2018.00021.
Der volle Inhalt der QuelleAhn, Chang Wook, und Hyun-Tae Kim. „Estimation of particle swarm distribution algorithms“. In the 11th Annual conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1569901.1570178.
Der volle Inhalt der QuelleEl Meseery, Maha, Mahmoud Fakhr El Din, Samia Mashali, Magda Fayek und Nevin Darwish. „Sketch recognition using particle swarm algorithms“. In 2009 16th IEEE International Conference on Image Processing ICIP 2009. IEEE, 2009. http://dx.doi.org/10.1109/icip.2009.5414040.
Der volle Inhalt der QuelleIima, Hitoshi, und Yasuaki Kuroe. „Swarm reinforcement learning algorithms based on particle swarm optimization“. In 2008 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2008. http://dx.doi.org/10.1109/icsmc.2008.4811430.
Der volle Inhalt der QuelleSebastian, Anish, und Marco P. Schoen. „Hybrid Particle Swarm: Tabu Search Optimization Algorithm for Parameter Estimation“. In ASME 2013 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/dscc2013-4041.
Der volle Inhalt der QuelleGuo, Yi-nan, und Dandan Liu. „Multi-population cooperative particle swarm cultural algorithms“. In 2011 Seventh International Conference on Natural Computation (ICNC). IEEE, 2011. http://dx.doi.org/10.1109/icnc.2011.6022361.
Der volle Inhalt der QuelleLiu, Fang, und Bo Peng. „Immune-Particle Swarm Optimization Beats Genetic Algorithms“. In 2010 Second Global Congress on Intelligent Systems (GCIS). IEEE, 2010. http://dx.doi.org/10.1109/gcis.2010.14.
Der volle Inhalt der QuelleYu, Liu, und Qin Zheng. „Elite Strategy for Particle Swarm Optimization Algorithms“. In Proceedings of the International Conference. World Scientific Publishing Company, 2008. http://dx.doi.org/10.1142/9789812799524_0171.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Particle Swarm algorithms"
Davis, Jeremy, Amy Bednar und Christopher Goodin. Optimizing maximally stable extremal regions (MSER) parameters using the particle swarm optimization algorithm. Engineer Research and Development Center (U.S.), September 2019. http://dx.doi.org/10.21079/11681/34160.
Der volle Inhalt der Quelle