Auswahl der wissenschaftlichen Literatur zum Thema „Particle Swarm algorithms“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Particle Swarm algorithms" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Particle Swarm algorithms"

1

Kong, Fanrong, Jianhui Jiang und Yan Huang. „An Adaptive Multi-Swarm Competition Particle Swarm Optimizer for Large-Scale Optimization“. Mathematics 7, Nr. 6 (06.06.2019): 521. http://dx.doi.org/10.3390/math7060521.

Der volle Inhalt der Quelle
Annotation:
As a powerful tool in optimization, particle swarm optimizers have been widely applied to many different optimization areas and drawn much attention. However, for large-scale optimization problems, the algorithms exhibit poor ability to pursue satisfactory results due to the lack of ability in diversity maintenance. In this paper, an adaptive multi-swarm particle swarm optimizer is proposed, which adaptively divides a swarm into several sub-swarms and a competition mechanism is employed to select exemplars. In this way, on the one hand, the diversity of exemplars increases, which helps the swarm preserve the exploitation ability. On the other hand, the number of sub-swarms adaptively changes from a large value to a small value, which helps the algorithm make a suitable balance between exploitation and exploration. By employing several peer algorithms, we conducted comparisons to validate the proposed algorithm on a large-scale optimization benchmark suite of CEC 2013. The experiments results demonstrate the proposed algorithm is effective and competitive to address large-scale optimization problems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Liu, Hong Ying. „Utilize Improved Particle Swarm to Predict Traffic Flow“. Advanced Materials Research 756-759 (September 2013): 3744–48. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.3744.

Der volle Inhalt der Quelle
Annotation:
Presented an improved particle swarm optimization algorithm, introduced a crossover operation for the particle location, interfered the particles speed, made inert particles escape the local optimum points, enhanced PSO algorithm's ability to break away from local extreme point. Utilized improved algorithms to train the RBF neural network models, predict short-time traffic flow of a region intelligent traffic control. Simulation and test results showed that, the improved algorithm can effetely forecast short-time traffic flow of the regional intelligent transportation control, forecasting effects is better can be effectively applied to actual traffic control.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lenin, K. „CROWDING DISTANCE BASED PARTICLE SWARM OPTIMIZATION ALGORITHM FOR SOLVING OPTIMAL REACTIVE POWER DISPATCH PROBLEM“. International Journal of Research -GRANTHAALAYAH 6, Nr. 6 (30.06.2018): 226–37. http://dx.doi.org/10.29121/granthaalayah.v6.i6.2018.1369.

Der volle Inhalt der Quelle
Annotation:
In this paper, Crowding Distance based Particle Swarm Optimization (CDPSO) algorithm has been proposed to solve the optimal reactive power dispatch problem. Particle Swarm Optimization (PSO) is swarm intelligence-based exploration and optimization algorithm which is used to solve global optimization problems. In PSO, the population is referred as a swarm and the individuals are called particles. Like other evolutionary algorithms, PSO performs searches using a population of individuals that are updated from iteration to iteration. The crowding distance is introduced as the index to judge the distance between the particle and the adjacent particle, and it reflects the congestion degree of no dominated solutions. In the population, the larger the crowding distance, the sparser and more uniform. In the feasible solution space, we uniformly and randomly initialize the particle swarms and select the no dominated solution particles consisting of the elite set. After that by the methods of congestion degree choosing (the congestion degree can make the particles distribution more sparse) and the dynamic e infeasibility dominating the constraints, we remove the no dominated particles in the elite set. Then, the objectives can be approximated. Proposed crowding distance based Particle Swarm Optimization (CDPSO) algorithm has been tested in standard IEEE 30 bus test system and simulation results shows clearly the improved performance of the projected algorithm in reducing the real power loss and static voltage stability margin has been enhanced.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Baktybekov, K. „PARTICLE SWARM OPTIMIZATION WITH INDIVIDUALLY BIASED PARTICLES FOR RELIABLE AND ROBUST MAXIMUM POWER POINT TRACKING UNDER PARTIAL SHADING CONDITIONS“. Eurasian Physical Technical Journal 17, Nr. 2 (24.12.2020): 128–37. http://dx.doi.org/10.31489/2020no2/128-137.

Der volle Inhalt der Quelle
Annotation:
Efficient power control techniques are an integral part of photovoltaic system design. One of the means of managing power delivery is regulating the duty cycle of the DC to DC converter by various algorithms to operate only at points where power is maximum power point. Search has to be done as fast as possible to minimize power loss, especially under dynamically changing irradiance. The challenge of the task is the nonlinear behavior of the PV system under partial shading conditions. Depending on the size and structure of the photovoltaic panels, PSC creates an immense amount of possible P-V curves with numerous local maximums - requiring an intelligent algorithm for determining the optimal operating point. Existing benchmark maximum power point tracking algorithms cannot handle multiple peaks, and in this paper, we offer an adaptation of particle swarm optimization for the specific task.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Weikert, Dominik, Sebastian Mai und Sanaz Mostaghim. „Particle Swarm Contour Search Algorithm“. Entropy 22, Nr. 4 (02.04.2020): 407. http://dx.doi.org/10.3390/e22040407.

Der volle Inhalt der Quelle
Annotation:
In this article, we present a new algorithm called Particle Swarm Contour Search (PSCS)—a Particle Swarm Optimisation inspired algorithm to find object contours in 2D environments. Currently, most contour-finding algorithms are based on image processing and require a complete overview of the search space in which the contour is to be found. However, for real-world applications this would require a complete knowledge about the search space, which may not be always feasible or possible. The proposed algorithm removes this requirement and is only based on the local information of the particles to accurately identify a contour. Particles search for the contour of an object and then traverse alongside using their known information about positions in- and out-side of the object. Our experiments show that the proposed PSCS algorithm can deliver comparable results as the state-of-the-art.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yao, Wenting, und Yongjun Ding. „Smart City Landscape Design Based on Improved Particle Swarm Optimization Algorithm“. Complexity 2020 (01.12.2020): 1–10. http://dx.doi.org/10.1155/2020/6693411.

Der volle Inhalt der Quelle
Annotation:
Aiming at the shortcomings of standard particle swarm optimization (PSO) algorithms that easily fall into local optimum, this paper proposes an optimization algorithm (LTQPSO) that improves quantum behavioral particle swarms. Aiming at the problem of premature convergence of the particle swarm algorithm, the evolution speed of individual particles and the population dispersion are used to dynamically adjust the inertia weights to make them adaptive and controllable, thereby avoiding premature convergence. At the same time, the natural selection method is introduced into the traditional position update formula to maintain the diversity of the population, strengthen the global search ability of the LTQPSO algorithm, and accelerate the convergence speed of the algorithm. The improved LTQPSO algorithm is applied to landscape trail path planning, and the research results prove the effectiveness and feasibility of the algorithm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yan, Zheping, Chao Deng, Benyin Li und Jiajia Zhou. „Novel Particle Swarm Optimization and Its Application in Calibrating the Underwater Transponder Coordinates“. Mathematical Problems in Engineering 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/672412.

Der volle Inhalt der Quelle
Annotation:
A novel improved particle swarm algorithm named competition particle swarm optimization (CPSO) is proposed to calibrate the Underwater Transponder coordinates. To improve the performance of the algorithm, TVAC algorithm is introduced into CPSO to present anextension competition particle swarm optimization(ECPSO). The proposed method is tested with a set of 10 standard optimization benchmark problems and the results are compared with those obtained through existing PSO algorithms,basic particle swarm optimization(BPSO),linear decreasing inertia weight particle swarm optimization(LWPSO),exponential inertia weight particle swarm optimization(EPSO), andtime-varying acceleration coefficient(TVAC). The results demonstrate that CPSO and ECPSO manifest faster searching speed, accuracy, and stability. The searching performance for multimodulus function of ECPSO is superior to CPSO. At last, calibration of the underwater transponder coordinates is present using particle swarm algorithm, and novel improved particle swarm algorithm shows better performance than other algorithms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fan, Shu-Kai S., und Chih-Hung Jen. „An Enhanced Partial Search to Particle Swarm Optimization for Unconstrained Optimization“. Mathematics 7, Nr. 4 (17.04.2019): 357. http://dx.doi.org/10.3390/math7040357.

Der volle Inhalt der Quelle
Annotation:
Particle swarm optimization (PSO) is a population-based optimization technique that has been applied extensively to a wide range of engineering problems. This paper proposes a variation of the original PSO algorithm for unconstrained optimization, dubbed the enhanced partial search particle swarm optimizer (EPS-PSO), using the idea of cooperative multiple swarms in an attempt to improve the convergence and efficiency of the original PSO algorithm. The cooperative searching strategy is particularly devised to prevent the particles from being trapped into the local optimal solutions and tries to locate the global optimal solution efficiently. The effectiveness of the proposed algorithm is verified through the simulation study where the EPS-PSO algorithm is compared to a variety of exiting “cooperative” PSO algorithms in terms of noted benchmark functions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lenin, K. „TAILORED PARTICLE SWARM OPTIMIZATION ALGORITHM FOR SOLVING OPTIMAL REACTIVE POWER PROBLEM“. International Journal of Research -GRANTHAALAYAH 5, Nr. 12 (30.06.2020): 246–55. http://dx.doi.org/10.29121/granthaalayah.v5.i12.2017.500.

Der volle Inhalt der Quelle
Annotation:
This paper presents Tailored Particle Swarm Optimization (TPSO) algorithm for solving optimal reactive power problem. Particle Swarm optimization algorithm based on Membrane Computing is proposed to solve the problem. Tailored Particle Swarm Optimization (TPSO) algorithm designed with the framework and rules of a cell-like P systems, and particle swarm optimization with the neighbourhood search. In order to evaluate the efficiency of the proposed algorithm, it has been tested on standard IEEE 118 & practical 191 bus test systems and compared to other specified algorithms. Simulation results show that Tailored Particle Swarm Optimization (TPSO) algorithm is superior to other algorithms in reducing the real power loss.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhao, Jing Ying, Hai Guo und Xiao Niu Li. „Research on Algorithm Optimization of Hidden Units Data Centre of RBF Neural Network“. Advanced Materials Research 831 (Dezember 2013): 486–89. http://dx.doi.org/10.4028/www.scientific.net/amr.831.486.

Der volle Inhalt der Quelle
Annotation:
Common algorithms of selecting hidden unit data center in RBF neural networks were first discussed in this essay, i.e. k-means algorithm, subtractive clustering algorithm and orthogonal least squares. Meanwhile, a hybrid algorithm mixed of k-means algorithm and particle swarm optimization algorithm was put forward. The algorithm used the position of the particles in particle swarm optimization algorithm to help deal with the defects of local clusters resulted from k-means algorithm and to make optimization with the optimal fitness of k-means particle swarm with the aim to make the final optimal fitness better satisfy the requirements.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Particle Swarm algorithms"

1

Sun, Yanxia. „Improved particle swarm optimisation algorithms“. Thesis, Paris Est, 2011. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1000395.

Der volle Inhalt der Quelle
Annotation:
D. Tech. Electrical Engineering.
Particle Swarm Optimisation (PSO) is based on a metaphor of social interaction such as birds flocking or fish schooling to search a space by adjusting the trajectories of individual vectors, called "particles" conceptualized as moving points in a multidimensional space. This thesis presents several algorithms/techniques to improve the PSO's global search ability. Simulation and analytical results confirm the efficiency of the proposed algorithms/techniques when compared to the other state of the art algorithms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Brits, Riaan. „Niching strategies for particle swarm optimization“. Diss., Pretoria : [s.n.], 2002. http://upetd.up.ac.za/thesis/available/etd-02192004-143003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rahman, Izaz Ur. „Novel particle swarm optimization algorithms with applications in power systems“. Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/12219.

Der volle Inhalt der Quelle
Annotation:
Optimization problems are vital in physical sciences, commercial and finance matters. In a nutshell, almost everyone is the stake-holder in certain optimization problems aiming at minimizing the cost of production and losses of system, and also maximizing the profit. In control systems, the optimal configuration problems are essential that have been solved by various newly developed methods. The literature is exhaustively explored for an appropriate optimization method to solve such kind of problems. Particle Swarm Optimization is found to be one of the best among several optimization methods by analysing the experimental results. Two novel PSO variants are introduced in this thesis. The first one is named as N State Markov Jumping Particle Swarm Optimization, which is based on the stochastic technique and Markov chain in updating the particle velocity. We have named the second variant as N State Switching Particle Swarm Optimization, which is based on the evolutionary factor information for updating the velocity. The proposed algorithms are then applied to some widely used mathematical benchmark functions. The statistical results of 30 independent trails illustrate the robustness and accuracy of the proposed algorithms for most of the benchmark functions. The better results in terms of mean minimum evaluation errors and the shortest computation time are illustrated. In order to verify the satisfactory performance and robustness of the proposed algorithms, we have further formulated some basic applications in power system operations. The first application is about the static Economic Load Dispatch and the second application is on the Dynamic Economic Load Dispatch. These are highly complex and non-linear problems of power system operations consisting of various systems and generator constraints. Basically, in the static Economic Load Dispatch, a single load is considered for calculating the cost function. In contrast, the Dynamic Economic Load Dispatch changes the load demand for the cost function dynamically with time. In such a challenging and complex environment the proposed algorithms can be applied. The empirical results obtained by applying both of the proposed methods have substantiated their adaptability and robustness into the real-world environment. It is shown in the numerical results that the proposed algorithms are robust and accurate as compared to the other algorithms. The proposed algorithms have produced consistent best values for their objectives, where satisfying all constraints with zero penalty.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Muthuswamy, Shanthi. „Discrete particle swarm optimization algorithms for orienteering and team orienteering problems“. Diss., Online access via UMI:, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gardner, Matthew J. „A Speculative Approach to Parallelization in Particle Swarm Optimization“. BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/3012.

Der volle Inhalt der Quelle
Annotation:
Particle swarm optimization (PSO) has previously been parallelized primarily by distributing the computation corresponding to particles across multiple processors. In this thesis we present a speculative approach to the parallelization of PSO that we refer to as SEPSO. In our approach, we refactor PSO such that the computation needed for iteration t+1 can be done concurrently with the computation needed for iteration t. Thus we can perform two iterations of PSO at once. Even with some amount of wasted computation, we show that this approach to parallelization in PSO often outperforms the standard parallelization of simply adding particles to the swarm. SEPSO produces results that are exactly equivalent to PSO; this is not a new algorithm or variant, only a new method of parallelization. However, given this new parallelization model we can relax the requirement of exactly reproducing PSO in an attempt to produce better results. We present several such relaxations, including keeping the best speculative position evaluated instead of the one corresponding to the standard behavior of PSO, and speculating several iterations ahead instead of just one. We show that these methods dramatically improve the performance of parallel PSO in many cases, giving speed ups of up to six times compared to previous parallelization techniques.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kelman, Alexander. „Utilizing Swarm Intelligence Algorithms for Pathfinding in Games“. Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-13636.

Der volle Inhalt der Quelle
Annotation:
The Ant Colony Optimization and Particle Swarm Optimization are two Swarm Intelligence algorithms often utilized for optimization. Swarm Intelligence relies on agents that possess fragmented knowledge, a concept not often utilized in games. The aim of this study is to research whether there are any benefits to using these Swarm Intelligence algorithms in comparison to standard algorithms such as A* for pathfinding in a game. Games often consist of dynamic environments with mobile agents, as such all experiments were conducted with dynamic destinations. Algorithms were measured on the length of their path and the time taken to calculate that path. The algorithms were implemented with minor modifications to allow them to better function in a grid based environment. The Ant Colony Optimization was modified in regards to how pheromone was distributed in the dynamic environment to better allow the algorithm to path towards a mobile target. Whereas the Particle Swarm Optimization was given set start positions and velocity in order to increase initial search space and modifications to increase particle diversity. The results obtained from the experimentation showcased that the Swarm Intelligence algorithms were capable of performing to great results in terms of calculation speed, they were however not able to obtain the same path optimality as A*. The algorithms' implementation can be improved but show potential to be useful in games.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Latiff, Idris Abd. „Global-adaptive particle swarm optimisation algorithms for single and multi-objective optimisation problems“. Thesis, University of Sheffield, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.548633.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zukhruf, Febri. „FREIGHT TRANSPORT NETWORK DESIGN WITH SUPPLY CHAIN NETWORK EQUILIBRIUM MODELS AND PARTICLE SWARM OPTIMISATION ALGORITHMS“. 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/192168.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Szöllösi, Tomáš. „Evoluční algoritmy“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219654.

Der volle Inhalt der Quelle
Annotation:
The task of this thesis was focused on comparison selected evolutionary algorithms for their success and computing needs. The paper discussed the basic principles and concepts of evolutionary algorithms used for optimization problems. Author programmed selected evolutionary algorithms and subsequently tasted on various test functions with exactly the given input conditions. Finally the algorithms were compared and evaluated the results obtained for different settings.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Morcos, Karim M. „Genetic network parameter estimation using single and multi-objective particle swarm optimization“. Thesis, Kansas State University, 2011. http://hdl.handle.net/2097/9207.

Der volle Inhalt der Quelle
Annotation:
Master of Science
Department of Electrical and Computer Engineering
Sanjoy Das
Stephen M. Welch
Multi-objective optimization problems deal with finding a set of candidate optimal solutions to be presented to the decision maker. In industry, this could be the problem of finding alternative car designs given the usually conflicting objectives of performance, safety, environmental friendliness, ease of maintenance, price among others. Despite the significance of this problem, most of the non-evolutionary algorithms which are widely used cannot find a set of diverse and nearly optimal solutions due to the huge size of the search space. At the same time, the solution set produced by most of the currently used evolutionary algorithms lacks diversity. The present study investigates a new optimization method to solve multi-objective problems based on the widely used swarm-intelligence approach, Particle Swarm Optimization (PSO). Compared to other approaches, the proposed algorithm converges relatively fast while maintaining a diverse set of solutions. The investigated algorithm, Partially Informed Fuzzy-Dominance (PIFD) based PSO uses a dynamic network topology and fuzzy dominance to guide the swarm of dominated solutions. The proposed algorithm in this study has been tested on four benchmark problems and other real-world applications to ensure proper functionality and assess overall performance. The multi-objective gene regulatory network (GRN) problem entails the minimization of the coefficient of variation of modified photothermal units (MPTUs) across multiple sites along with the total sum of similarity background between ecotypes. The results throughout the current research study show that the investigated algorithm attains outstanding performance regarding optimization aspects, and exhibits rapid convergence and diversity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Particle Swarm algorithms"

1

Choi-Hong, Lai, und Wu Xiao-Jun, Hrsg. Particle swarm optimisation: Classical and quantum perspectives. Boca Raton: CRC Press, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

López, Javier. Optimización multi-objetivo. Editorial de la Universidad Nacional de La Plata (EDULP), 2015. http://dx.doi.org/10.35537/10915/45214.

Der volle Inhalt der Quelle
Annotation:
Cuando hablamos de optimización en el ámbito de las ciencias de la computación hacemos referencia al mismo concepto coloquial asociado a esa palabra, la concreción de un objetivo utilizando la menor cantidad de recursos disponibles, o en una visión similar, la obtención del mejor objetivo posible utilizando todos los recursos con lo que se cuenta. Los métodos para encontrar la mejor solución (óptima) varían de acuerdo a la complejidad del problema enfrentado. Para problemas triviales, el cerebro humano posee la capacidad de resolverlos (encontrar la mejor solución) directamente, pero a medida que aumenta la complejidad del problema, se hace necesario contar con herramientas adicionales. En esta dirección, existe una amplia variedad de técnicas para resolver problemas complejos. Dentro de estas técnicas, podemos mencionar las técnicas exactas. Este tipo de algoritmos son capaces de encontrar las soluciones óptimas a un problema dado en una cantidad finita de tiempo. Como contrapartida, requiere que el problema a resolver cumpla con condiciones bastante restrictivas. Existen además un conjunto muy amplio de técnica aproximadas, conocidas como metaheurísticas. Estas técnicas se caracterizan por integrar de diversas maneras procedimientos de mejora local y estrategias de alto nivel para crear un proceso capaz de escapar de óptimos locales y realizar una búsqueda robusta en el espacio de búsqueda del problema. En su evolución, estos métodos han incorporado diferentes estrategias para evitar la convergencia a óptimos locales, especialmente en espacios de búsqueda complejos. Este tipo de procedimientos tienen como principal característica que son aplicables a cualquier tipo de problemas, sin requerir ninguna condición particular a cumplir por los mismos. Estas técnicas no garantizan en ningún caso la obtención de los valores óptimos de los problemas en cuestión, pero se ha demostrado que son capaces de alcanzar muy buenos valores de soluciones en períodos de tiempo cortos. Además, es posible aplicarlas a problemas de diferentes tipos sin mayores modificaciones, mostrando su robustez y su amplio espectro de uso. La mayoría de estas técnicas están inspiradas en procesos biológicos y/o físicos, y tratan de simular el comportamiento propio de estos procesos que favorecen la búsqueda y detección de soluciones mejores en forma iterativa. La más difundida de estas técnicas son los algoritmos genéticos, basados en el mecanismo de evolución natural de las especies. Existen diferentes tipos de problemas, y multitud de taxonomías para clasificar los mismos. En el alcance de este trabajo nos interesa diferenciar los problemas en cuanto a la cantidad de objetivos a optimizar. Con esta consideración en mente, surge una primera clasificación evidente, los problemas mono-objetivo, donde existe solo una función objetivo a optimizar, y los problemas multi-objetivo donde existe más de una función objetivo. En el presente trabajo se estudia la utilización de metaheurísticas evolutivas para la resolución de problemas complejos, con uno y con más de un objetivo. Se efectúa un análisis del estado de situación en la materia, y se proponen nuevas variantes de algoritmos existentes, validando que las mismas mejoran resultados reportados en la literatura. En una primera instancia, se propone una mejora a la versión canónica y mono-objetivo del algoritmo PSO, luego de un estudio detallado del patrón de movimientos de las partículas en el espacio de soluciones. Estas mejoras se proponen en las versiones de PSO para espacios continuos y para espacios binarios. Asimismo, se analiza la implementación de una versión paralela de esta técnica evolutiva. Como segunda contribución, se plantea una nueva versión de un algoritmo PSO multiobjetivo (MOPSO Multi Objective Particle Swarm Optimization) incorporando la posibilidad de variar dinámicamente el tamaño de la población, lo que constituye una contribución innovadora en problemas con mas de una función objetivo. Por último, se utilizan las técnicas representativas del estado del arte en optimización multi-objetivo aplicando estos métodos a la problemática de una empresa de emergencias médicas y atención de consultas domiciliarias. Se logró poner en marcha un proceso de asignación de móviles a prestaciones médicas basado en metaheurísticas, logrando optimizar el proceso de asignación de móviles médicos a prestaciones médicas en la principal compañía de esta industria a nivel nacional.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Particle Swarm algorithms"

1

Slowik, Adam. „Particle Swarm Optimization“. In Swarm Intelligence Algorithms, 265–77. First edition. | Boca Raton : Taylor and Francis, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429422614-20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Brabazon, Anthony, Michael O’Neill und Seán McGarraghy. „Particle Swarm Algorithms“. In Natural Computing Algorithms, 117–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-43631-8_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Badar, Altaf Q. H. „Particle Swarm Optimization“. In Evolutionary Optimization Algorithms, 89–114. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003206477-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Slowik, Adam. „Particle Swarm Optimization - Modifications and Application“. In Swarm Intelligence Algorithms, 273–84. First edition. | Boca Raton : Taylor and Francis, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429422607-20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tan, Ying, und Junqi Zhang. „Magnifier Particle Swarm Optimization“. In Nature-Inspired Algorithms for Optimisation, 279–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00267-0_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kaveh, A. „Particle Swarm Optimization“. In Advances in Metaheuristic Algorithms for Optimal Design of Structures, 11–43. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46173-1_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kaveh, A. „Particle Swarm Optimization“. In Advances in Metaheuristic Algorithms for Optimal Design of Structures, 9–40. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05549-7_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kaveh, Ali. „Particle Swarm Optimization“. In Advances in Metaheuristic Algorithms for Optimal Design of Structures, 13–46. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59392-6_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Okwu, Modestus O., und Lagouge K. Tartibu. „Particle Swarm Optimisation“. In Metaheuristic Optimization: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and Applications, 5–13. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61111-8_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kim, D. H., Ajith Abraham und K. Hirota. „Hybrid Genetic: Particle Swarm Optimization Algorithm“. In Hybrid Evolutionary Algorithms, 147–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73297-6_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Particle Swarm algorithms"

1

Chen, Cheng-Hung, Ken W. Bosworth und Marco P. Schoen. „Investigation of Particle Swarm Optimization Dynamics“. In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41343.

Der volle Inhalt der Quelle
Annotation:
In this work, a set of operators for a Particle Swarm (PS) based optimization algorithm is investigated for the purpose of finding optimal values for some of the classical benchmark problems. Particle swarm algorithms are implemented as mathematical operators inspired by the social behaviors of bird flocks and fish schools. In addition, particle swarm algorithms utilize a small number of relatively uncomplicated rules in response to complex behaviors, such that they are computationally inexpensive in terms of memory requirements and processing time. In particle swarm algorithms, particles in a continuous variable space are linked with neighbors, therefore the updated velocity means of particles influences the simulation results. The paper presents a statistical investigation on the velocity update rule for continuous variable PS algorithm. In particular, the probability density function influencing the particle velocity update is investigated along with the components used to construct the updated velocity vector of each particle within a flock. The simulation results of several numerical benchmark examples indicate that small amount of negative velocity is necessary to obtain good optimal values near global optimality.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Piccand, Sébastien, Michael O'Neill und Jacqueline Walker. „Scalability of particle swarm algorithms“. In the 9th annual conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1276958.1276993.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kang, Lanlan, und Ying Cui. „Uniform Opposition-Based Particle Swarm“. In 2018 9th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP). IEEE, 2018. http://dx.doi.org/10.1109/paap.2018.00021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ahn, Chang Wook, und Hyun-Tae Kim. „Estimation of particle swarm distribution algorithms“. In the 11th Annual conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1569901.1570178.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

El Meseery, Maha, Mahmoud Fakhr El Din, Samia Mashali, Magda Fayek und Nevin Darwish. „Sketch recognition using particle swarm algorithms“. In 2009 16th IEEE International Conference on Image Processing ICIP 2009. IEEE, 2009. http://dx.doi.org/10.1109/icip.2009.5414040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Iima, Hitoshi, und Yasuaki Kuroe. „Swarm reinforcement learning algorithms based on particle swarm optimization“. In 2008 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2008. http://dx.doi.org/10.1109/icsmc.2008.4811430.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sebastian, Anish, und Marco P. Schoen. „Hybrid Particle Swarm: Tabu Search Optimization Algorithm for Parameter Estimation“. In ASME 2013 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/dscc2013-4041.

Der volle Inhalt der Quelle
Annotation:
A hybrid intelligent algorithm is proposed. The algorithm utilizes a particle swarm and a Tabu search algorithm. Swarm based algorithms and single agent based algorithms each, have distinct advantages and disadvantages. The goal of the presented work is to combine the strengths of the two different algorithms in order to achieve a more effective optimization routine. The developed hybrid algorithm is tailored such that it has the capability to adapt to the given cost function during the optimization process. The proposed algorithm is tested on a set of different benchmark problems. In addition, the hybrid algorithm is utilized for solving the estimation problem encountered for estimating the finger force output given a surface electromyogram (sEMG) signal at the input. This estimation problem is commonly encountered while developing a control system for a prosthetic hand.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Guo, Yi-nan, und Dandan Liu. „Multi-population cooperative particle swarm cultural algorithms“. In 2011 Seventh International Conference on Natural Computation (ICNC). IEEE, 2011. http://dx.doi.org/10.1109/icnc.2011.6022361.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Liu, Fang, und Bo Peng. „Immune-Particle Swarm Optimization Beats Genetic Algorithms“. In 2010 Second Global Congress on Intelligent Systems (GCIS). IEEE, 2010. http://dx.doi.org/10.1109/gcis.2010.14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Yu, Liu, und Qin Zheng. „Elite Strategy for Particle Swarm Optimization Algorithms“. In Proceedings of the International Conference. World Scientific Publishing Company, 2008. http://dx.doi.org/10.1142/9789812799524_0171.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Particle Swarm algorithms"

1

Davis, Jeremy, Amy Bednar und Christopher Goodin. Optimizing maximally stable extremal regions (MSER) parameters using the particle swarm optimization algorithm. Engineer Research and Development Center (U.S.), September 2019. http://dx.doi.org/10.21079/11681/34160.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie