Zeitschriftenartikel zum Thema „Particle size distribution“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Particle size distribution" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Lin, Hsin-Yi, Der-Jen Hsu und Jia-Shan Su. „Particle Size Distribution of Aromatic Incense Burning Products“. International Journal of Environmental Science and Development 6, Nr. 11 (2015): 857–60. http://dx.doi.org/10.7763/ijesd.2015.v6.712.
Der volle Inhalt der QuelleVítěz, T., und P. Trávníček. „Particle size distribution of sawdust and wood shavings mixtures“. Research in Agricultural Engineering 56, No. 4 (01.12.2010): 154–58. http://dx.doi.org/10.17221/8/2010-rae.
Der volle Inhalt der QuelleNauman, E. Bruce, und Timothy J. Cavanaugh. „Method of Calculating True Particle Size Distributions from Observed Sizes in a Thin Section“. Microscopy and Microanalysis 4, Nr. 2 (April 1998): 122–27. http://dx.doi.org/10.1017/s1431927698980102.
Der volle Inhalt der QuellePfeifer, Sascha, Thomas Müller, Kay Weinhold, Nadezda Zikova, Sebastiao Martins dos Santos, Angela Marinoni, Oliver F. Bischof et al. „Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): uncertainties in particle sizing and number size distribution“. Atmospheric Measurement Techniques 9, Nr. 4 (07.04.2016): 1545–51. http://dx.doi.org/10.5194/amt-9-1545-2016.
Der volle Inhalt der QuellePfeifer, S., T. Müller, K. Weinhold, N. Zikova, S. Santos, A. Marinoni, O. F. Bischof et al. „Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): uncertainties in particle sizing and number size distribution“. Atmospheric Measurement Techniques Discussions 8, Nr. 11 (03.11.2015): 11513–32. http://dx.doi.org/10.5194/amtd-8-11513-2015.
Der volle Inhalt der QuelleFerguson, J. R., und D. E. Stock. „“Heavy” Particle Dispersion Measurements With Mono- and Polydisperse Particle Size Distributions“. Journal of Fluids Engineering 115, Nr. 3 (01.09.1993): 523–26. http://dx.doi.org/10.1115/1.2910170.
Der volle Inhalt der QuelleKontkanen, Jenni, Chenjuan Deng, Yueyun Fu, Lubna Dada, Ying Zhou, Jing Cai, Kaspar R. Daellenbach et al. „Size-resolved particle number emissions in Beijing determined from measured particle size distributions“. Atmospheric Chemistry and Physics 20, Nr. 19 (05.10.2020): 11329–48. http://dx.doi.org/10.5194/acp-20-11329-2020.
Der volle Inhalt der QuelleEnsor, David, Robert Donovan und Bruce Locke. „Particle Size Distributions in Clean Rooms“. Journal of the IEST 30, Nr. 6 (01.11.1987): 44–49. http://dx.doi.org/10.17764/jiet.1.30.6.m24044316827q326.
Der volle Inhalt der QuelleRao, S., und C. R. Houska. „X-ray particle-size broadening“. Acta Crystallographica Section A Foundations of Crystallography 42, Nr. 1 (01.01.1986): 6–13. http://dx.doi.org/10.1107/s0108767386099981.
Der volle Inhalt der QuelleFriedman, B., A. Zelenyuk, J. Beránek, G. Kulkarni, M. Pekour, A. G. Hallar, I. B. McCubbin, J. A. Thornton und D. J. Cziczo. „Aerosol measurements at a high elevation site: composition, size, and cloud condensation nuclei activity“. Atmospheric Chemistry and Physics Discussions 13, Nr. 7 (09.07.2013): 18277–306. http://dx.doi.org/10.5194/acpd-13-18277-2013.
Der volle Inhalt der QuelleFriedman, B., A. Zelenyuk, J. Beranek, G. Kulkarni, M. Pekour, A. Gannet Hallar, I. B. McCubbin, J. A. Thornton und D. J. Cziczo. „Aerosol measurements at a high-elevation site: composition, size, and cloud condensation nuclei activity“. Atmospheric Chemistry and Physics 13, Nr. 23 (09.12.2013): 11839–51. http://dx.doi.org/10.5194/acp-13-11839-2013.
Der volle Inhalt der QuelleRinguet, J., E. Leoz-Garziandia, H. Budzinski, E. Villenave und A. Albinet. „Particle size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) on traffic and suburban sites of a European megacity: Paris (France)“. Atmospheric Chemistry and Physics Discussions 12, Nr. 6 (06.06.2012): 14169–96. http://dx.doi.org/10.5194/acpd-12-14169-2012.
Der volle Inhalt der QuelleRinguet, J., E. Leoz-Garziandia, H. Budzinski, E. Villenave und A. Albinet. „Particle size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) on traffic and suburban sites of a European megacity: Paris (France)“. Atmospheric Chemistry and Physics 12, Nr. 18 (28.09.2012): 8877–87. http://dx.doi.org/10.5194/acp-12-8877-2012.
Der volle Inhalt der QuelleGkatzelis, G. I., D. K. Papanastasiou, K. Florou, C. Kaltsonoudis, E. Louvaris und S. N. Pandis. „Measurement of nonvolatile particle number size distribution“. Atmospheric Measurement Techniques 9, Nr. 1 (18.01.2016): 103–14. http://dx.doi.org/10.5194/amt-9-103-2016.
Der volle Inhalt der QuelleKaatz, F. H., G. M. Chow und A. S. Edelstein. „Narrowing sputtered nanoparticle size distributions“. Journal of Materials Research 8, Nr. 5 (Mai 1993): 995–1000. http://dx.doi.org/10.1557/jmr.1993.0995.
Der volle Inhalt der QuelleHwang, K. J. „Effect of particle size on the performance of batchwise centrifugal filtration“. Water Science and Technology 44, Nr. 10 (01.11.2001): 185–89. http://dx.doi.org/10.2166/wst.2001.0615.
Der volle Inhalt der QuelleUchiyama, Hideki. „Measurement of particle size distribution of suspended particles.“ Japan journal of water pollution research 9, Nr. 12 (1986): 763–66. http://dx.doi.org/10.2965/jswe1978.9.763.
Der volle Inhalt der QuelleWelker, Roger. „Size Distributions of Particles Extracted from Different Materials Compared with the MIL-STD-1246 Particle Size Distribution“. Journal of the IEST 43, Nr. 4 (19.09.2000): 25–29. http://dx.doi.org/10.17764/jiet.43.4.b9490831l54t44wt.
Der volle Inhalt der QuelleXU, YONGFU, und YIDONG WANG. „SIZE EFFECT ON SPECIFIC ENERGY DISTRIBUTION IN PARTICLE COMMINUTION“. Fractals 25, Nr. 02 (April 2017): 1750016. http://dx.doi.org/10.1142/s0218348x17500165.
Der volle Inhalt der QuelleSurowiak, Agnieszka, und Marian Brożek. „METHODOLOGY OF CALCULATION THE TERMINAL SETTLING VELOCITY DISTRIBUTION OF SPHERICAL PARTICLES FOR HIGH VALUES OF THE REYNOLD’S NUMBER“. Archives of Mining Sciences 59, Nr. 1 (01.03.2014): 269–82. http://dx.doi.org/10.2478/amsc-2014-0019.
Der volle Inhalt der QuelleNad, Alona, und Marian Brożek. „Application of Three-Parameter Distribution to Approximate the Particle Size Distribution Function of Comminution Products of Dolomitic Type of Copper Ore“. Archives of Mining Sciences 62, Nr. 2 (27.06.2017): 411–22. http://dx.doi.org/10.1515/amsc-2017-0031.
Der volle Inhalt der QuelleIchiji, M., H. Akiba, H. Nagao und I. Hirasawa. „Particle size distribution control of Pt particles used for particle gun“. Journal of Crystal Growth 469 (Juli 2017): 180–83. http://dx.doi.org/10.1016/j.jcrysgro.2016.09.003.
Der volle Inhalt der QuellePfeifer, S., W. Birmili, A. Schladitz, T. Müller, A. Nowak und A. Wiedensohler. „A novel inversion algorithm for mobility particle size spectrometers considering non-sphericity and additional aerodynamic/optical number size distributions“. Atmospheric Measurement Techniques Discussions 6, Nr. 3 (29.05.2013): 4735–67. http://dx.doi.org/10.5194/amtd-6-4735-2013.
Der volle Inhalt der QuelleHostomský, Jiří. „Particle size distribution of agglomerated crystal product from a continuous crystallizer“. Collection of Czechoslovak Chemical Communications 52, Nr. 5 (1987): 1186–97. http://dx.doi.org/10.1135/cccc19871186.
Der volle Inhalt der QuelleWilliamson, Christina, Agnieszka Kupc, James Wilson, David W. Gesler, J. Michael Reeves, Frank Erdesz, Richard McLaughlin und Charles A. Brock. „Fast time response measurements of particle size distributions in the 3–60 nm size range with the nucleation mode aerosol size spectrometer“. Atmospheric Measurement Techniques 11, Nr. 6 (19.06.2018): 3491–509. http://dx.doi.org/10.5194/amt-11-3491-2018.
Der volle Inhalt der QuelleGómez Bonilla, Juan S., Laura Unger, Jochen Schmidt, Wolfgang Peukert und Andreas Bück. „Particle Lagrangian CFD Simulation and Experimental Characterization of the Rounding of Polymer Particles in a Downer Reactor with Direct Heating“. Processes 9, Nr. 6 (23.05.2021): 916. http://dx.doi.org/10.3390/pr9060916.
Der volle Inhalt der QuelleBeaucage, G., H. K. Kammler und S. E. Pratsinis. „Particle size distributions from small-angle scattering using global scattering functions“. Journal of Applied Crystallography 37, Nr. 4 (17.07.2004): 523–35. http://dx.doi.org/10.1107/s0021889804008969.
Der volle Inhalt der QuelleHong Qi, Hong Qi, Biao Zhang Biao Zhang, Yatao Ren Yatao Ren, Liming Ruan Liming Ruan und Heping Tan Heping Tan. „Retrieval of spherical particle size distribution using ant colony optimization algorithm“. Chinese Optics Letters 11, Nr. 11 (2013): 112901–5. http://dx.doi.org/10.3788/col201311.112901.
Der volle Inhalt der QuelleIGUSHI, Tatsuo. „Particle Size Distribution Measurement Methods“. Journal of the Japan Society of Colour Material 79, Nr. 9 (2006): 410–18. http://dx.doi.org/10.4011/shikizai1937.79.410.
Der volle Inhalt der QuelleWilson, S. R., P. J. Ridler und B. R. Jennings. „Magnetic birefringence particle size distribution“. Journal of Physics D: Applied Physics 29, Nr. 3 (14.03.1996): 885–88. http://dx.doi.org/10.1088/0022-3727/29/3/056.
Der volle Inhalt der QuelleHill, Priscilla J., und Ka M. Ng. „Particle size distribution by design“. Chemical Engineering Science 57, Nr. 12 (Juni 2002): 2125–38. http://dx.doi.org/10.1016/s0009-2509(02)00106-9.
Der volle Inhalt der QuelleBurch, W. M., M. M. Boyd, D. E. Crellin, M. Lemb, T. H. Oei, H. Eifert und B. G�nther. „Technegas: particle size and distribution“. European Journal of Nuclear Medicine 21, Nr. 4 (April 1994): 365–67. http://dx.doi.org/10.1007/bf00947975.
Der volle Inhalt der QuelleMaxim, L. D., A. Klein, M. E. Meyer und C. H. Kuist. „Particle size distribution by turbidimetry“. Journal of Polymer Science Part C: Polymer Symposia 27, Nr. 1 (08.03.2007): 195–205. http://dx.doi.org/10.1002/polc.5070270115.
Der volle Inhalt der QuelleGkatzelis, G. I., D. K. Papanastasiou, K. Florou, C. Kaltsonoudis, E. Louvaris und S. N. Pandis. „Measurement of non-volatile particle number size distribution“. Atmospheric Measurement Techniques Discussions 8, Nr. 6 (25.06.2015): 6355–93. http://dx.doi.org/10.5194/amtd-8-6355-2015.
Der volle Inhalt der QuellePandit, Ajinkya V., und Vivek V. Ranade. „Chord length distribution to particle size distribution“. AIChE Journal 62, Nr. 12 (09.06.2016): 4215–28. http://dx.doi.org/10.1002/aic.15338.
Der volle Inhalt der QuelleAntony, S. J., und M. Ghadiri. „Size Effects in a Slowly Sheared Granular Media“. Journal of Applied Mechanics 68, Nr. 5 (08.01.2001): 772–75. http://dx.doi.org/10.1115/1.1387443.
Der volle Inhalt der QuelleGuo, Hai, Aijun Ding, Lidia Morawska, Congrong He, Godwin Ayoko, Yok-sheung Li und Wing-tat Hung. „Size distribution and new particle formation in subtropical eastern Australia“. Environmental Chemistry 5, Nr. 6 (2008): 382. http://dx.doi.org/10.1071/en08058.
Der volle Inhalt der QuelleDado, Miroslav, Jozef Salva, Marián Schwarz, Miroslav Vanek und Lucia Bustin. „Effect of Grit Size on Airborne Particle Concentration and Size Distribution during Oak Wood Sanding“. Applied Sciences 12, Nr. 15 (29.07.2022): 7644. http://dx.doi.org/10.3390/app12157644.
Der volle Inhalt der QuelleKim, S., S. H. Cho und H. Park. „Effects of particle size distribution on the cake formation in crossflow microfiltration“. Water Supply 2, Nr. 2 (01.04.2002): 305–11. http://dx.doi.org/10.2166/ws.2002.0077.
Der volle Inhalt der QuelleRahimi, Abbas, Andy Cordonier und Abhilash J. Chandy. „Particle Distribution Statistics in CFD Modeling of Polymer Processing“. Applied Mechanics and Materials 704 (Dezember 2014): 12–16. http://dx.doi.org/10.4028/www.scientific.net/amm.704.12.
Der volle Inhalt der QuelleHussein, T., J. Kukkonen, H. Korhonen, M. Pohjola, L. Pirjola, D. Wraith, J. Härkönen et al. „Evaluation and modeling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki – Part II: Aerosol measurements within the SAPPHIRE project“. Atmospheric Chemistry and Physics 7, Nr. 15 (03.08.2007): 4081–94. http://dx.doi.org/10.5194/acp-7-4081-2007.
Der volle Inhalt der QuelleCai, Runlong, Dongsen Yang, Lauri R. Ahonen, Linlin Shi, Frans Korhonen, Yan Ma, Jiming Hao et al. „Data inversion methods to determine sub-3 nm aerosol size distributions using the particle size magnifier“. Atmospheric Measurement Techniques 11, Nr. 7 (26.07.2018): 4477–91. http://dx.doi.org/10.5194/amt-11-4477-2018.
Der volle Inhalt der QuelleZhu, Yong Jian, Dai Qiang Deng und Ping Wang. „Fractal Features of Cracked Backfill Particle Size Distribution“. Advanced Materials Research 588-589 (November 2012): 1894–98. http://dx.doi.org/10.4028/www.scientific.net/amr.588-589.1894.
Der volle Inhalt der QuelleThorvaldsson, T., S.-O. Broman und J. Lindqvist. „Particle size distribution measurement of intermetallic particles in zircaloy“. Ultramicroscopy 19, Nr. 4 (Januar 1986): 409–10. http://dx.doi.org/10.1016/0304-3991(86)90152-x.
Der volle Inhalt der QuelleFinder, Christiane, Michael Wohlgemuth und Christian Mayer. „Analysis of Particle Size Distribution by Particle Tracking“. Particle & Particle Systems Characterization 21, Nr. 5 (Dezember 2004): 372–78. http://dx.doi.org/10.1002/ppsc.200400948.
Der volle Inhalt der QuelleHalter, Wolfgang, Rahel Eisele, Dirk Rothenstein, Joachim Bill und Frank Allgöwer. „Moment Dynamics of Zirconia Particle Formation for Optimizing Particle Size Distribution“. Nanomaterials 9, Nr. 3 (02.03.2019): 333. http://dx.doi.org/10.3390/nano9030333.
Der volle Inhalt der QuelleKaminski, Iris, Nicolae Vescan und Avner Adin. „Particle size distribution and wastewater filter performance“. Water Science and Technology 36, Nr. 4 (01.08.1997): 217–24. http://dx.doi.org/10.2166/wst.1997.0123.
Der volle Inhalt der QuelleПоловченко, S. Polovchenko, Веденин, Evgeniy Vedenin, Чартий, Pavel Chartiy, Шеманин und Valeriy Shemanin. „Particle Size Distribution Functions at Dust Separation Equipment’s Various Operating Modes“. Safety in Technosphere 5, Nr. 1 (25.02.2016): 41–47. http://dx.doi.org/10.12737/19022.
Der volle Inhalt der QuelleKrudysz, M., K. Moore, M. Geller, C. Sioutas und J. Froines. „Intra-community spatial variability of particulate matter size distributions in southern California/Los Angeles“. Atmospheric Chemistry and Physics Discussions 8, Nr. 3 (27.05.2008): 9641–72. http://dx.doi.org/10.5194/acpd-8-9641-2008.
Der volle Inhalt der QuelleKrudysz, M., K. Moore, M. Geller, C. Sioutas und J. Froines. „Intra-community spatial variability of particulate matter size distributions in Southern California/Los Angeles“. Atmospheric Chemistry and Physics 9, Nr. 3 (12.02.2009): 1061–75. http://dx.doi.org/10.5194/acp-9-1061-2009.
Der volle Inhalt der Quelle