Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Particle formation and transformation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Particle formation and transformation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Particle formation and transformation"
Hansson, Hans-Christen. „Particle formation and transformation in continental air masses“. Journal of Aerosol Science 26 (September 1995): S549—S550. http://dx.doi.org/10.1016/0021-8502(95)97182-e.
Der volle Inhalt der QuelleMoon, Jooho, Melanie L. Carasso, Henrik G. Krarup, Jeffrey A. Kerchner und James H. Adair. „Particle-shape control and formation mechanisms of hydrothermally derived lead titanate“. Journal of Materials Research 14, Nr. 3 (März 1999): 866–75. http://dx.doi.org/10.1557/jmr.1999.0116.
Der volle Inhalt der QuelleNamiki, Norikazu, Yoshio Otani, Hitoshi Emi und Shuji Fujii. „Particle Formation of Materials Outgassed from Silicone Sealants by Corona-Discharge Ionizers“. Journal of the IEST 39, Nr. 1 (31.01.1996): 26–32. http://dx.doi.org/10.17764/jiet.2.39.1.3l026553j1366046.
Der volle Inhalt der QuelleBHATTACHARYA, P., und K. CHATTOPADHYAY. „PHASE FORMATION AND TRANSFORMATION OF EMBEDDED ALLOY NANOPARTICLES: CASE OF LEAD INDIUM ALLOY PARTICLES IN ALUMINUM“. International Journal of Nanoscience 04, Nr. 05n06 (Oktober 2005): 909–20. http://dx.doi.org/10.1142/s0219581x05003875.
Der volle Inhalt der QuelleCholakova, Diana, Zhulieta Valkova, Slavka Tcholakova, Nikolai Denkov und Bernard P. Binks. „Spontaneous particle desorption and “Gorgon” drop formation from particle-armored oil drops upon cooling“. Soft Matter 16, Nr. 10 (2020): 2480–96. http://dx.doi.org/10.1039/c9sm02354b.
Der volle Inhalt der QuelleWu, Z. J., J. Zheng, D. J. Shang, Z. F. Du, Y. S. Wu, L. M. Zeng, A. Wiedensohler und M. Hu. „Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime“. Atmospheric Chemistry and Physics 16, Nr. 2 (01.02.2016): 1123–38. http://dx.doi.org/10.5194/acp-16-1123-2016.
Der volle Inhalt der QuellePeled, Aaron. „Transformation steps of microstructures in photodeposited films of a-Se“. Journal of Materials Research 4, Nr. 1 (Februar 1989): 177–79. http://dx.doi.org/10.1557/jmr.1989.0177.
Der volle Inhalt der QuelleWu, Z. J., J. Zheng, D. J. Shang, Z. F. Du, Y. S. Wu, L. M. Zeng, A. Wiedensohler und M. Hu. „Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China during summertime“. Atmospheric Chemistry and Physics Discussions 15, Nr. 8 (20.04.2015): 11495–524. http://dx.doi.org/10.5194/acpd-15-11495-2015.
Der volle Inhalt der QuelleBerezhnoi, Yu M., D. I. Monastyrsky und O. N. Romanova. „Influence of Polyelectrolytes on the Processes of Structure Formation of Copper Powders“. Solid State Phenomena 299 (Januar 2020): 1069–74. http://dx.doi.org/10.4028/www.scientific.net/ssp.299.1069.
Der volle Inhalt der QuelleZhao, Jun-Ren, Fei-Yi Hung und Truan-Sheng Lui. „Particle Erosion Induced Phase Transformation of Different Matrix Microstructures of Powder Bed Fusion Ti-6Al-4V Alloy Flakes“. Metals 9, Nr. 7 (28.06.2019): 730. http://dx.doi.org/10.3390/met9070730.
Der volle Inhalt der QuelleDissertationen zum Thema "Particle formation and transformation"
Kalokhtina, Olena. „Etude par Sonde Atomique Tomographique de la formation de nano-particules dans les aciers ODS et NDS“. Phd thesis, Université de Rouen, 2012. http://tel.archives-ouvertes.fr/tel-00751814.
Der volle Inhalt der QuelleSathyamoorthy, Sekhar. „Particle formation during anatase precipitation“. Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621988.
Der volle Inhalt der QuelleHirasawa, Tetsu. „Organizational identity formation and transformation“. Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607893.
Der volle Inhalt der QuelleEnsign, Laura Marie. „Protein particle formation for pulmonary delivery“. Connect to resource, 2007. http://hdl.handle.net/1811/28925.
Der volle Inhalt der QuelleTitle from first page of PDF file. Document formatted into pages: contains 34 p.; also includes graphics. Includes bibliographical references (p. 32-34). Available online via Ohio State University's Knowledge Bank.
Iglesias, Victor Alejandro. „Genetic transformation studies in wheat using particle bombardment /“. [S.l.] : [s.n.], 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10628.
Der volle Inhalt der QuelleLeswin, Joost Sieger Kaspar. „Particle Formation in RAFT-mediated Emulsion Polymerization“. University of Sydney, 2007. http://hdl.handle.net/2123/2176.
Der volle Inhalt der QuelleParticle formation in RAFT-mediated emulsion polymerization has been studied using reaction calorimetry. By measuring the heat flow during controlled feed ab-initio emulsion polymerization in the presence of amphipathic RAFT agents, particle formation by self-assembly of these species could be observed. Two different monomer systems, i.e. styrene and n-butyl acrylate, and various degrees of hydrophobicity of the initial macro-RAFT agents have been studied and compared. The different macro-RAFT agents were synthesized by first forming a hydrophilic block of poly(acrylic acid) that would later on act as the electrosteric stabilizing group for the particles. Subsequently, different lengths of hydrophobic blocks were grown at the reactive end of the poly(acrylic acid) hydrophilic block via the RAFT-mediated controlled radical polymerization, either comprised of n-butyl acrylate or styrene. Two processes govern particle formation: adsorption of macro-RAFT agents onto growing particles and formation of new particles by initiation of micellar aggregates or by homogeneous nucleation. Competition between these processes could be observed when monomers with a relatively high (n-butyl acrylate) or low (styrene) propagation rate coefficient were used. A model describing particle formation has been developed and the results of model calculations are compared with experimental observations. Preliminary modeling results based on a set of reasonable physico-chemical parameters already showed good agreement with the experimental results. Most parameters used have been verified experimentally. The development of the molecular weight distribution of the macro-RAFT agents has been analyzed by different techniques. Quantification of the particle formation process by analytical techniques was difficult, but qualitative insights into the fundamental steps governing the nucleation process have been obtained. The amount of macro-RAFT agents initially involved in particle formation could be determined from the increase of molecular weight. The particle size distribution has been measured by capillary hydrodynamic fractionation, transmission electron microscopy and dynamic light scattering. From the data obtained from these particle-sizing techniques, the number of particles during the reaction could be monitored, leading to an accurate estimate for the particle formation time. Upon implementation of the experimental data obtained for the surface active macro-RAFT systems, the model demonstrated to be very sensitive towards the “headgroup” area of the macro-RAFT species. Three nucleation cases based on the initial surface activity of the macro-RAFT species in the aqueous phase are proposed to explain the deviations from the assumptions of the nucleation model. Even though the macro-RAFT species have a narrow molecular weight distribution, they are nevertheless made up of a distribution of block lengths of polystyrene upon a distribution of block lengths of poly(acrylic acid). The resulting differences in initial surface activity are the most probable reason for the observed differences between model calculations and experimental results for the nucleation time and particle size distribution of the final latex product. With the procedure described above, latexes have been synthesized without using conventional surfactants and the mechanisms involved in the particle formation for these systems have been elucidated. The results of this work enable production of latex systems with well defined molecular mass distributions and narrow particle size distributions. Furthermore, the technique based on the application of amphipathic RAFT agents is promising for the production of complex polymeric materials in emulsion polymerization on a technical scale.
Watson, Paul David Julian. „Geotextile filter design and particle bridge formation“. Thesis, Queen Mary, University of London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307520.
Der volle Inhalt der QuelleParsons, Stephen H. „Comparing orchid transformation using agrobacterium tumefaciens and particle bombardment“. Virtual Press, 1995. http://liblink.bsu.edu/uhtbin/catkey/941350.
Der volle Inhalt der QuelleDepartment of Biology
Huff, Jason. „Particle formation of smelt in a fluidized bed“. Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/7037.
Der volle Inhalt der QuellePettibone, Alicia Stanier Charles O. „Toward a better understanding of new particle formation“. [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/420.
Der volle Inhalt der QuelleBücher zum Thema "Particle formation and transformation"
Lucan, Jacques. Paris des faubourgs: Formation, transformation. Paris: Editions du Pavillon de l'Arsenal, 1996.
Den vollen Inhalt der Quelle findenLucan, Jacques. Paris des faubourgs: Formation, transformation. Paris: Editions du Pavillon de l'Arsenal, 1996.
Den vollen Inhalt der Quelle findenSchorske, Carl E. Gustav Mahler: Formation and transformation. New York (129 E. 73rd St., New York 10021): Leo Baeck Institute, 1991.
Den vollen Inhalt der Quelle findenFormation, evolution, and transformation of Rockwell. Newport Beach, CA: Dartbrook Partners, 2008.
Den vollen Inhalt der Quelle findenMikkanen, Pirita. Fly ash particle formation in kraft recovery boilers. Espoo [Finland]: Technical Research Centre of Finland, 2000.
Den vollen Inhalt der Quelle findenLyyränen, Jussi. Particle formation, deposition, and particle induced corrosion in large-scale medium-speed diesel engines. [Espoo, Finland]: VTT Technical Research Centre of Finland, 2006.
Den vollen Inhalt der Quelle findenDiscernment of religious vocation: Formation towards transformation. Bangalore: Dhyanavana Publications, 2006.
Den vollen Inhalt der Quelle findenKang, Joshua Choonmin. Deep-rooted in Christ: The way of transformation. Downers Grove, Ill: IVP Books, 2007.
Den vollen Inhalt der Quelle findenRegenerate: Total spiritual transformation. West Covina, CA: Jim Reeve Ministries, Inc., 2012.
Den vollen Inhalt der Quelle findenAnnamalai, V. Formation and transformation of power in rural India. New Delhi: Discovery Pub. House, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Particle formation and transformation"
Finer, J. J., K. R. Finer und T. Ponappa. „Particle Bombardment Mediated Transformation“. In Current Topics in Microbiology and Immunology, 59–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-60234-4_3.
Der volle Inhalt der QuelleKeddie, Joseph L., und Alexander F. Routh. „Particle Deformation“. In Fundamentals of Latex Film Formation, 121–50. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-2845-7_4.
Der volle Inhalt der QuelleGreenspan, Donald. „Liquid Drop Formation, Fall, and Collision“. In Particle Modeling, 95–103. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-1992-7_9.
Der volle Inhalt der QuelleGreenspan, Donald. „Liquid Drop Formation on a Solid Surface“. In Particle Modeling, 171–82. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-1992-7_14.
Der volle Inhalt der QuelleSeki, Motoaki, Naoki Shigemoto, Mamoru Sugita, Masahiro Sugiura, Hans-Ulrich Koop, Kohei Irifune und Hiromichi Morikawa. „Chloroplast Transformation by Particle Bombardment“. In Research in Photosynthesis, 413–16. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-009-0383-8_92.
Der volle Inhalt der QuelleCasas, A. M., A. K. Kononowicz, R. A. Bressan und P. M. Hasegawa. „Cereal Transformation Through Particle Bombardment“. In Plant Breeding Reviews, 235–64. Oxford, UK: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470650059.ch7.
Der volle Inhalt der QuelleYapp, Edward K. Y., und Markus Kraft. „Modelling Soot Formation: Model of Particle Formation“. In Cleaner Combustion, 389–407. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5307-8_15.
Der volle Inhalt der QuelleYaron, Bruno, Raoul Calvet und René Prost. „Transformation and Metabolite Formation“. In Soil Pollution, 183–221. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61147-6_7.
Der volle Inhalt der QuelleOwens, T. G. „Energy Transformation and Fluorescence in Photosynthesis“. In Particle Analysis in Oceanography, 101–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75121-9_6.
Der volle Inhalt der QuelleWinterer, Markus. „Modeling Particle Formation and Growth“. In Nanocrystalline Ceramics, 35–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04976-1_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Particle formation and transformation"
Sui, Zezhi, Zhiqiang Pu und Jianqiang Yi. „Optimal UAVs formation transformation strategy based on task assignment and Particle Swarm Optimization“. In 2017 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, 2017. http://dx.doi.org/10.1109/icma.2017.8016091.
Der volle Inhalt der QuelleLi, Yue, und Daqi Zhu. „Formation Tracking and Transformation of AUVs Based on the Improved Particle Swarm Optimization Algorithm“. In 2020 Chinese Control And Decision Conference (CCDC). IEEE, 2020. http://dx.doi.org/10.1109/ccdc49329.2020.9164521.
Der volle Inhalt der QuelleUeki, Hironobu, Masahiro Ishida, Daisaku Sakaguchi und Manabu Tokumoto. „Measurement of Three Dimensional Position of Particles by Single CCD Image Including Lens Aberration“. In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45203.
Der volle Inhalt der QuelleХурамшин, Иштимер Шагалиевич. „PARTICLES OF OUR WORLD“. In Сборник избранных статей по материалам научных конференций ГНИИ «Нацразвитие» (Санкт-Петербург, Апрель 2021). Crossref, 2021. http://dx.doi.org/10.37539/apr315.2021.74.22.004.
Der volle Inhalt der QuelleShamsuzzaman, M., Tatsuro Horie, Fusata Fuke, Takayuki Kai, Bin Zhang, Tatsuya Matsumoto, Koji Morita, Hirotaka Tagami, Tohru Suzuki und Yoshiharu Tobita. „Experimental Evaluation of Debris Bed Characteristics in Particulate Debris Sedimentation Behaviour“. In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-15693.
Der volle Inhalt der QuelleLaigo, Johanne, Franck Tancret, Rene´ Le Gall, Fre´de´ric Christien und Jader Furtado. „The Influence of Phase Transformations on Creep Resistance in Fe-Ni-Cr Alloys for Reformer Tube Applications“. In ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/creep2007-26720.
Der volle Inhalt der QuelleLan, Zhong, Quan Xue, Xuehu Ma, Di Wang, Kejian Cao und Zongchang Zhao. „Theoretical Study on Aggregation of Nuclei-Containing Gas Phase“. In ASME 2017 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ht2017-5056.
Der volle Inhalt der QuelleSchemmann, Lars, Charles Stallybrass, Jens Schröder, Andreas Liessem und Stefan Zaefferer. „Crack Formation in Charpy Tests of the Heat-Affected Zone of Large-Diameter Linepipe Material“. In 2018 12th International Pipeline Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/ipc2018-78498.
Der volle Inhalt der QuelleSuzuki, M., S. Sodeoka, T. Inoue, K. Shimosaka und S. Oki. „Structure and Properties of Plasma-Sprayed Zircon Coating“. In ITSC 2000, herausgegeben von Christopher C. Berndt. ASM International, 2000. http://dx.doi.org/10.31399/asm.cp.itsc2000p0333.
Der volle Inhalt der QuelleOshkai, Peter, und Ting Yan. „Experimental Investigation of Coaxial Side Branch Resonators“. In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93870.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Particle formation and transformation"
Sasaki, Sousuke, Yoshio Tonegawa und Toru Nakajima. Measurement of Nano-Particle From Vehicles and Formation Factors. Warrendale, PA: SAE International, Mai 2005. http://dx.doi.org/10.4271/2005-08-0151.
Der volle Inhalt der QuellePerry, Mary J. The Role of Nutrients in the Formation, Maintenance, and Transformation of Phytoplankton Thin Layers. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada621138.
Der volle Inhalt der QuelleSullivan, Kyle T. In Situ Imaging of Particle Formation and Dynamics in Reactive Material Deflagrations. Office of Scientific and Technical Information (OSTI), Dezember 2016. http://dx.doi.org/10.2172/1342010.
Der volle Inhalt der QuelleFinlayson-Pitts, Barbara J. Laboratory Studies of the Role of Amines in Particle Formation, Growth and Climate. Office of Scientific and Technical Information (OSTI), Februar 2015. http://dx.doi.org/10.2172/1169440.
Der volle Inhalt der QuelleSeferis, James C. Nano-Particle Control of Void Formation and Expansion in Polymeric and Composite Systems. Fort Belvoir, VA: Defense Technical Information Center, Juli 2006. http://dx.doi.org/10.21236/ada452054.
Der volle Inhalt der QuelleWong, A. Y., und B. S. Bauer. Energetic particle production, cavition formation, and nonlinear development at a plasma density maximum. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6224237.
Der volle Inhalt der QuelleSeferis, James C. Nano Particle Control of Void Formation and Expansion in Polymeric and Composite Systems. Fort Belvoir, VA: Defense Technical Information Center, Mai 2009. http://dx.doi.org/10.21236/ada639922.
Der volle Inhalt der QuelleThomson, T. Silicide formation and particle size growth in high temperature annealed, self-assembled FePt nanoparticle arrays. Office of Scientific and Technical Information (OSTI), Oktober 2003. http://dx.doi.org/10.2172/826528.
Der volle Inhalt der QuelleDavidovits, Paul. Laboratory Studies of Cloud Particle Formation, Mixing State, and Physiochemical and Optical Properties of Carbonaceous Aerosols. Office of Scientific and Technical Information (OSTI), Juni 2019. http://dx.doi.org/10.2172/1529101.
Der volle Inhalt der QuelleMcMurry, P. H. Ultrafine aerosol size distributions and sulfuric acid vapor pressures: Implications for new particle formation in the atmosphere. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/5220187.
Der volle Inhalt der Quelle