Auswahl der wissenschaftlichen Literatur zum Thema „Particle accelerator simulation“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Particle accelerator simulation" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Particle accelerator simulation"

1

Barač, Rocco, und Toni Šćulac. „Development of a simple algorithm for linear accelerator construction and simulation“. St open 4 (31.08.2023): 1–15. http://dx.doi.org/10.48188/so.4.13.

Der volle Inhalt der Quelle
Annotation:
Aim: To develop a simple algorithm that accurately constructs and simulates an Alvarez-type linear accelerator given the initial conditions and number of accelerator parts.Methods: We wrote the algorithm in Python, a programming language with numerous useful math and science libraries, and the ability to use classes and objects. The particles were accelerated in electric fields (which we assumed to be constant within each cavity at any given moment) to allow for a comparison of numerical results with an analytic expression. No magnetic fields were present in the simulations used in this article, and the particle beams were instead focused by using collimators. The algorithm first constructed the accelerator by guessing the appropriate length of each segment until it found optimal lengths for accelerating most particles in the beam. Once constructed, the accelerator could accelerate beams of particles and the results could be analyzed.Results: The algorithm successfully constructed multiple different accelerators from the initially given conditions. The first two simulations had arbitrary accelerators in which hydrogen and lead ions were accelerated, and the results were in line with expectations from the analytic solution. The largest simulation was that of CERN’s Linac4 accelerator, which produced results similar to those found in the real world.Conclusion: Significant results could be obtained even with an algorithm as simple as the one described here. The algorithm could be further improved by using a more realistic potential inside the accelerator cavities, and more particles could pass through if magnetic fields which focus the beam were turned on
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Martinez de la Ossa, A., R. W. Assmann, M. Bussmann, S. Corde, J. P. Couperus Cabadağ, A. Debus, A. Döpp et al. „Hybrid LWFA–PWFA staging as a beam energy and brightness transformer: conceptual design and simulations“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, Nr. 2151 (24.06.2019): 20180175. http://dx.doi.org/10.1098/rsta.2018.0175.

Der volle Inhalt der Quelle
Annotation:
We present a conceptual design for a hybrid laser-driven plasma wakefield accelerator (LWFA) to beam-driven plasma wakefield accelerator (PWFA). In this set-up, the output beams from an LWFA stage are used as input beams of a new PWFA stage. In the PWFA stage, a new witness beam of largely increased quality can be produced and accelerated to higher energies. The feasibility and the potential of this concept is shown through exemplary particle-in-cell simulations. In addition, preliminary simulation results for a proof-of-concept experiment in Helmholtz-Zentrum Dresden-Rossendorf (Germany) are shown. This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Iwamoto, Masanori, Takanobu Amano, Yosuke Matsumoto, Shuichi Matsukiyo und Masahiro Hoshino. „Particle Acceleration by Pickup Process Upstream of Relativistic Shocks“. Astrophysical Journal 924, Nr. 2 (01.01.2022): 108. http://dx.doi.org/10.3847/1538-4357/ac38aa.

Der volle Inhalt der Quelle
Annotation:
Abstract Particle acceleration at magnetized purely perpendicular relativistic shocks in electron–ion plasmas is studied by means of two-dimensional particle-in-cell simulations. Magnetized shocks with the upstream bulk Lorentz factor γ 1 ≫ 1 are known to emit intense electromagnetic waves from the shock front, which induce electrostatic plasma waves (wakefield) and transverse filamentary structures in the upstream region via stimulated/induced Raman scattering and filamentation instability, respectively. The wakefield and filaments inject a fraction of the incoming particles into a particle acceleration process, in which particles are once decoupled from the upstream bulk flow by the wakefield, and are picked up again by the flow. The picked-up particles are accelerated by the motional electric field. The maximum attainable Lorentz factor is estimated as γ max , e ∼ α γ 1 3 for electrons and γ max , i ∼ ( 1 + m e γ 1 / m i ) γ 1 2 for ions, where α ∼ 10 is determined from our simulation results. α can increase up to γ 1 for a weakly magnetized shock if γ 1 is sufficiently large. This result indicates that highly relativistic astrophysical shocks such as external shocks of gamma-ray bursts can be an efficient particle accelerator.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Shishlo, Andrei, Sarah Cousineau, Jeffrey Holmes und Timofey Gorlov. „The Particle Accelerator Simulation Code PyORBIT“. Procedia Computer Science 51 (2015): 1272–81. http://dx.doi.org/10.1016/j.procs.2015.05.312.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Timalsina, R. „Structural Energy Distribution and Particle Phase Stability Study of Longitudinal Dynamics of a Simple Linear Proton Accelerator“. Journal of Nepal Physical Society 7, Nr. 1 (07.05.2021): 66–72. http://dx.doi.org/10.3126/jnphyssoc.v7i1.36978.

Der volle Inhalt der Quelle
Annotation:
This paper presents the study of longitudinal beam dynamics of a simple linear proton accelerator and simulation results for a model linear accelerator (LINAC) using MATLAB. The study part of the transition energy, particle acceleration, transit time factor, RF factor, and momentum compaction are discussed. For the simulation, the model LINAC is built using unit cells and the unit cell consists of Quadrupole doublet and acceleration cavity. Model LINAC’s basic setup is present and the simulation is based on the single-particle analysis. The robustness of the model LINAC tested to operate varying different parameters like initial arrival phase and input energy. The criteria to measure the robustness of the model LINAC are to check the kinetic energy at the end of the LINAC and the transverse stability of the transfer matrices of each cell. The paper also presents the theoretical analysis of phase stability at both below and above transition energy. The stability of small and larger amplitude oscillations are present and simulation results for different particles each starting with different amplitudes observed, where the large amplitude oscillation falls outside of the separatrix.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sullivan, Kelley D., Antara Sen und M. C. Sullivan. „Investigating the magnetic field outside small accelerator magnet analogs via experiment, simulation, and theory“. American Journal of Physics 91, Nr. 6 (01.06.2023): 432. http://dx.doi.org/10.1119/5.0068701.

Der volle Inhalt der Quelle
Annotation:
Particle accelerators use powerful and complex magnetic fields to turn, shape, and eventually collide beams of near-light-speed particles, yet the fundamental magnetic principles behind the accelerator magnets can be understood by undergraduate students. In this paper, we use small-scale accelerator magnet analogs in a multi-faceted, low-cost exploration of the magnetic field exterior to accelerator magnets. These fields are best understood using the multipole expansion of the field. If we assume that the magnetic field is created by ideal magnetic dipoles, we can derive a theoretical model that shows that each accelerator magnet configuration is dominated by a single multipole moment and obeys B∝1/rl+2, where l is the multipole order (with l=1,2,3, and 4 for the dipole, quadrupole, octopole, and hexadecapole moments, respectively). Using commercially available NdFeB magnets and the magnetic field sensor inside a smartphone, we experimentally verify the power-law dependence of the accelerator magnet configurations. Finally, we use the open-source Python library Magpylib to simulate the magnetic field of the permanent magnet configurations, showing good agreement among theory, experiment, and simulation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Planche, Thomas, und Paul M. Jung. „Symplectic and self-consistent algorithms for particle accelerator simulation“. International Journal of Modern Physics A 34, Nr. 36 (30.12.2019): 1942027. http://dx.doi.org/10.1142/s0217751x19420272.

Der volle Inhalt der Quelle
Annotation:
In this paper, we review three methods to construct symplectic and self-consistent multiparticle algorithms to simulate space–charge effects in particle accelerators. The first method is based on a discrete multiparticle Hamiltonian with an interaction term that depends explicitly on the coordinates of the macroparticles. The second method derives from Low’s Lagrangian for a collisionless plasma. The third method is based on a corresponding collisionless Hamiltonian. The last two methods have been mostly developed by the plasma physics community, but are equally applicable to accelerator physics problems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ge, Lixin, Zenghai Li, Cho-Kuen Ng und Liling Xiao. „High Performance Computing in Parallel Electromagnetics Simulation Code suite ACE3P“. Applied Computational Electromagnetics Society 35, Nr. 11 (04.02.2021): 1332–33. http://dx.doi.org/10.47037/2020.aces.j.351135.

Der volle Inhalt der Quelle
Annotation:
A comprehensive set of parallel finite-element codes suite ACE3P (Advanced Computational Electromagnetics 3D Parallel) is developed by SLAC for multi-physics modeling of particle accelerators running on massively parallel computer platforms for high fidelity and high accuracy simulation. ACE3P enables rapid virtual prototyping of accelerator and RF component design, optimization and analysis. Advanced modeling capabilities have been facilitated by implementations of novel algorithms for numerical solvers. Code performance on state-of-the-art high performance computing (HPC) platforms for large-scale RF modeling in accelerator applications will be presented in this paper. All the simulations have been performed on the supercomputers at National Energy Research Computer Center (NERSC).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fuchs, M., G. Andonian, O. Apsimon, M. Büscher, M. C. Downer, D. Filippetto, A. Lehrach et al. „Plasma-based particle sources“. Journal of Instrumentation 19, Nr. 01 (01.01.2024): T01004. http://dx.doi.org/10.1088/1748-0221/19/01/t01004.

Der volle Inhalt der Quelle
Annotation:
Abstract High-brightness particle beams generated by advanced accelerator concepts have the potential to become an essential part of future accelerator technology. In particular, high-gradient accelerators can generate and rapidly accelerate particle beams to relativistic energies. The rapid acceleration and strong confining fields can minimize irreversible detrimental effects to the beam brightness that occur at low beam energies, such as emittance growth or pulse elongation caused by space charge forces. Due to the high accelerating gradients, these novel accelerators are also significantly more compact than conventional technology. Advanced accelerators can be extremely variable and are capable of generating particle beams with vastly different properties using the same driver and setup with only modest changes to the interaction parameters. So far, efforts have mainly been focused on the generation of electron beams, but there are concepts to extend the sources to generate spin-polarized electron beams or positron beams. The beam parameters of these particle sources are largely determined by the injection and subsequent acceleration processes. Although, over the last decade there has been significant progress, the sources are still lacking a sufficiently high 6-dimensional (D) phase-space density that includes small transverse emittance, small energy spread and high charge, and operation at high repetition rate. This is required for future particle colliders with a sufficiently high luminosity or for more near-term applications, such as enabling the operation of free-electron lasers (FELs) in the X-ray regime. Major research and development efforts are required to address these limitations in order to realize these approaches for a front-end injector for a future collider or next-generation light sources. In particular, this includes methods to control and manipulate the phase-space and spin degrees-of-freedom of ultrashort plasma-based electron bunches with high accuracy, and methods that increase efficiency and repetition rate. These efforts also include the development of high-resolution diagnostics, such as full 6D phase-space measurements, beam polarimetry and high-fidelity simulation tools. A further increase in beam luminosity can be achieve through emittance damping. Emittance cooling via the emission of synchrotron radiation using current technology requires kilometer-scale damping rings. For future colliders, the damping rings might be replaced by a substantially more compact plasma-based approach. Here, plasma wigglers with significantly stronger magnetic fields are used instead of permanent-magnet based wigglers to achieve similar damping performance but over a two orders of magnitude reduced length.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Niedermayer, Uwe, A. Adelmann, S. Bettoni, M. Calvi, M. Dehler, E. Ferrari, F. Frei et al. „Challenges in simulating beam dynamics of dielectric laser acceleration“. International Journal of Modern Physics A 34, Nr. 36 (26.11.2019): 1942031. http://dx.doi.org/10.1142/s0217751x19420314.

Der volle Inhalt der Quelle
Annotation:
Dielectric Laser Acceleration (DLA) achieves the highest gradients among structure-based electron accelerators. The use of dielectrics increases the breakdown field limit, and thus the achievable gradient, by a factor of at least 10 in comparison to metals. Experimental demonstrations of DLA in 2013 led to the Accelerator on a Chip International Program (ACHIP), funded by the Gordon and Betty Moore Foundation. In ACHIP, our main goal is to build an accelerator on a silicon chip, which can accelerate electrons from below 100 keV to above 1 MeV with a gradient of at least 100 MeV/m. For stable acceleration on the chip, magnet-only focusing techniques are insufficient to compensate the strong acceleration defocusing. Thus, spatial harmonic and Alternating Phase Focusing (APF) laser-based focusing techniques have been developed. We have also developed the simplified symplectic tracking code DLAtrack6D, which makes use of the periodicity and applies only one kick per DLA cell, which is calculated by the Fourier coefficient of the synchronous spatial harmonic. Due to coupling, the Fourier coefficients of neighboring cells are not entirely independent and a field flatness optimization (similarly as in multi-cell cavities) needs to be performed. The simulation of the entire accelerator on a chip by a Particle In Cell (PIC) code is possible, but impractical for optimization purposes. Finally, we have also outlined the treatment of wake field effects in attosecond bunches in the grating within DLAtrack6D, where the wake function is computed by an external solver.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Dissertationen zum Thema "Particle accelerator simulation"

1

Goutierre, Emmanuel. „Machine learning-based particle accelerator modeling“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG106.

Der volle Inhalt der Quelle
Annotation:
Les accélérateurs de particules reposent sur des simulations de haute précision pour optimiser la dynamique du faisceau. Ces simulations sont coûteuses en ressources de calcul, rendant leur analyse en temps réel difficilement réalisable. Cette thèse propose de surmonter cette limitation en explorant le potentiel de l'apprentissage automatique pour développer des modèles de substitution des simulations d'accélérateurs de particules. Ce travail se concentre sur ThomX, une source Compton compacte, et introduit deux modèles de substitution : LinacNet et Implicit Neural ODE (INODE). Ces modèles sont entraînés sur une base de données développée dans le cadre de cette thèse, couvrant une grande variété de conditions opérationnelles afin d'assurer leur robustesse et leur capacité de généralisation. LinacNet offre une représentation complète du nuage de particules en prédisant les coordonnées de toutes les macro-particules du faisceau plutôt que de se limiter à ses observables. Cette modélisation détaillée, couplée à une approche séquentielle prenant en compte la dynamique cumulative des particules tout au long de l'accélérateur, garantit la cohérence des prédictions et améliore l'interprétabilité du modèle. INODE, basé sur le cadre des Neural Ordinary Differential Equations (NODE), vise à apprendre les dynamiques implicites régissant les systèmes de particules sans avoir à résoudre explicitement les équations différentielles pendant l'entraînement. Contrairement aux méthodes basées sur NODE, qui peinent à gérer les discontinuités, INODE est conçu théoriquement pour les traiter plus efficacement. Ensemble, LinacNet et INODE servent de modèles de substitution pour ThomX, démontrant leur capacité à approximer la dynamique des particules. Ce travail pose les bases pour développer et améliorer la fiabilité des modèles basés sur l'apprentissage automatique en physique des accélérateurs
Particle accelerators rely on high-precision simulations to optimize beam dynamics. These simulations are computationally expensive, making real-time analysis impractical. This thesis seeks to address this limitation by exploring the potential of machine learning to develop surrogate models for particle accelerator simulations. The focus is on ThomX, a compact Compton source, where two surrogate models are introduced: LinacNet and Implicit Neural ODE (INODE). These models are trained on a comprehensive database developed in this thesis that captures a wide range of operating conditions to ensure robustness and generalizability. LinacNet provides a comprehensive representation of the particle cloud by predicting all coordinates of the macro-particles, rather than focusing solely on beam observables. This detailed modeling, coupled with a sequential approach that accounts for cumulative particle dynamics throughout the accelerator, ensures consistency and enhances model interpretability. INODE, based on the Neural Ordinary Differential Equation (NODE) framework, seeks to learn the implicit governing dynamics of particle systems without the need for explicit ODE solving during training. Unlike traditional NODEs, which struggle with discontinuities, INODE is theoretically designed to handle them more effectively. Together, LinacNet and INODE serve as surrogate models for ThomX, demonstrating their ability to approximate particle dynamics. This work lays the groundwork for developing and improving the reliability of machine learning-based models in accelerator physics
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rosencranz, Daniela Necsoiu. „Monte Carlo simulation and experimental studies of the production of neutron-rich medical isotopes using a particle accelerator“. Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3077/.

Der volle Inhalt der Quelle
Annotation:
The developments of nuclear medicine lead to an increasing demand for the production of radioisotopes with suitable nuclear and chemical properties. Furthermore, from the literature it is evident that the production of radioisotopes using charged-particle accelerators instead of nuclear reactors is gaining increasing popularity. The main advantages of producing medical isotopes with accelerators are carrier free radionuclides of short lived isotopes, improved handling, reduction of the radioactive waste, and lower cost of isotope fabrication. Proton-rich isotopes are the result of nuclear interactions between enriched stable isotopes and energetic protons. An interesting observation is that during the production of proton-rich isotopes, fast and intermediately fast neutrons from nuclear reactions such as (p,xn) are also produced as a by-product in the nuclear reactions. This observation suggests that it is perhaps possible to use these neutrons to activate secondary targets for the production of neutron-rich isotopes. The study of secondary radioisotope production with fast neutrons from (p,xn) reactions using a particle accelerator is the main goal of the research in this thesis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Feister, Scott. „Efficient Acceleration of Electrons by an Intense Laser and its Reflection“. The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461225902.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Li, Lulu Ph D. Massachusetts Institute of Technology. „Acceleration methods for Monte Carlo particle transport simulations“. Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112521.

Der volle Inhalt der Quelle
Annotation:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 166-175).
Performing nuclear reactor core physics analysis is a crucial step in the process of both designing and understanding nuclear power reactors. Advancements in the nuclear industry demand more accurate and detailed results from reactor analysis. Monte Carlo (MC) eigenvalue neutron transport methods are uniquely qualified to provide these results, due to their accurate treatment of space, angle, and energy dependencies of neutron distributions. Monte Carlo eigenvalue simulations are, however, challenging, because they must resolve the fission source distribution and accumulate sufficient tally statistics, resulting in prohibitive run times. This thesis proposes the Low Order Operator (LOO) acceleration method to reduce the run time challenge, and provides analyses to support its use for full-scale reactor simulations. LOO is implemented in the continuous energy Monte Carlo code, OpenMC, and tested in 2D PWR benchmarks. The Low Order Operator (LOO) acceleration method is a deterministic transport method based on the Method of Characteristics. Similar to Coarse Mesh Finite Difference (CMFD), the other acceleration method evaluated in this thesis, LOO parameters are constructed from Monte Carlo tallies. The solutions to the LOO equations are then used to update Monte Carlo fission sources. This thesis deploys independent simulations to rigorously assess LOO, CMFD, and unaccelerated Monte Carlo, simulating up to a quarter of a trillion neutron histories for each simulation. Analysis and performance models are developed to address two aspects of the Monte Carlo run time challenge. First, this thesis demonstrates that acceleration methods can reduce the vast number of neutron histories required to converge the fission source distribution before tallies can be accumulated. Second, the slow convergence of tally statistics is improved with the acceleration methods for the earlier active cycles. A theoretical model is developed to explain the observed behaviors and predict convergence rates. Finally, numerical results and theoretical models shed light on the selection of optimal simulation parameters such that a desired statistical uncertainty can be achieved with minimum neutron histories. This thesis demonstrates that the conventional wisdom (e.g., maximizing the number of cycles rather than the number of neutrons per cycle) in performing unaccelerated MC simulations can be improved simply by using more optimal parameters. LOO acceleration provides reduction of a factor of at least 2.2 in neutron histories, compared to the unaccelerated Monte Carlo scheme, and the CPU time and memory overhead associated with LOO are small.
by Lulu Li.
Ph. D.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lowe, Robert Edward. „Simulation of electron acceleration at collisionless plasma shocks“. Thesis, Queen Mary, University of London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246324.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Day, Hugo Alistair. „Measurements and simulations of impedance reduction techniques in particle accelerators“. Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/measurements-and-simulations-of-impedance-reduction-techniques-in-particle-accelerators(35666138-5941-4c8b-95b3-7beeb3bdfb24).html.

Der volle Inhalt der Quelle
Annotation:
Wakefields and the corresponding frequency-domain phenomenon beam coupling impedance have been well studied for a number of years as a source of beam instabilities within particle accelerators. With the development of the Large Hadron Collider (LHC) and the large beam currents stored in the LHC during fills for physics production, wakefield driven instabilities and strong beam induced heating have become a limiting factors in luminosity production due to both instantaneous luminousity and the available time for collisions.In this thesis is presented an in depth study of the beam coupling impedance of two important (from an impedance and operational point of view) devices in the LHC; the collimation system and the injection kicker magnets (MKIs). These systems have both been sources of concern for the beam impedance of the LHC, the collimators due to their large transverse impedance and the MKIs due to the strong heating observed during the increased of beam current during operation in 2011 and 2012. The source of the heating for the MKIs is studied in depth, found to be power lost by the beam to wakefields in the MKIs. Simulations and measurements are used to characterise the impedance and localise the areas responsible for the high impedance, here the beam screen and ferrite yoke of the magnet; improvements are proposed to better screen the ferrite yoke and verified. A new RF damping system using ferrite for the collimation system is studied and compared to the existing RF damping system, focusing on the heating of the damping system. Highlights include a new method for measuring the quadrupolar and constant transverse impedances of an asymmetric structure using a coaxial wire technique is proposed and verified using computational simulations, and a study of the heat loss in a ferrite damped cavity, focusing on the location of the power loss for cavities being damped to varying degrees.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Guyot, Julien. „Particle acceleration in colliding laser-produced plasmas“. Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS616.

Der volle Inhalt der Quelle
Annotation:
Les particules chargées énergétiques sont omniprésentes dans l'Univers et sont accélérées par des sources galactiques et extragalactiques. Comprendre l'origine de ces "rayons cosmiques" est crucial en astrophysique et dans le cadre de l'astrophysique de laboratoire à haute densité d'énergie, nous avons développé une nouvelle plate-forme sur les installations laser LULI pour étudier l'accélération de particules. Dans les expériences, la collision de deux plasmas contre-propageant produits par laser génère une distribution non thermique de particules allant jusqu'à 1 MeV d'énergie. L'objectif de ce travail est de fournir un cadre théorique pour comprendre leur origine. Des simulations magnéto-hydrodynamiques avec des particules tests montrent que la collision des plasmas conduit à la croissance de structures caractéristiques de l'instabilité de Rayleigh-Taylor magnétique et à la génération de forts champs électriques. Nous constatons que les particules sont accélérées à des énergies allant jusqu'à quelques centaines de keV en moins de 20 ns, par des interactions répétées avec les perturbations de Rayleigh-Taylor. Les simulations et un modèle d'accélération stochastique reproduisent bien le spectre expérimental. En conclusion, nous avons identifié en laboratoire un nouveau mécanisme d'accélération de particules qui repose sur la croissance de l'instabilité de Rayleigh-Taylor magnétique pour accélérer de manière stochastique les particules. Cette instabilité est fréquente dans les plasmas astrophysiques, avec par exemple les restes de supernovæ et les éjections de masse coronale, et nous suggérons qu'elle peut contribuer à l'accélération de particules dans ces systèmes
Energetic charged particles are ubiquitous in the Universe and are accelerated by galactic and extragalactic sources. Understanding the origin of these "cosmic rays" is crucial in astrophysics and within the framework of high-energy-density laboratory astrophysics we have developed a novel platform on the LULI laser facilities to study particle acceleration in the laboratory. In the experiments, the collision of two laser-produced counter-propagating plasmas generates a distribution of non-thermal particles with energies up to 1 MeV. The aim of this work is to provide a theoretical framework to understand their origin. Magneto-hydrodynamic simulations with test particles show that the plasma collision leads to the growth of bubble and spike structures driven by the magnetic Rayleigh-Taylor instability and the generation of strong electric fields. We find that particles are accelerated to energies up to a few hundred of keV in less than 20 ns, by repeated interactions with these growing magnetic Rayleigh-Taylor perturbations. The simulations and a stochastic acceleration model recover very well the experimentally measured non-thermal energy spectrum. In conclusion, we have identified in the laboratory a new particle acceleration mechanism that relies on the growth of the magnetic Rayleigh-Taylor instability to stochastically energize particles. This instability is very common in astrophysical plasmas, with examples including supernovae remnants and coronal mass ejections, and we suggest that it may contribute to the energization of particles in these systems
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Messmer, Peter. „Observations and simulations of particle acceleration in solar flares /“. Aachen : Shaker, 2001. http://www.gbv.de/dms/goettingen/338805397.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Guo, Fan. „Effects of Turbulent Magnetic Fields on the Transport and Acceleration of Energetic Charged Particles: Numerical Simulations with Application to Heliospheric Physics“. Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/255156.

Der volle Inhalt der Quelle
Annotation:
Turbulent magnetic fields are ubiquitous in space physics and astrophysics. The influence of magnetic turbulence on the motions of charged particles contains the essential physics of the transport and acceleration of energetic charged particles in the heliosphere, which is to be explored in this thesis. After a brief introduction on the energetic charged particles and magnetic fields in the heliosphere, the rest of this dissertation focuses on three specific topics: 1. the transport of energetic charged particles in the inner heliosphere, 2. the acceleration of ions at collisionless shocks, and 3. the acceleration of electrons at collisionless shocks. We utilize various numerical techniques to study these topics. In Chapter 2 we study the propagation of charged particles in turbulent magnetic fields similar to the propagation of solar energetic particles in the inner heliosphere. The trajectories of energetic charged particles in the turbulent magnetic field are numerically integrated. The turbulence model includes a Kolmogorov-like magnetic field power spectrum containing a broad range of scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We show that small-scale variations in particle intensities (the so-called "dropouts") and velocity dispersions observed by spacecraft can be reproduced using this method. Our study gives a new constraint on the error of "onset analysis", which is a technique commonly used to infer information about the initial release of energetic particles. We also find that the dropouts are rarely produced in the simulations using the so-called "two-component" magnetic turbulence model (Matthaeus et al., 1990). The result questions the validity of this model in studying particle transport. In the first part of Chapter 3 we study the acceleration of ions in the existence of turbulent magnetic fields. We use 3-D self-consistent hybrid simulations (kinetic ions and fluid electrons) to investigate the acceleration of low-energy particles (often termed as "injection problem") at parallel shocks. We find that the accelerated particles always gain the first amount of energy by reflection and acceleration at the shock layer. The protons can move off their original field lines in the 3-D electric and magnetic fields. The results are consistent with the acceleration mechanism found in previous 1-D and 2-D simulations. In the second part of Chapter 3, we use a stochastic integration method to study diffusive shock acceleration in the existence of large-scale magnetic variations. We show that the 1-D steady state solution of diffusive shock acceleration can be significantly modified in this situation. The results suggest that the observations of anomalous cosmic rays by Voyager spacecraft can be explained by a 2-D shock that includes the large-scale magnetic field variations. In Chapter 4 we study electron acceleration at a shock passing into a turbulent magnetic field by using a combination of hybrid simulations and test-particle electron simulations. We find that the acceleration of electrons is greatly enhanced by including the effect of large-scale magnetic turbulence. Since the electrons mainly follow along the magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons interacting with the shock front multiple times. Ripples in the shock front occurring at various scales also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. We discuss the application of this process in interplanetary shocks and flare termination shocks. We also discuss the implication of this study to solar energetic particles (SEPs) by comparing the acceleration of electrons with that of protons. The intensity correlation of electrons and ions in SEP events indicates that perpendicular or quasi-perpendicular shocks play an important role in accelerating charged particles. In Chapter 5 we summarize the results of this thesis and discuss possible future work.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lagergren, Mattias. „GPU accelerated SPH simulation of fluids for VFX“. Thesis, Linköping University, Visual Information Technology and Applications (VITA), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57320.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Bücher zum Thema "Particle accelerator simulation"

1

Workshop on Simulating Accelerator Radiation Environments (3rd 1997 KEK). Proceedings of the Third Workshop on Simulating Accelerator Radiation Environments (SARE3): May 7-9, 1997, KEK, Tsukuba, Japan. Tsukubi-shi, Ibaraki-ken, Japan: High Energy Accelerator Research Organization, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

M, Berz, und Makino Kyoko, Hrsg. Computational accelerator physics 2002: Proceedings of the Seventh International Conference on Computational Accelerator Physics : Michigan State University, East Lansing, Michigan, USA, 15-18 October, 2002. Bristol: Institute of Pub., 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ellison, Donald C. Final technical report for acceleration of positrons in supernova shocks: Period, April 15, 1989 - April 15, 1992. Raleigh, N.C: North Carolina State University, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

(Editor), M. Berz, und K. Makino (Editor), Hrsg. Computational Accelerator Physics 2003: Proceedings of the Seventh International Conference on Computational Accelerator Physics, Michigan, USA, 15-18 ... (Institute of Physics Conference Series). Taylor & Francis, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Particle accelerator simulation"

1

Méot, François. „Classical Cyclotron“. In Particle Acceleration and Detection, 55–132. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-59979-8_3.

Der volle Inhalt der Quelle
Annotation:
AbstractThis chapter introduces the classical cyclotron, and the theoretical material needed for the simulation exercises. It begins with a brief reminder of the historical context, and continues with beam optics and with the principles and methods which the classical cyclotron leans on, including ion orbit in a cyclic accelerator, weak focusing and periodic transverse motion, revolution period and isochronism, voltage gap and resonant acceleration, the cyclotron equation. The simulation of a cyclotron dipole will either resort to an analytical model of the field: the optical element DIPOLE, or will resort to using a field map together with the keyword TOSCA to handle it and raytrace through. An additional accelerator device needed in the exercises, CAVITE, simulates a local oscillating voltage. Running a simulation generates a variety of output files, including the execution listing zgoubi.res, always, and other zgoubi.plt, zgoubi.CAVITE.out, zgoubi.MATRIX.out, etc., aimed at looking up program execution, storing data for post-treatment, producing graphs, etc. Additional keywords are introduced as needed, such as the matching procedure FIT[2]; FAISCEAU and FAISTORE which log local particle data in zgoubi.res or in a user defined ancillary file; MARKER; the “system call” command SYSTEM; REBELOTE, a ‘do loop’; and some more. This chapter introduces in addition to spin motion in accelerator magnets; dedicated simulation exercises include a variety of keywords: SPNTRK, a request for spin tracking, SPNPRT or FAISTORE, to log spin vector components in respectively zgoubi.res or some ancillary file, and the “IL = 2” flag to log stepwise particle data, including spin vector, in zgoubi.plt file. Simulations include deriving transport matrices, beam matrix, optical functions and their transport, from rays, using MATRIX and TWISS keywords.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Méot, François. „Synchrocyclotron“. In Particle Acceleration and Detection, 225–36. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-59979-8_7.

Der volle Inhalt der Quelle
Annotation:
AbstractThis chapter introduces the concept of phase focusing by synchronous acceleration, and the synchrocyclotron which confirmed the principle. Synchrocyclotron style of acceleration in a fixed field alternating gradient accelerator (FFAG) is also addressed. The theoretical material needed for the simulation exercises is essentially that of the Weak Focusing Synchrotron, Chap. 8, regarding phase stability, and that of the Classical Cyclotron, Chap. 3, or FFAG optics, Chap. 10, regarding transverse stability. The chapter begins with a brief reminder of the historical context, and continues with the theoretical material which the synchrocyclotron optics and acceleration techniques lean on. The simulation of a synchrocyclotron is achieved using just three keywords: DIPOLE for the magnet, and CAVITE and SCALING for acceleration. FFAG dipoles have their specific keywords, FFAG and FFAG-SPI (Chap. 10). Particle monitoring uses FAISCEAU, FAISTORE, and some others. Optics matching and optimization, and the design of RF programs as well, use FIT[2]. INCLUDE is resorted to, although there is no obligation, in order mostly to simplify the input data files. SYSTEM calls to gnuplot scripts allow ending simulations with various graphs; gnuplot reads data from output files such as zgoubi.fai (produced by FAISTORE), zgoubi.plt (resulting from IL $$=$$ = 2) and from files zgoubi.*.out resulting from a PRINT command.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Méot, François. „Betatron“. In Particle Acceleration and Detection, 187–205. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-59979-8_5.

Der volle Inhalt der Quelle
Annotation:
AbstractThis chapter introduces the betatron fixed orbit cyclic accelerator. It begins with a brief reminder of the historical context, and continues with the Widerøe condition and the principles of fixed orbit acceleration in a betatron. The latter is at the origin of the theory of the “betatron oscillations”—treated in Chaps. 3 and 8. A realistic simulation of a betatron in would require the simulation of an induction electric field: this is doable from existing dipole models such as DIPOLE[S], and can be seen as an interesting code development exercise. A simpler approach on the other hand only requires two optical elements: DIPOLE and CAVITE. Accounting for synchrotron radiation (SR) energy loss requires SRLOSS. Monte Carlo SR monitoring can use SRPRNT, which logs data in zgoubi.res. SRPRNT[PRINT] in addition logs data in zgoubi.SRPRNT.Out. Electron beam monitoring requires keywords introduced in the previous chapters, such FAISCEAU, FAISTORE. SR monitoring uses SRPRNT. INCLUDE allows simplifying the input data files. Graphs are part of data treatment and simulation outcomes, they are produced using or gnuplot.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Rugama, Y., J. L. Munoz-Cobo und T. E. Valentine. „Noise Method for Monitoring the Subcriticality in Accelerator-Driven Systems“. In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 887–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_142.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Coeck, M., Th Aoust, F. Vermeersch und A. Abderrahim. „Shielding Assessment of the MYRRHA Accelerator-Driven System Using the MCNP Code“. In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 925–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_148.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kadi, Y. „Application of the EA-MC Code Package to the Design of Accelerator-Driven Systems“. In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 1015–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_163.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Valentine, T., Y. Rugama, J. L. Muñoz-Cobo und R. Perez. „Coupling MCNP-DSP and LAHET Monte Carlo Codes for Designing Subcriticality Monitors for Accelerator-Driven Systems“. In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 1081–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_174.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Polanski, A., V. Barashenkov, I. Puzynin, I. Rakhno und A. Sissakian. „Monte Carlo Modeling of Fast Sub-critical Assembly with MOX Fuel for Research of Accelerator-Driven Systems“. In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 803–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_128.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Albers, D., F. Cremers, I. Eggers, M. Todorovic und R. Schmidt. „Energy Spectra and Dose Distributions of a Medical Linear Electron Accelerator Simulated with BEAM/EGS4 and MCNP“. In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 323–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_51.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Méot, François. „FFAG, Scaling“. In Particle Acceleration and Detection, 385–444. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-59979-8_10.

Der volle Inhalt der Quelle
Annotation:
AbstractThis chapter is an introduction to Fixed-Field Alternating Gradient (FFAG) cyclic accelerators. It begins with a brief reminder of the historical and technological context, and continues with the theoretical material needed for the simulation exercises. It relies on charged particle optics and acceleration concepts introduced in the previous cyclotron and synchrotron chapters. Furthermore it addresses design aspects of scaling FFAGs, beam dynamics in radial- and spiral-sector rings, synchrotron acceleration and various other acceleration techniques. Simulations introduce dedicated keywords providing an analytical modeling of the field: FFAG (radial sector dipole) and FFAG-SPI (spiral sector). They otherwise use optical elements met in the previous chapters: DIPOLE[S], TOSCA, CAVITE, data input/output keywords such as FAISCEAU, FAISTORE, the SYSTEM keyword, etc. Beam dynamics simulations include particle trajectories through multiple-dipole FFAG cells, closed-orbit finding, from multi-turn raytracing or using FIT, deriving ancillary outcomes from rays, such as transport matrices using MATRIX, periodic optical functions and their transport using TWISS, finding dynamical aperture.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Particle accelerator simulation"

1

Barlow, Roger John, Adriana Bungau und Roger Michael Jones. „Collimator Wakefields: formulae and simulation“. In 2007 IEEE Particle Accelerator Conference. IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440440.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Golge, S., C. Hyde und A. Freyberger. „Simulation of a cw positron source for cebaf“. In 2007 IEEE Particle Accelerator Conference. IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440692.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bourianoff, George. „Accelerator simulation activities at the SSCL“. In Stability of particle motion in storage rings. AIP, 1992. http://dx.doi.org/10.1063/1.45105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Blaskiewicz, M. „A multipurpose coherent instability simulation code“. In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440535.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhukov, A., und A. Assadi. „Beam loss simulation of SNS LINAC“. In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4439971.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jones, F. W., W. Herr und T. Pieloni. „Parallel beam-beam simulation incorporating multiple bunches and multiple interaction regions“. In 2007 IEEE Particle Accelerator Conference. IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440383.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Roberts, Thomas J., und Daniel M. Kaplan. „G4beamline simulation program for matter-dominated beamlines“. In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440461.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wangler, T. P., R. W. Garnett, J. Qiang, R. Ryne, K. R. Crandall, J. H. Billen, V. N. Aseev et al. „The riapmtq/impact beam-dynamics simulation package“. In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440507.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Koichi Kan, Takafumi Kondoh, Jinfeng Yang und Yoichi Yoshida. „Simulation study on attosecond electro bunch generation“. In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440579.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Yang, X., A. I. Drozhdin und W. Pellico. „Transition crossing simulation at the fermilab Booster“. In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440882.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Particle accelerator simulation"

1

Tourtellott, John. INTEGRATED WORKFLOW MANAGEMENT FOR PARTICLE ACCELERATOR SIMULATION. Office of Scientific and Technical Information (OSTI), Juli 2020. http://dx.doi.org/10.2172/1638224.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tourtellot, John. Integrated Workflow Management for Particle Accelerator Simulation SBIR Phase II. Office of Scientific and Technical Information (OSTI), Dezember 2022. http://dx.doi.org/10.2172/1906113.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Pullammanappallil, Pratap, Haim Kalman und Jennifer Curtis. Investigation of particulate flow behavior in a continuous, high solids, leach-bed biogasification system. United States Department of Agriculture, Januar 2015. http://dx.doi.org/10.32747/2015.7600038.bard.

Der volle Inhalt der Quelle
Annotation:
Recent concerns regarding global warming and energy security have accelerated research and developmental efforts to produce biofuels from agricultural and forestry residues, and energy crops. Anaerobic digestion is a promising process for producing biogas-biofuel from biomass feedstocks. However, there is a need for new reactor designs and operating considerations to process fibrous biomass feedstocks. In this research project, the multiphase flow behavior of biomass particles was investigated. The objective was accomplished through both simulation and experimentation. The simulations included both particle-level and bulk flow simulations. Successful computational fluid dynamics (CFD) simulation of multiphase flow in the digester is dependent on the accuracy of constitutive models which describe (1) the particle phase stress due to particle interactions, (2) the particle phase dissipation due to inelastic interactions between particles and (3) the drag force between the fibres and the digester fluid. Discrete Element Method (DEM) simulations of Homogeneous Cooling Systems (HCS) were used to develop a particle phase dissipation rate model for non-spherical particle systems that was incorporated in a two-fluid CFDmultiphase flow model framework. Two types of frictionless, elongated particle models were compared in the HCS simulations: glued-sphere and true cylinder. A new model for drag for elongated fibres was developed which depends on Reynolds number, solids fraction, and fibre aspect ratio. Schulze shear test results could be used to calibrate particle-particle friction for DEM simulations. Several experimental measurements were taken for biomass particles like olive pulp, orange peels, wheat straw, semolina, and wheat grains. Using a compression tester, the breakage force, breakage energy, yield force, elastic stiffness and Young’s modulus were measured. Measurements were made in a shear tester to determine unconfined yield stress, major principal stress, effective angle of internal friction and internal friction angle. A liquid fludized bed system was used to determine critical velocity of fluidization for these materials. Transport measurements for pneumatic conveying were also assessed. Anaerobic digestion experiments were conducted using orange peel waste, olive pulp and wheat straw. Orange peel waste and olive pulp could be anaerobically digested to produce high methane yields. Wheat straw was not digestible. In a packed bed reactor, anaerobic digestion was not initiated above bulk densities of 100 kg/m³ for peel waste and 75 kg/m³ for olive pulp. Interestingly, after the digestion has been initiated and balanced methanogenesis established, the decomposing biomass could be packed to higher densities and successfully digested. These observations provided useful insights for high throughput reactor designs. Another outcome from this project was the development of low cost devices to measure methane content of biogas for off-line (US$37), field (US$50), and online (US$107) applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kurennoy, Sergey, und R. Ryne. Parallel Simulation of Beam Dynamics in Particle Accelerators. Office of Scientific and Technical Information (OSTI), März 2021. http://dx.doi.org/10.2172/1773311.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kurennoy, Sergey, und Robert Ryne. Parallel Simulation of Beam Dynamics in Particle Accelerators. Office of Scientific and Technical Information (OSTI), Mai 2022. http://dx.doi.org/10.2172/1870624.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kurennoy, Sergey, und R. Ryne. Parallel Simulation of Beam Dynamics in Particle Accelerators. Office of Scientific and Technical Information (OSTI), März 2023. http://dx.doi.org/10.2172/1968188.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Maxon, William. A Numerical Simulation of a Single Shock-Accelerated Particle. Office of Scientific and Technical Information (OSTI), Juli 2020. http://dx.doi.org/10.2172/1643905.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Guo, Fan, und Xiaohang Chen. Particle Acceleration at Parallel Shocks: a fully kinetic simulation. Office of Scientific and Technical Information (OSTI), August 2022. http://dx.doi.org/10.2172/1881801.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Krall, J., V. Serlin, M. Friedman und Y. Y. Lau. Simulation Studies of Particle Acceleration Powered by Modulated Intense Relativistic Electron Beams. Fort Belvoir, VA: Defense Technical Information Center, März 1989. http://dx.doi.org/10.21236/ada206348.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Guo, Fan. First Principles Kinetic Simulations of Relativistic Collisionless Shocks and Their Particle Acceleration. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1645065.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie