Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Particle accelerator simulation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Particle accelerator simulation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Particle accelerator simulation"
Barač, Rocco, und Toni Šćulac. „Development of a simple algorithm for linear accelerator construction and simulation“. St open 4 (31.08.2023): 1–15. http://dx.doi.org/10.48188/so.4.13.
Der volle Inhalt der QuelleMartinez de la Ossa, A., R. W. Assmann, M. Bussmann, S. Corde, J. P. Couperus Cabadağ, A. Debus, A. Döpp et al. „Hybrid LWFA–PWFA staging as a beam energy and brightness transformer: conceptual design and simulations“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, Nr. 2151 (24.06.2019): 20180175. http://dx.doi.org/10.1098/rsta.2018.0175.
Der volle Inhalt der QuelleIwamoto, Masanori, Takanobu Amano, Yosuke Matsumoto, Shuichi Matsukiyo und Masahiro Hoshino. „Particle Acceleration by Pickup Process Upstream of Relativistic Shocks“. Astrophysical Journal 924, Nr. 2 (01.01.2022): 108. http://dx.doi.org/10.3847/1538-4357/ac38aa.
Der volle Inhalt der QuelleShishlo, Andrei, Sarah Cousineau, Jeffrey Holmes und Timofey Gorlov. „The Particle Accelerator Simulation Code PyORBIT“. Procedia Computer Science 51 (2015): 1272–81. http://dx.doi.org/10.1016/j.procs.2015.05.312.
Der volle Inhalt der QuelleTimalsina, R. „Structural Energy Distribution and Particle Phase Stability Study of Longitudinal Dynamics of a Simple Linear Proton Accelerator“. Journal of Nepal Physical Society 7, Nr. 1 (07.05.2021): 66–72. http://dx.doi.org/10.3126/jnphyssoc.v7i1.36978.
Der volle Inhalt der QuelleSullivan, Kelley D., Antara Sen und M. C. Sullivan. „Investigating the magnetic field outside small accelerator magnet analogs via experiment, simulation, and theory“. American Journal of Physics 91, Nr. 6 (01.06.2023): 432. http://dx.doi.org/10.1119/5.0068701.
Der volle Inhalt der QuellePlanche, Thomas, und Paul M. Jung. „Symplectic and self-consistent algorithms for particle accelerator simulation“. International Journal of Modern Physics A 34, Nr. 36 (30.12.2019): 1942027. http://dx.doi.org/10.1142/s0217751x19420272.
Der volle Inhalt der QuelleGe, Lixin, Zenghai Li, Cho-Kuen Ng und Liling Xiao. „High Performance Computing in Parallel Electromagnetics Simulation Code suite ACE3P“. Applied Computational Electromagnetics Society 35, Nr. 11 (04.02.2021): 1332–33. http://dx.doi.org/10.47037/2020.aces.j.351135.
Der volle Inhalt der QuelleFuchs, M., G. Andonian, O. Apsimon, M. Büscher, M. C. Downer, D. Filippetto, A. Lehrach et al. „Plasma-based particle sources“. Journal of Instrumentation 19, Nr. 01 (01.01.2024): T01004. http://dx.doi.org/10.1088/1748-0221/19/01/t01004.
Der volle Inhalt der QuelleNiedermayer, Uwe, A. Adelmann, S. Bettoni, M. Calvi, M. Dehler, E. Ferrari, F. Frei et al. „Challenges in simulating beam dynamics of dielectric laser acceleration“. International Journal of Modern Physics A 34, Nr. 36 (26.11.2019): 1942031. http://dx.doi.org/10.1142/s0217751x19420314.
Der volle Inhalt der QuelleDissertationen zum Thema "Particle accelerator simulation"
Goutierre, Emmanuel. „Machine learning-based particle accelerator modeling“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG106.
Der volle Inhalt der QuelleParticle accelerators rely on high-precision simulations to optimize beam dynamics. These simulations are computationally expensive, making real-time analysis impractical. This thesis seeks to address this limitation by exploring the potential of machine learning to develop surrogate models for particle accelerator simulations. The focus is on ThomX, a compact Compton source, where two surrogate models are introduced: LinacNet and Implicit Neural ODE (INODE). These models are trained on a comprehensive database developed in this thesis that captures a wide range of operating conditions to ensure robustness and generalizability. LinacNet provides a comprehensive representation of the particle cloud by predicting all coordinates of the macro-particles, rather than focusing solely on beam observables. This detailed modeling, coupled with a sequential approach that accounts for cumulative particle dynamics throughout the accelerator, ensures consistency and enhances model interpretability. INODE, based on the Neural Ordinary Differential Equation (NODE) framework, seeks to learn the implicit governing dynamics of particle systems without the need for explicit ODE solving during training. Unlike traditional NODEs, which struggle with discontinuities, INODE is theoretically designed to handle them more effectively. Together, LinacNet and INODE serve as surrogate models for ThomX, demonstrating their ability to approximate particle dynamics. This work lays the groundwork for developing and improving the reliability of machine learning-based models in accelerator physics
Rosencranz, Daniela Necsoiu. „Monte Carlo simulation and experimental studies of the production of neutron-rich medical isotopes using a particle accelerator“. Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3077/.
Der volle Inhalt der QuelleFeister, Scott. „Efficient Acceleration of Electrons by an Intense Laser and its Reflection“. The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461225902.
Der volle Inhalt der QuelleLi, Lulu Ph D. Massachusetts Institute of Technology. „Acceleration methods for Monte Carlo particle transport simulations“. Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112521.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 166-175).
Performing nuclear reactor core physics analysis is a crucial step in the process of both designing and understanding nuclear power reactors. Advancements in the nuclear industry demand more accurate and detailed results from reactor analysis. Monte Carlo (MC) eigenvalue neutron transport methods are uniquely qualified to provide these results, due to their accurate treatment of space, angle, and energy dependencies of neutron distributions. Monte Carlo eigenvalue simulations are, however, challenging, because they must resolve the fission source distribution and accumulate sufficient tally statistics, resulting in prohibitive run times. This thesis proposes the Low Order Operator (LOO) acceleration method to reduce the run time challenge, and provides analyses to support its use for full-scale reactor simulations. LOO is implemented in the continuous energy Monte Carlo code, OpenMC, and tested in 2D PWR benchmarks. The Low Order Operator (LOO) acceleration method is a deterministic transport method based on the Method of Characteristics. Similar to Coarse Mesh Finite Difference (CMFD), the other acceleration method evaluated in this thesis, LOO parameters are constructed from Monte Carlo tallies. The solutions to the LOO equations are then used to update Monte Carlo fission sources. This thesis deploys independent simulations to rigorously assess LOO, CMFD, and unaccelerated Monte Carlo, simulating up to a quarter of a trillion neutron histories for each simulation. Analysis and performance models are developed to address two aspects of the Monte Carlo run time challenge. First, this thesis demonstrates that acceleration methods can reduce the vast number of neutron histories required to converge the fission source distribution before tallies can be accumulated. Second, the slow convergence of tally statistics is improved with the acceleration methods for the earlier active cycles. A theoretical model is developed to explain the observed behaviors and predict convergence rates. Finally, numerical results and theoretical models shed light on the selection of optimal simulation parameters such that a desired statistical uncertainty can be achieved with minimum neutron histories. This thesis demonstrates that the conventional wisdom (e.g., maximizing the number of cycles rather than the number of neutrons per cycle) in performing unaccelerated MC simulations can be improved simply by using more optimal parameters. LOO acceleration provides reduction of a factor of at least 2.2 in neutron histories, compared to the unaccelerated Monte Carlo scheme, and the CPU time and memory overhead associated with LOO are small.
by Lulu Li.
Ph. D.
Lowe, Robert Edward. „Simulation of electron acceleration at collisionless plasma shocks“. Thesis, Queen Mary, University of London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246324.
Der volle Inhalt der QuelleDay, Hugo Alistair. „Measurements and simulations of impedance reduction techniques in particle accelerators“. Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/measurements-and-simulations-of-impedance-reduction-techniques-in-particle-accelerators(35666138-5941-4c8b-95b3-7beeb3bdfb24).html.
Der volle Inhalt der QuelleGuyot, Julien. „Particle acceleration in colliding laser-produced plasmas“. Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS616.
Der volle Inhalt der QuelleEnergetic charged particles are ubiquitous in the Universe and are accelerated by galactic and extragalactic sources. Understanding the origin of these "cosmic rays" is crucial in astrophysics and within the framework of high-energy-density laboratory astrophysics we have developed a novel platform on the LULI laser facilities to study particle acceleration in the laboratory. In the experiments, the collision of two laser-produced counter-propagating plasmas generates a distribution of non-thermal particles with energies up to 1 MeV. The aim of this work is to provide a theoretical framework to understand their origin. Magneto-hydrodynamic simulations with test particles show that the plasma collision leads to the growth of bubble and spike structures driven by the magnetic Rayleigh-Taylor instability and the generation of strong electric fields. We find that particles are accelerated to energies up to a few hundred of keV in less than 20 ns, by repeated interactions with these growing magnetic Rayleigh-Taylor perturbations. The simulations and a stochastic acceleration model recover very well the experimentally measured non-thermal energy spectrum. In conclusion, we have identified in the laboratory a new particle acceleration mechanism that relies on the growth of the magnetic Rayleigh-Taylor instability to stochastically energize particles. This instability is very common in astrophysical plasmas, with examples including supernovae remnants and coronal mass ejections, and we suggest that it may contribute to the energization of particles in these systems
Messmer, Peter. „Observations and simulations of particle acceleration in solar flares /“. Aachen : Shaker, 2001. http://www.gbv.de/dms/goettingen/338805397.pdf.
Der volle Inhalt der QuelleGuo, Fan. „Effects of Turbulent Magnetic Fields on the Transport and Acceleration of Energetic Charged Particles: Numerical Simulations with Application to Heliospheric Physics“. Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/255156.
Der volle Inhalt der QuelleLagergren, Mattias. „GPU accelerated SPH simulation of fluids for VFX“. Thesis, Linköping University, Visual Information Technology and Applications (VITA), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57320.
Der volle Inhalt der QuelleBücher zum Thema "Particle accelerator simulation"
Workshop on Simulating Accelerator Radiation Environments (3rd 1997 KEK). Proceedings of the Third Workshop on Simulating Accelerator Radiation Environments (SARE3): May 7-9, 1997, KEK, Tsukuba, Japan. Tsukubi-shi, Ibaraki-ken, Japan: High Energy Accelerator Research Organization, 1997.
Den vollen Inhalt der Quelle findenM, Berz, und Makino Kyoko, Hrsg. Computational accelerator physics 2002: Proceedings of the Seventh International Conference on Computational Accelerator Physics : Michigan State University, East Lansing, Michigan, USA, 15-18 October, 2002. Bristol: Institute of Pub., 2005.
Den vollen Inhalt der Quelle findenEllison, Donald C. Final technical report for acceleration of positrons in supernova shocks: Period, April 15, 1989 - April 15, 1992. Raleigh, N.C: North Carolina State University, 1992.
Den vollen Inhalt der Quelle finden(Editor), M. Berz, und K. Makino (Editor), Hrsg. Computational Accelerator Physics 2003: Proceedings of the Seventh International Conference on Computational Accelerator Physics, Michigan, USA, 15-18 ... (Institute of Physics Conference Series). Taylor & Francis, 2005.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Particle accelerator simulation"
Méot, François. „Classical Cyclotron“. In Particle Acceleration and Detection, 55–132. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-59979-8_3.
Der volle Inhalt der QuelleMéot, François. „Synchrocyclotron“. In Particle Acceleration and Detection, 225–36. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-59979-8_7.
Der volle Inhalt der QuelleMéot, François. „Betatron“. In Particle Acceleration and Detection, 187–205. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-59979-8_5.
Der volle Inhalt der QuelleRugama, Y., J. L. Munoz-Cobo und T. E. Valentine. „Noise Method for Monitoring the Subcriticality in Accelerator-Driven Systems“. In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 887–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_142.
Der volle Inhalt der QuelleCoeck, M., Th Aoust, F. Vermeersch und A. Abderrahim. „Shielding Assessment of the MYRRHA Accelerator-Driven System Using the MCNP Code“. In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 925–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_148.
Der volle Inhalt der QuelleKadi, Y. „Application of the EA-MC Code Package to the Design of Accelerator-Driven Systems“. In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 1015–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_163.
Der volle Inhalt der QuelleValentine, T., Y. Rugama, J. L. Muñoz-Cobo und R. Perez. „Coupling MCNP-DSP and LAHET Monte Carlo Codes for Designing Subcriticality Monitors for Accelerator-Driven Systems“. In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 1081–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_174.
Der volle Inhalt der QuellePolanski, A., V. Barashenkov, I. Puzynin, I. Rakhno und A. Sissakian. „Monte Carlo Modeling of Fast Sub-critical Assembly with MOX Fuel for Research of Accelerator-Driven Systems“. In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 803–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_128.
Der volle Inhalt der QuelleAlbers, D., F. Cremers, I. Eggers, M. Todorovic und R. Schmidt. „Energy Spectra and Dose Distributions of a Medical Linear Electron Accelerator Simulated with BEAM/EGS4 and MCNP“. In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 323–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_51.
Der volle Inhalt der QuelleMéot, François. „FFAG, Scaling“. In Particle Acceleration and Detection, 385–444. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-59979-8_10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Particle accelerator simulation"
Barlow, Roger John, Adriana Bungau und Roger Michael Jones. „Collimator Wakefields: formulae and simulation“. In 2007 IEEE Particle Accelerator Conference. IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440440.
Der volle Inhalt der QuelleGolge, S., C. Hyde und A. Freyberger. „Simulation of a cw positron source for cebaf“. In 2007 IEEE Particle Accelerator Conference. IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440692.
Der volle Inhalt der QuelleBourianoff, George. „Accelerator simulation activities at the SSCL“. In Stability of particle motion in storage rings. AIP, 1992. http://dx.doi.org/10.1063/1.45105.
Der volle Inhalt der QuelleBlaskiewicz, M. „A multipurpose coherent instability simulation code“. In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440535.
Der volle Inhalt der QuelleZhukov, A., und A. Assadi. „Beam loss simulation of SNS LINAC“. In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4439971.
Der volle Inhalt der QuelleJones, F. W., W. Herr und T. Pieloni. „Parallel beam-beam simulation incorporating multiple bunches and multiple interaction regions“. In 2007 IEEE Particle Accelerator Conference. IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440383.
Der volle Inhalt der QuelleRoberts, Thomas J., und Daniel M. Kaplan. „G4beamline simulation program for matter-dominated beamlines“. In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440461.
Der volle Inhalt der QuelleWangler, T. P., R. W. Garnett, J. Qiang, R. Ryne, K. R. Crandall, J. H. Billen, V. N. Aseev et al. „The riapmtq/impact beam-dynamics simulation package“. In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440507.
Der volle Inhalt der QuelleKoichi Kan, Takafumi Kondoh, Jinfeng Yang und Yoichi Yoshida. „Simulation study on attosecond electro bunch generation“. In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440579.
Der volle Inhalt der QuelleYang, X., A. I. Drozhdin und W. Pellico. „Transition crossing simulation at the fermilab Booster“. In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440882.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Particle accelerator simulation"
Tourtellott, John. INTEGRATED WORKFLOW MANAGEMENT FOR PARTICLE ACCELERATOR SIMULATION. Office of Scientific and Technical Information (OSTI), Juli 2020. http://dx.doi.org/10.2172/1638224.
Der volle Inhalt der QuelleTourtellot, John. Integrated Workflow Management for Particle Accelerator Simulation SBIR Phase II. Office of Scientific and Technical Information (OSTI), Dezember 2022. http://dx.doi.org/10.2172/1906113.
Der volle Inhalt der QuellePullammanappallil, Pratap, Haim Kalman und Jennifer Curtis. Investigation of particulate flow behavior in a continuous, high solids, leach-bed biogasification system. United States Department of Agriculture, Januar 2015. http://dx.doi.org/10.32747/2015.7600038.bard.
Der volle Inhalt der QuelleKurennoy, Sergey, und R. Ryne. Parallel Simulation of Beam Dynamics in Particle Accelerators. Office of Scientific and Technical Information (OSTI), März 2021. http://dx.doi.org/10.2172/1773311.
Der volle Inhalt der QuelleKurennoy, Sergey, und Robert Ryne. Parallel Simulation of Beam Dynamics in Particle Accelerators. Office of Scientific and Technical Information (OSTI), Mai 2022. http://dx.doi.org/10.2172/1870624.
Der volle Inhalt der QuelleKurennoy, Sergey, und R. Ryne. Parallel Simulation of Beam Dynamics in Particle Accelerators. Office of Scientific and Technical Information (OSTI), März 2023. http://dx.doi.org/10.2172/1968188.
Der volle Inhalt der QuelleMaxon, William. A Numerical Simulation of a Single Shock-Accelerated Particle. Office of Scientific and Technical Information (OSTI), Juli 2020. http://dx.doi.org/10.2172/1643905.
Der volle Inhalt der QuelleGuo, Fan, und Xiaohang Chen. Particle Acceleration at Parallel Shocks: a fully kinetic simulation. Office of Scientific and Technical Information (OSTI), August 2022. http://dx.doi.org/10.2172/1881801.
Der volle Inhalt der QuelleKrall, J., V. Serlin, M. Friedman und Y. Y. Lau. Simulation Studies of Particle Acceleration Powered by Modulated Intense Relativistic Electron Beams. Fort Belvoir, VA: Defense Technical Information Center, März 1989. http://dx.doi.org/10.21236/ada206348.
Der volle Inhalt der QuelleGuo, Fan. First Principles Kinetic Simulations of Relativistic Collisionless Shocks and Their Particle Acceleration. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1645065.
Der volle Inhalt der Quelle