Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Paraelectrics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Paraelectrics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Paraelectrics"
WANG, C. L., und M. L. ZHAO. „BURNS TEMPERATURE AND QUANTUM TEMPERATURE SCALE“. Journal of Advanced Dielectrics 01, Nr. 02 (April 2011): 163–67. http://dx.doi.org/10.1142/s2010135x1100029x.
Der volle Inhalt der QuelleCoak, Matthew J., Charles R. S. Haines, Cheng Liu, Stephen E. Rowley, Gilbert G. Lonzarich und Siddharth S. Saxena. „Quantum critical phenomena in a compressible displacive ferroelectric“. Proceedings of the National Academy of Sciences 117, Nr. 23 (26.05.2020): 12707–12. http://dx.doi.org/10.1073/pnas.1922151117.
Der volle Inhalt der QuelleCourtens, E., B. Hehlen, G. Coddens und B. Hennion. „New excitations in quantum paraelectrics“. Physica B: Condensed Matter 219-220 (April 1996): 577–80. http://dx.doi.org/10.1016/0921-4526(95)00817-9.
Der volle Inhalt der QuelleDelRe, Eugenio, Mario Tamburrini und Aharon J. Agranat. „Soliton electro-optic effects in paraelectrics“. Optics Letters 25, Nr. 13 (01.07.2000): 963. http://dx.doi.org/10.1364/ol.25.000963.
Der volle Inhalt der QuelleDas, Nabyendu, und Suresh G. Mishra. „Fluctuations and criticality in quantum paraelectrics“. Journal of Physics: Condensed Matter 21, Nr. 9 (04.02.2009): 095901. http://dx.doi.org/10.1088/0953-8984/21/9/095901.
Der volle Inhalt der QuelleTosatti, E., und R. Martoňák. „Rotational melting in displacive quantum paraelectrics“. Solid State Communications 92, Nr. 1-2 (Oktober 1994): 167–80. http://dx.doi.org/10.1016/0038-1098(94)90870-2.
Der volle Inhalt der QuelleVorotiahin, I. S., Yu M. Poplavko und Y. M. Fomichov. „Features of Dielectric Nonlinearity in Paraelectrics“. Ukrainian Journal of Physics 60, Nr. 04 (April 2015): 339–50. http://dx.doi.org/10.15407/ujpe60.04.0339.
Der volle Inhalt der QuelleKleemann, W., Y. G. Wang, P. Lehnen und J. Dec. „Phase transitions in doped quantum paraelectrics“. Ferroelectrics 229, Nr. 1 (Mai 1999): 39–44. http://dx.doi.org/10.1080/00150199908224315.
Der volle Inhalt der QuelleWang, Y. G., W. Kleemann, J. Dec und W. L. Zhong. „Dielectric properties of doped quantum paraelectrics“. Europhysics Letters (EPL) 42, Nr. 2 (15.04.1998): 173–78. http://dx.doi.org/10.1209/epl/i1998-00225-3.
Der volle Inhalt der QuelleWang, Y. G., W. Kleemann, W. L. Zhong und L. Zhang. „Impurity-induced phase transition in quantum paraelectrics“. Physical Review B 57, Nr. 21 (01.06.1998): 13343–46. http://dx.doi.org/10.1103/physrevb.57.13343.
Der volle Inhalt der QuelleDissertationen zum Thema "Paraelectrics"
Agudelo, Estrada Santiago Alberto. „Interface chemistry and electronic structure in voltage-adjustable paraelectric capacitances for 5G applications“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP131.
Der volle Inhalt der QuelleThe deployment of 5G technology has raised significant issues of energy consumption. This can be minimized by adjusting the antenna impedance to 50 ohms. Impedance matching is also crucial for Near Field Communications (NFC) to ensure energy-efficient contactless communications. To meet 5G and NFC requirements, a voltage-controllable impedance matching circuit with highly tunable capacitance (varactor) is needed. Specifically, a tuning ratio of at least 5 and low dielectric losses in the 5G band (2-5 GHz) are essential to preserve energy efficiency (leakage current ~1 nA). Voltage-tunable paraelectric (PE) capacitors meet this need due to their field-dependent relative permittivity εᵣ (E). The perovskite Ba₁₋ᵧSrᵧTiO₃ (BST) is widely used in 4G varactors for its excellent tunability/losses compromise, offering superior quality factors compared to other technologies. However, an acoustic resonance frequency fᵣ of 3 GHz due to electrostriction limits current 4G applications. Thus, 5G and NFC require improved varactors, specifically with fᵣ > 5 GHz and an operating voltage < 3 V. A BST thickness below 50 nm, shifting fᵣ above 6 GHz, can meet these specifications. However, these thin varactors exhibit degraded tunability and higher leakage current, due to reduced dielectric permittivity near electrodes from uncompensated polarization charges and static leakage through bulk-limited transport. Enhancing the Schottky Barrier Height (SBH) at the electrode/BST interface through band alignment can significantly reduce leakage by preventing carrier injection into the dielectric. Ab initio calculations highlight the importance of incorporating a perovskite Interface Control Layer (ICL) of a few nanometers of conductive or dielectric films between the bottom electrode and the BST in varactors. Factors such as rumpling, polar discontinuity, and interfacial B-site cation environment asymmetry can enhance interface polarizability and the Schottky Barrier Height (SBH). Understanding the mechanisms controlling electrode/PE interfaces is crucial for 5G and NFC applications, revealing chemical and electrostatic modifications of SBH and chemical potential. We propose investigating the electronic and chemical states of these interfaces at the sub-micrometric scale, compared with DFT calculations. Combinatorial Pulsed Laser Deposition (CPLD) was used to vary chemical compositions and thicknesses orthogonally on a single substrate. Chemical modulation at the Ba atoms and Ba diffusion into the dielectric STO up to the surface, driven by strain release to reduce system energy. Second, a variable polar discontinuity was induced at the LSMO/BST interface by inserting a 3 u.c. thick ICL of La₁₋ₓSrₓMnO₃ (a polar discontinuity between 1 and 0 e⁻). We investigated the interface polarization relative to BST thickness. Photoemission spectroscopy showed modulation of the work function φ, interface carrier density at the Fermi level, and interface polarization, demonstrating the impact of the 1.2 nm thick chemically modulated ICL. Finally, we fabricated voltage-tunable BST varactors using ICL engineering. We investigated the SBH versus polar discontinuity at the interface. Operando HAXPES provided access to both top and bottom interfaces, allowing us to estimate the electronic band structure and quantify the SBH. Inducing a polar discontinuity at the interface resulted in a reduction of leakage current. For 10x10 µm² BST-engineered varactors, the leakage current is expected to be close to 1 nA, an improvement by two orders of magnitude compared to current 4G cellphone varactors
Martonak, Roman. „Models of quantum paraelectric behaviour of perovskites“. Doctoral thesis, SISSA, 1993. http://hdl.handle.net/20.500.11767/4058.
Der volle Inhalt der QuelleLinnik, Ekaterina. „Propriétés spectrales des paraélectriques quantiques“. Electronic Thesis or Diss., Amiens, 2022. http://www.theses.fr/2022AMIE0037.
Der volle Inhalt der QuelleA quantum paraelectric SrTiO3 is a material situated in close proximity to a quantum critical point of ferroelectric transition in which the critical temperature of ferroelectric state is suppressed down to 0 K. However, the understanding of the behaviour of the phase transition in the vicinity of this point remains challenging. Here we study the solid solutions based on the SrTiO3 to approach the pre-critical regions of the phase diagram and study the outcome of the coexistence of quantum fluctuations and thermal motion. It will allow the discovery of the novel phase statements and physical properties, occurring due to competition of quantum and classical regimes. We study the crystal structure and lattice dynamics of quantum paraelectric BaxSr1 xTiO3 solid solutions using X-Ray diffraction, Raman and terahertz-infrared (THz-IR)-spectroscopies in a temperature range 4-300K. The X-Ray diffraction and Raman spectroscopy reveal the cubic-to-tetragonal non-polar structural phase transition at about 100K. At the same time, Raman spectra manifest the presence of polar modes, TO2 and TO4, normally prohibited in paraelectric phase. Emergence of these modes indicates the appearance of the polar nanoregions in a broad temperature range. The modes become more intensive at low temperatures, the temperature dependence of their intensities on cooling reveals the kink-like change of the slope from flat to steep, indicating on activation of polar nanoregions. The transmission THz-IR-spectra show, that squared frequencies of the polar TO1 soft modes, responsible for the ferroelectric transition, follow the Cochran’s behavior at high temperatures. However, at low temperatures, it does not vanish at extrapolated Curie temperature but saturates, demonstrating the plateau feature below 20K. This behavior, coherent with the known saturation of the dielectric constant, indicates that transition to ferroelectric phase in BaxSr1-xTiO3 is suppressed by quantum fluctuations and system stays in the quantum paraelectric state at very low temperatures. Using the concentration of Pb in PbxSr1-xTiO3 solid solutions as a tuning parameter and applying the combination of Raman and dielectric spectroscopy methods we approach the quantum critical point in PbxSr1-xTiO3 and study the interplay of classical and quantum phenomena in the region of criticality. We obtain the critical temperature of PbxSr1-xTiO3 and the evolution of the temperature-dependent dynamical properties of the system as a function of x to reveal the mechanism of the transition. We show that the ferroelectric transition occurs gradually through the emergence of the polar nanoregions. We study also the cubic-to-tetragonal structural transition, occurring at higher temperatures, and show that its properties are almost concentration-independent and not affected by the quantum criticality. We also study the dielectric properties for the PbxSr1-xTiO3 in detail and show that in the composition with x = 0.005, a smooth plateau is observed in the temperature dependence of the dielectric permittivity. The height of the plateau depends on the Pb concentration and gradually decreases when x increases. This plateau arises due to random quantum fluctuations of the ions which dominate at low temperatures and concentrations. At higher x, the thermal fluctuations become more pronounced; therefore the plateau disappears
Braun, Hubertus [Verfasser]. „Titanate-based paraelectric glass-ceramics for applications in GHz electronics / Hubertus Braun“. Mainz : Universitätsbibliothek Mainz, 2015. http://d-nb.info/1071503707/34.
Der volle Inhalt der QuellePlonka, Rafael. „Impact of the interface on the paraelectric-to-ferroelectric phase transition in epitaxial BaSrTiO_tn3 thin film capacitors“. Jülich Forschungszentrum, Zentralbibliothek, 2007. http://d-nb.info/1000127257/34.
Der volle Inhalt der QuelleAtamalian, Aleksandra. „Puslaidininkinių – feroelektrinių kristalų lūžio rodiklio ir dvejopo lūžio tyrimas“. Master's thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110627_113402-11889.
Der volle Inhalt der QuelleIn Solid State Science Laboratory we measured birefringence on temperature of grown SbSI, TlInS2 and TGS crystals. The measurement of birefringence helps to evaluate the ferroelectric phase transition of TGS, TlInS2 ir SbSI crystals. Refractive indices of SbSI crystal in paraelectric and ferroelectric phase we investigated by DFT method with program Wien2k. The theoretical results of birefringence were compared with experimental results.
Xiao, Bo. „GROWTH, CHARACTERIZATION AND APPLICATIONS OF MULTIFUNCTIONAL FERROELECTRIC THIN FILMS“. VCU Scholars Compass, 2009. http://scholarscompass.vcu.edu/etd/1936.
Der volle Inhalt der QuelleSidoruk, Jakob. „Konkurrierende ferroische Ordnungsparameter in SrTiO3: Domänenverhalten und Schaltverhalten“. Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2014. http://hdl.handle.net/11858/00-1735-0000-0022-5F60-D.
Der volle Inhalt der QuellePlonka, Rafael [Verfasser]. „Impact of the interface on the paraelectric-to-ferroelectric phase transition in epitaxial BaSrTiO_tn3 thin film capacitors / Rafael Plonka. [Forschungszentrum Jülich in der Helmholtz-Gemeinschaft, Institut für Festkörperforschung (IFF), Elektronische Materialien (IFF-6)]“. Jülich : Forschungszentrum, Zentralbibliothek, 2007. http://d-nb.info/1000127257/34.
Der volle Inhalt der QuelleBaylis, Samuel Andrew. „Tunable patch antenna using semiconductor and nano-scale Barium Strontium Titanate varactors“. [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0001970.
Der volle Inhalt der QuelleBücher zum Thema "Paraelectrics"
From Quantum Paraelectric/Ferroelectric Perovskite Oxides to High Temperature Superconducting Copper Oxides -- In Honor of Professor K.A. Müller for His Lifework. MDPI, 2021. http://dx.doi.org/10.3390/books978-3-0365-0475-9.
Der volle Inhalt der QuelleBuchteile zum Thema "Paraelectrics"
Dolin, S. P., A. A. Levin, T. Yu Mikhailova und M. V. Solin. „Quantum-Chemical Approach to Zero-Dimensional Antiferroelectrics and Quantum Paraelectrics of the K3H(SO4)2 Family“. In Vibronic Interactions: Jahn-Teller Effect in Crystals and Molecules, 263–68. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0985-0_30.
Der volle Inhalt der QuelleVillars, P., K. Cenzual, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, V. Kuprysyuk, I. Savysyuk und R. Zaremba. „KPb2Nb5O15 paraelectric“. In Landolt-Börnstein - Group III Condensed Matter, 526. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22847-6_441.
Der volle Inhalt der QuelleVillars, P., K. Cenzual, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, V. Kuprysyuk, I. Savysyuk und R. Zaremba. „Pb2KTa5O15 paraelectric“. In Landolt-Börnstein - Group III Condensed Matter, 531. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22847-6_446.
Der volle Inhalt der QuelleRigamonti, Attilio, und Pietro Carretta. „Dielectrics and Paraelectric-Ferroelectric Phase Transitions“. In Structure of Matter, 477–503. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17897-4_16.
Der volle Inhalt der QuelleGeru, Ion, und Dieter Suter. „Exciton Paramagnetic, Paraelectric, and Zero-Field Resonances“. In Resonance Effects of Excitons and Electrons, 27–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35807-4_2.
Der volle Inhalt der QuelleSamara, G. A. „From Ferroelectric to Quantum Paraelectric: KTa1-xNbxO3 (KTN), a Model System“. In Frontiers of High Pressure Research II: Application of High Pressure to Low-Dimensional Novel Electronic Materials, 179–88. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0520-3_14.
Der volle Inhalt der QuelleFang, Huazhi, Yi Wang, Shun-Li Shang und Zi-Kui Liu. „Nature of Ferroelectric-Paraelectric Phase Transition and Origin of Negative Thermal Expansion in PbTiO3“. In Zentropy, 627–43. New York: Jenny Stanford Publishing, 2024. http://dx.doi.org/10.1201/9781032692401-20.
Der volle Inhalt der QuelleTkach, Alexander, und Paula M. Vilarinho. „Nonstoichiometry Role on the Properties of Quantum-Paraelectric Ceramics“. In Structure Processing Properties Relationships in Stoichiometric and Nonstoichiometric Oxides. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.89499.
Der volle Inhalt der Quelle„Dipolar and Quantum Paraelectric Behavior“. In Properties of Perovskites and Other Oxides, 467–501. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814293365_0008.
Der volle Inhalt der Quelle„Ferroelectric-paraelectric Phase Transition Thermodynamic Modeling“. In Integration of Ferroelectric and Piezoelectric Thin Films, 49–65. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118616635.ch3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Paraelectrics"
Ulrich, Anja, Kamal Brahim, Andries Boelen, Bart Kuyken und Christian Haffner. „Quantum paraelectric parametric amplifiers“. In Quantum 2.0, QTh2C.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qth2c.6.
Der volle Inhalt der QuelleArago, C., M. I. Marques, C. L. Wang und J. A. Gonzalo. „Quantum paraelectrics revisited under effective field approach“. In 2009 18th IEEE International Symposium on the Applications of Ferroelectrics (ISAF). IEEE, 2009. http://dx.doi.org/10.1109/isaf.2009.5307524.
Der volle Inhalt der QuelleHoffmann, Matthias C. „THz driven soft mode dynamics in quantum paraelectrics“. In Terahertz Emitters, Receivers, and Applications XIV, herausgegeben von Manijeh Razeghi und Mona Jarrahi. SPIE, 2023. http://dx.doi.org/10.1117/12.2681933.
Der volle Inhalt der QuelleGrimalsky, V., S. Koshevaya, J. Escobedo-Alatorre und E. Jatirian-Foltides. „Formation of short terahertz electromagnetic pulses in nonlinear paraelectrics“. In 2017 IEEE 30th International Conference on Microelectronics (MIEL). IEEE, 2017. http://dx.doi.org/10.1109/miel.2017.8190076.
Der volle Inhalt der QuelleMatsushita, E., und S. Segawa. „Note on Oxygen Isotope Effect and Ferroelectric Transition in Quantum Paraelectrics“. In 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics. IEEE, 2007. http://dx.doi.org/10.1109/isaf.2007.4393235.
Der volle Inhalt der QuelleGrimalsky, V., S. Koshevaya, J. Esobedo-Alatorre, Y. Gomez-Badillo und Yu Rapoport. „Modulation Instability of Terahertz Beams in Paraelectrics in a Wide Temperature Range“. In 2020 IEEE Ukrainian Microwave Week (UkrMW). IEEE, 2020. http://dx.doi.org/10.1109/ukrmw49653.2020.9252663.
Der volle Inhalt der QuelleGrimalsky, V., S. Koshevaya, J. Escobedo-Alatorre und Yu Rapoport. „Frequency multiplication of terahertz radiation in waveguides on the base of paraelectrics“. In 2016 IEEE Radar Methods and Systems Workshop (RMSW). IEEE, 2016. http://dx.doi.org/10.1109/rmsw.2016.7778563.
Der volle Inhalt der QuelleGrimalsky, V., S. Koshevaya, J. Escobedo-A und Y. Gomez-B. „Generation of Harmonics of Terahertz Radiation in Paraelectrics in a Wide Temperature Range“. In 2019 IEEE 31st International Conference on Microelectronics (MIEL). IEEE, 2019. http://dx.doi.org/10.1109/miel.2019.8889649.
Der volle Inhalt der QuelleVenturini, E. L. „Pressure As A Probe Of The Physics Of Compositionally-Substituted Quantum Paraelectrics: SrTiO3“. In Fundamental Physics of Ferroelectrics 2003. AIP, 2003. http://dx.doi.org/10.1063/1.1609931.
Der volle Inhalt der QuelleSin'ko, D. V., und Boris V. Anikeev. „Photorefractive effect in paraelectric DKDP“. In Nonlinear Optics of Liquid and Photorefractive Crystals, herausgegeben von Gertruda V. Klimusheva und Andrey G. Iljin. SPIE, 1996. http://dx.doi.org/10.1117/12.239225.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Paraelectrics"
Miller, Virginia, und Frank Crowne. Landau-Devonshire Parameters for the Tunable Paraelectric Material BaTi.9(Sc,Ta).05O3. Fort Belvoir, VA: Defense Technical Information Center, März 2008. http://dx.doi.org/10.21236/ada478947.
Der volle Inhalt der Quelle