Inhaltsverzeichnis

  1. Dissertationen

Auswahl der wissenschaftlichen Literatur zum Thema „Parabolické rovnice“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Parabolické rovnice" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Dissertationen zum Thema "Parabolické rovnice"

1

Hofmanová, Martina. „Degenerované parabolické stochastické parciální diferenciální rovnice“. Doctoral thesis, 2013. http://www.nusl.cz/ntk/nusl-322207.

Der volle Inhalt der Quelle
Annotation:
In this thesis, we address several problems arising in the study of nondegenerate and degenerate parabolic SPDEs, stochastic hyper- bolic conservation laws and SDEs with continues coefficients. In the first part, we are interested in degenerate parabolic SPDEs, adapt the notion of kinetic formulation and kinetic solution and establish existence, uniqueness as well as continuous dependence on initial data. As a preliminary result we obtain regularity of solutions in the nondegenerate case under the hypothesis that all the coefficients are sufficiently smooth and have bounded derivatives. In the second part, we consider hyperbolic conservation laws with stochas- tic forcing and study their approximations in the sense of Bhatnagar-Gross- Krook. In particular, we describe the conservation laws as a hydrodynamic limit of the stochastic BGK model as the microscopic scale vanishes. In the last part, we provide a new and fairly elementary proof of Skorkohod's classical theorem on existence of weak solutions to SDEs with continuous coefficients satisfying a suitable Lyapunov condition. 1
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Češík, Antonín. „Vlastnosti konvexního obalu pro parabolické soustavy parciálních diferenciálních rovnic“. Master's thesis, 2019. http://www.nusl.cz/ntk/nusl-406311.

Der volle Inhalt der Quelle
Annotation:
The topic of this thesis is the convex hull property for systems of partial differential equations, which is a natural generalisation of the maximum principle for scalar equations. The main result of this thesis is a theorem asserting the convex hull property for the solutions of a certain class of parabolic systems of nonlinear partial differential equations. It also investigates the coefficients of linear systems. The respective results are sharp which is demonstrated by counterexamples to the convex hull property for solutions of linear elliptic and parabolic systems. The general theme is that the coupling of the system is what breaks the convex hull property, not necessarily the non-linearity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Balázsová, Monika. „Numerická analýza problémů v časově závislých oblastech“. Doctoral thesis, 2021. http://www.nusl.cz/ntk/nusl-445724.

Der volle Inhalt der Quelle
Annotation:
This work is concerned with the theoretical analysis of the space-time discontinuous Galerkin method applied to the numerical solution of nonstationary nonlinear convection-diffusion problem in a time- dependent domain. At first, the problem is reformulated by the use of the arbitrary Lagrangian-Eulerian (ALE) method, which replaces the classical partial time derivative by the so-called ALE derivative and an additional convection term. Then the problem is discretized with the use of the ALE space-time discontinuous Galerkin method. On the basis of a technical analysis we obtain an unconditional stability of this method. An important step in the analysis is the generalization of a discrete characteristic function associated with the approximate solutionin a time-dependentdomainand the derivationof its properties. Further we derive an a priori error estimate of the method in terms of the interpolation error, as well as in terms of h and tau. Finally, some practical applications of the ALE space-time discontinuos Galerkin method in a time-dependent domain are given. We are concerned with the numerical solution of a nonlinear elasticity benchmark problem and moreover with the interaction of compressible viscous flow with elastic structures. The main attention is paid to the modeling of flow induced vocal fold...
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hruška, David. „Analýza evolučních úloh s omezeným gradientem“. Master's thesis, 2019. http://www.nusl.cz/ntk/nusl-406184.

Der volle Inhalt der Quelle
Annotation:
We study nonlinear evolutionary partial differential equations that can be viewed as a generalization of the heat equation where the temperature gradient is bounded but the heat flux is apriori only a measure. We consider this system in spatially periodic setting and use higher differentiability techniques to prove the existence and uniqueness of weak solution with integrable heat-flux for all values of the material parameter a. Under some more restrictive assumptions on a, we prove higher integrability of the heat flux. 1
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bezchlebová, Eva. „Numerické řešení nelineárních transportních problémů“. Master's thesis, 2015. http://www.nusl.cz/ntk/nusl-350811.

Der volle Inhalt der Quelle
Annotation:
Práce je zaměřená na numerickou simulaci dvoufázového proudění. Je studován matematický model a numerická aproximace toku dvou nemísitelných nestlačitelných tekutin. Rozhraní mezi tekutinami je popsáno pomocí pomocí tzv. level set metody. Představena je diskretizace problému v prostoru a v čase. Metoda konečných prvk· se zpětnou Eulerovou metodou je aplikována na Navierovy-Stokesovy rovnice a časoprostorová nespojitá Galerkinova metoda je použita k řešení transportního problému. D·raz je kladen na analýzu chyby nespojité Galerkinovy metody přímek a časoprostorové nespojité Galerkinovy metody pro transportní problém. Jsou prezentovány numerické výsledky. 1
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie