Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Parabolic“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Parabolic" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Parabolic"
Botvynovska, Svitlana, Zhanetta Levina und Hanna Sulimenko. „IMAGING OF A HYPERBOLIC PARABOLOID WITH TOUCHING LINE WITH THE PARABOLAL WRAPPING CONE“. Management of Development of Complex Systems, Nr. 48 (20.12.2021): 53–60. http://dx.doi.org/10.32347/2412-9933.2021.48.53-60.
Der volle Inhalt der QuelleZhu, Yuanchao, Dazhao Zhang, Yanlin Lai und Huabiao Yan. „Shape adjustment of "FAST" active reflector“. Highlights in Science, Engineering and Technology 1 (14.06.2022): 391–400. http://dx.doi.org/10.54097/hset.v1i.493.
Der volle Inhalt der QuelleAcharya, Aviseka, Sonja Brungs, Yannick Lichterfeld, Jürgen Hescheler, Ruth Hemmersbach, Helene Boeuf und Agapios Sachinidis. „Parabolic, Flight-Induced, Acute Hypergravity and Microgravity Effects on the Beating Rate of Human Cardiomyocytes“. Cells 8, Nr. 4 (14.04.2019): 352. http://dx.doi.org/10.3390/cells8040352.
Der volle Inhalt der QuelleStojanov, V. V., S. J. Jgalli und V. O. Stojanov. „THE CONSTITUENT ELEMENTS STRUCTURES COVERING OF HYPERBOLIC PARABOLOID“. ACADEMIC JOURNAL Series: Industrial Machine Building, Civil Engineering 1, Nr. 48 (27.03.2017): 54–61. http://dx.doi.org/10.26906/znp.2017.48.769.
Der volle Inhalt der QuelleHayah, Ni, Bakri Mallo und I. Nyoman Murdiana. „PROFIL PEMAHAMAN KONSEP MATEMATIKA DITINJAU DARI GAYA KOGNITIF FIELD INDEPENDENT (FI) DAN FIELD DEPENDENT (FD)“. Aksioma 8, Nr. 2 (24.09.2019): 137–50. http://dx.doi.org/10.22487/aksioma.v8i2.210.
Der volle Inhalt der QuelleWang, Yanbo, Yingchang Xiong, Jianming Hao, Jiaqi He, Yuchi Liu und Xinpeng He. „Active Control Model for the “FAST” Reflecting Surface Based on Discrete Methods“. Symmetry 14, Nr. 2 (27.01.2022): 252. http://dx.doi.org/10.3390/sym14020252.
Der volle Inhalt der QuelleTang, Hongxin. „Parabolic Detection Algorithm of Tennis Serve Based on Video Image Analysis Technology“. Security and Communication Networks 2021 (29.11.2021): 1–9. http://dx.doi.org/10.1155/2021/7901677.
Der volle Inhalt der QuelleSharma, N. K., Ashok Kumar Mishra und P. Rajgopal. „Design of Low-Cost Solar Parabolic Through Steam Sterilization“. International Journal of Biomedical and Clinical Engineering 10, Nr. 1 (Januar 2021): 50–60. http://dx.doi.org/10.4018/ijbce.2021010104.
Der volle Inhalt der QuelleStavek, Jiri. „Newton’s Parabola Observed from Pappus’ Directrix, Apollonius’ Pedal Curve (Line), Newton’s Evolute, Leibniz’s Subtangent and Subnormal, Castillon’s Cardioid, and Ptolemy’s Circle (Hodograph) (09.02.2019)“. Applied Physics Research 11, Nr. 2 (25.02.2019): 30. http://dx.doi.org/10.5539/apr.v11n2p30.
Der volle Inhalt der QuellePetkov, Emiliyan G. „Development and Implementation of NURBS Models of Quadratic Curves and Surfaces“. Serdica Journal of Computing 3, Nr. 4 (11.01.2010): 425–48. http://dx.doi.org/10.55630/sjc.2009.3.425-448.
Der volle Inhalt der QuelleDissertationen zum Thema "Parabolic"
Hertz, Erik. „Parabolic Synthesis“. Licentiate thesis, Department of Electrical and Information Technology Faculty of Engineering, LTH, Lund University, Lund, Sweden, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-22338.
Der volle Inhalt der QuelleHeyer, Claudius. „Applications of parabolic Hecke algebras: parabolic induction and Hecke polynomials“. Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20137.
Der volle Inhalt der QuelleThe first part deals with a new construction of parabolic induction for modules over the pro-p Iwahori-Hecke algebra. This construction exhibits a new class of algebras that can be thought of as an interpolation between the pro-p Iwahori-Hecke algebra of a p-adic reductive group $G$ and the corresponding algebra of a Levi subgroup $M$ of $G$. For these algebras we define a new induction functor and prove a transitivity property. This gives a new proof of the transitivity of parabolic induction for modules over the pro-p Iwahori-Hecke algebra. Further, a function on a parabolic subgroup with p-power values is studied. We show that it induces a function on the (pro-p) Iwahori-Weyl group of $M$, that it is monotonically increasing with respect to the Bruhat order, and that it allows to compare the length function on the Iwahori-Weyl group of $M$ with the one on the Iwahori-Weyl group of $G$. In the second part a general decomposition theorem for polynomials over the spherical (parahoric) Hecke algebra of a p-adic reductive group $G$ is proved. The proof requires that the chosen parabolic subgroup is contained in a non-obtuse one. Moreover, we give a classification of non-obtuse parabolic subgroups of $G$.
Gantz, Christian. „On parabolic bundles“. Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320221.
Der volle Inhalt der QuelleBoger, D. (Dorin). „Parabolic Springer resolution“. Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104605.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 73-75).
Let G be a reductive group over a field k = k. Let P be a parabolic subgroup. We construct a functor Groupoid ... is a connected space, which induces an action of generalizing a classical result. It is also a part of a study of natural equivalences between ... for P, Q associated parabolic subgroups.
by D. Boger.
Ph. D.
Žúrek, Dan. „Nízkoprofilová směrová anténa“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242122.
Der volle Inhalt der QuelleTaher, Chadi. „Calculating the parabolic chern character of a locally abelain parabolic bundle : the chern invariants for parabolic bundles at multiple points“. Nice, 2011. http://www.theses.fr/2011NICE4013.
Der volle Inhalt der QuelleDeolmi, Giulia. „Computational Parabolic Inverse Problems“. Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3423351.
Der volle Inhalt der QuelleIn questa tesi viene presentato un approccio numerico volto alla risoluzione di problemi inversi parabolici, basato sull'utilizzo di una parametrizzazione adattativa. L'algoritmo risolutivo viene descritto per due specici problemi: mentre il primo consiste nella stima della corrosione di una faccia incognita del dominio, il secondo ha come scopo la quanticazione di inquinante immesso in un fiume.
Bauwe, Anne, und Wilfried Grecksch. „A parabolic stochastic differential inclusion“. Universitätsbibliothek Chemnitz, 2005. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200501221.
Der volle Inhalt der QuelleBaysal, Arzu. „Inverse Problems For Parabolic Equations“. Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605623/index.pdf.
Der volle Inhalt der QuelleEberhardt, Jens Niklas [Verfasser], und Wolfgang [Akademischer Betreuer] Soergel. „Graded and geometric parabolic induction“. Freiburg : Universität, 2017. http://d-nb.info/113557216X/34.
Der volle Inhalt der QuelleBücher zum Thema "Parabolic"
Watson, N. A. Parabolic equations on an infinite strip. New York: M. Dekker, 1989.
Den vollen Inhalt der Quelle findenEscher, Joachim, Patrick Guidotti, Matthias Hieber, Piotr Mucha, Jan W. Prüss, Yoshihiro Shibata, Gieri Simonett, Christoph Walker und Wojciech Zajaczkowski, Hrsg. Parabolic Problems. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4.
Der volle Inhalt der Quelle1960-, Slovák Jan, Hrsg. Parabolic geometries. Providence, R.I: American Mathematical Society, 2009.
Den vollen Inhalt der Quelle findenZheng, Songmu. Nonlinear parabolic equations and hyperbolic-parabolic coupled systems. Harlow, Essex, England: Longman, 1995.
Den vollen Inhalt der Quelle findenZheng, S. Nonlinear parabolic equations and hyperbolic-parabolic coupled systems. Harlow, Essex, England: Longman, 1995.
Den vollen Inhalt der Quelle findenQuittner, Prof Dr Pavol, und Prof Dr Philippe Souplet. Superlinear Parabolic Problems. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18222-9.
Der volle Inhalt der QuelleDiBenedetto, Emmanuele. Degenerate Parabolic Equations. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-0895-2.
Der volle Inhalt der QuelleDiBenedetto, Emmanuele. Degenerate parabolic equations. New York: Springer-Verlag, 1993.
Den vollen Inhalt der Quelle findenKönig, Wolfgang. The Parabolic Anderson Model. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33596-4.
Der volle Inhalt der QuelleBandle, Catherine, Henri Berestycki, Bernard Brighi, Alain Brillard, Michel Chipot, Jean-Michel Coron, Carlo Sbordone, Itai Shafrir, Vanda Valente und Giorgio Vergara Caffarelli, Hrsg. Elliptic and Parabolic Problems. Basel: Birkhäuser Basel, 2005. http://dx.doi.org/10.1007/3-7643-7384-9.
Der volle Inhalt der QuelleBuchteile zum Thema "Parabolic"
Abels, Helmut. „Double Obstacle Limit for a Navier-Stokes/Cahn-Hilliard System“. In Parabolic Problems, 1–20. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_1.
Der volle Inhalt der QuelleEscher, Joachim, Martin Kohlmann und Boris Kolev. „Geometric Aspects of the Periodic μ-Degasperis-Procesi Equation“. In Parabolic Problems, 193–209. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_10.
Der volle Inhalt der QuelleFarwig, R., H. Kozono und H. Sohr. „Global Leray-Hopf Weak Solutions of the Navier-Stokes Equations with Nonzero Time-dependent Boundary Values“. In Parabolic Problems, 211–32. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_11.
Der volle Inhalt der QuelleFattorini, H. O. „Time and Norm Optimality of Weakly Singular Controls“. In Parabolic Problems, 233–49. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_12.
Der volle Inhalt der QuelleGaldi, Giovanni P., und Mads Kyed. „Asymptotic Behavior of a Leray Solution around a Rotating Obstacle“. In Parabolic Problems, 251–66. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_13.
Der volle Inhalt der QuelleGeissert, Matthias, und Horst Heck. „A Remark on Maximal Regularity of the Stokes Equations“. In Parabolic Problems, 267–74. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_14.
Der volle Inhalt der QuelleGuidetti, Davide. „On Linear Elliptic and Parabolic Problems in Nikol’skij Spaces“. In Parabolic Problems, 275–300. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_15.
Der volle Inhalt der QuelleGwiazda, Piotr, und Agnieszka Świerczewska Gwiazda. „Parabolic Equations in Anisotropic Orlicz Spaces with General N-functions“. In Parabolic Problems, 301–11. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_16.
Der volle Inhalt der QuelleHaller-Dintelmann, Robert, und Joachim Rehberg. „Maximal Parabolic Regularity for Divergence Operators on Distribution Spaces“. In Parabolic Problems, 313–41. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_17.
Der volle Inhalt der QuelleHishida, Toshiaki. „On the Relation Between the Large Time Behavior of the Stokes Semigroup and the Decay of Steady Stokes Flow at Infinity“. In Parabolic Problems, 343–55. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_18.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Parabolic"
Wolf, Jörg. „A direct proof of the Caffarelli-Kohn-Nirenberg theorem“. In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-34.
Der volle Inhalt der QuelleWrzosek, Dariusz. „Chemotaxis models with a threshold cell density“. In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-35.
Der volle Inhalt der QuelleRaczyński, Andrzej. „Existence of solutions for a model of self-gravitating particles with external potential“. In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-18.
Der volle Inhalt der QuelleNikolopoulos, C. V., und D. E. Tzanetis. „Blow-up time estimates for a non-local reactive-convective problem modelling sterilization of food“. In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-16.
Der volle Inhalt der QuelleOrpel, Aleksandra. „On the existence of multiple positive solutions for a certain class of elliptic problems“. In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-17.
Der volle Inhalt der QuelleArkeryd, Leif. „On stationary kinetic systems of Boltzmann type and their fluid limits“. In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-1.
Der volle Inhalt der QuelleGriepentrog, Jens A. „On the unique solvability of a nonlocal phase separation problem for multicomponent systems“. In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-10.
Der volle Inhalt der QuelleGuerra, Ignacio. „Asymptotic self-similar blow-up for a model of aggregation“. In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-11.
Der volle Inhalt der QuelleNikolopoulos, C. V., und D. E. Tzanetis. „Blow-up time estimates for a non-local reactive-convective problem modelling sterilization of food“. In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-12.
Der volle Inhalt der QuelleKuto, Kousuke, und Yoshio Yamada. „Multiple existence and stability of steady-states for a prey-predator system with cross-diffusion“. In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-13.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Parabolic"
Author, Not Given. Solar parabolic trough. Office of Scientific and Technical Information (OSTI), Januar 2009. http://dx.doi.org/10.2172/1216669.
Der volle Inhalt der QuelleAnthony Messina, Anthony Messina. The Parabolic Solar Trough. Experiment, September 2012. http://dx.doi.org/10.18258/0050.
Der volle Inhalt der QuelleSCIENCE AND TECHNOLOGY CORP HAMPTON VA. Analytic Parabolic Equation Solutions. Fort Belvoir, VA: Defense Technical Information Center, November 1989. http://dx.doi.org/10.21236/ada218588.
Der volle Inhalt der QuelleHeirich, Alan, und Stephen Taylor. A Parabolic Load Balancing Method. Fort Belvoir, VA: Defense Technical Information Center, Januar 2006. http://dx.doi.org/10.21236/ada442993.
Der volle Inhalt der QuelleKinoshita, G. Shenandoah parabolic dish solar collector. Office of Scientific and Technical Information (OSTI), Januar 1985. http://dx.doi.org/10.2172/5914387.
Der volle Inhalt der QuelleStine, W. B. Progress in parabolic dish technology. Office of Scientific and Technical Information (OSTI), Juni 1989. http://dx.doi.org/10.2172/6110524.
Der volle Inhalt der QuelleBeninga, K., R. Davenport, M. Featherby, J. Sandubrae und K. Walcott. Parabolic dish photovoltaic concentrator development. Office of Scientific and Technical Information (OSTI), Mai 1991. http://dx.doi.org/10.2172/5526853.
Der volle Inhalt der QuelleHeirich, Alan, und Stephen Taylor. A Parabolic Theory of Load Balance. Fort Belvoir, VA: Defense Technical Information Center, Januar 2006. http://dx.doi.org/10.21236/ada443334.
Der volle Inhalt der QuelleHolmes, Eleanor, Laurie Gainey und John Hanna. Upgrades to the Parabolic Equation Model. Fort Belvoir, VA: Defense Technical Information Center, März 1988. http://dx.doi.org/10.21236/ada211899.
Der volle Inhalt der QuelleBarrios, Amalia E. A Terrain Parabolic Equation Model (TPEM). Fort Belvoir, VA: Defense Technical Information Center, Januar 1993. http://dx.doi.org/10.21236/ada264672.
Der volle Inhalt der Quelle