Auswahl der wissenschaftlichen Literatur zum Thema „Oxynitrure de phosphate de lithium“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Oxynitrure de phosphate de lithium" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Oxynitrure de phosphate de lithium":

1

Mayer, Sergio Federico, Cristina de la Calle, María Teresa Fernández-Díaz, José Manuel Amarilla und José Antonio Alonso. „Nitridation effect on lithium iron phosphate cathode for rechargeable batteries“. RSC Advances 12, Nr. 6 (2022): 3696–707. http://dx.doi.org/10.1039/d1ra07574h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Carrillo Solano, M. A., M. Dussauze, P. Vinatier, L. Croguennec, E. I. Kamitsos, R. Hausbrand und W. Jaegermann. „Phosphate structure and lithium environments in lithium phosphorus oxynitride amorphous thin films“. Ionics 22, Nr. 4 (17.10.2015): 471–81. http://dx.doi.org/10.1007/s11581-015-1573-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dai, Wangqi, Ziqiang Ma, Donglei Wang, Siyu Yang und Zhengwen Fu. „Functional multilayer solid electrolyte films for lithium dendrite suppression“. Applied Physics Letters 121, Nr. 22 (28.11.2022): 223901. http://dx.doi.org/10.1063/5.0122984.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The improvement of the interface between a lithium metal and a solid electrolyte layer is very important for the application of a lithium anode coated by solid electrolytes in lithium metal batteries. In order to address the issues of interface performance and compatibility between solid electrolyte films prepared by magnetron sputtering and lithium metals and the suppression of lithium dendrite during the cycling, a three-layer interface solid electrolyte film based on carbon-doped lithium phosphate oxynitride (LiCPON) was employed for coating a lithium metal. The sandwich structure of LiCPON by introducing an ultra-thin lithium niobium oxynitride (LiNbON) layer prepared by sputtering LiNbO3 in nitrogen ambient can be confirmed by time-of-flight secondary ion mass spectrometry. Atomic force microscopy data indicated that the surface of the LiCPON thin film with the sandwich structure is flatter and smoother than that of the LiCPON thin film on the lithium metal. The interface impedance of the symmetric battery based on the sandwich structure of the LiCPON coating lithium metal was reduced from 512.2 to 65.4 Ω, and the symmetric battery stable cycles from 300 h with an overpotential of more than 200 mV to 400 h with low overpotential of about 77 mV. These results suggest that functional multilayer solid electrolyte films become an effective method for protecting lithium. The incorporation of ultra-thin LiNbON into the LiCPON thin film could significantly decrease interface impedance between the lithium metal and solid electrolyte layer.
4

Taormina, Riccardo, und Fabio Di Fonzo. „Amorphous Lithium Aluminate As Solid Electrolyte Produced By Pulsed Laser Deposition“. ECS Meeting Abstracts MA2022-01, Nr. 4 (07.07.2022): 543. http://dx.doi.org/10.1149/ma2022-014543mtgabs.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Solid state batteries are deemed to become the cornerstone of the future electric mobility. Nevertheless, research on solid electrolytes is still ongoing due the many limitations of current polycrystalline materials. The isotropic and non-periodic structure of amorphous ceramics have shown to contribute to increase the overall ionic conductivity of the material by decreasing the grain-boundary resistive contribution. At the current state, the most promising amorphous material happened to be lithium phosphate oxynitride LiPON (σLi = 10-6 S/cm, ), which demonstrates that the absence of grain boundaries, allows the formation of lithium small dendrites which can grow inside the material without cracking it, avoiding short life cycle of the battery over high current densities [1]. Gao et al. [2] addressed the limited ionic conductivity of LiPON to the strong bond between the PO 4- group with Li+: for this reason, elements with weaker electronegativity than P, such as Al, can generate an ionic bond with O with weaker electrostatic force, regulating the kinetics of Li+ transport and speeds up the diffusion process [3]. In this scenario, Lithium Aluminate (LiAlO2) and Nitrogen-doped Lithium Aluminate (LiAlON) result in a competitive position for the development of an innovative amorphous-glassy electrolyte: very few studies have been conducted on the development of lithium aluminate based solid electrolytes at the present time, mainly due to its low processability at the amorphous phase and the low ionic conductivity of the crystalline phase, more common in the traditional sintering processes. In this study, we demonstrate for the first time the possibility to obtain with Pulsed Laser Deposition (PLD), a completely amorphous LiAlO2 solid electrolyte with a room temperature ionic conductivity of 10-10 S/cm. Thanks to the PLD processing, the grade of polymorphism can be easily controlled as well as film thickness range (10nm up to 10um) and film porosity. By controlling the deposition atmosphere, different content of nitrogen doping has been achieved, promoting the formation of the highly ionic conductive LiAlON (almost two order of higher conductivity). Electrochemical analysis such as DC polarization and Impedance Spectroscopy, revealed the wide electrochemical voltage stability against lithium metal and the high ionic conductivity of the solid electrolyte. A multi-layer approach for the direct deposition of the solid electrolyte over lithium metal surface is proposed, allowing the realization of symmetric cell test and plating/stripping test. Good protection of Li metal substrate has been observed from the LiAlO2 SSE over 24h, hindering oxidation and degradation of the sample. [1] - Nowak, Berkemeier, and Schmitz, “Ultra-Thin LiPON Films – Fundamental Properties and Application in Solid State Thin Film Model Batteries.” [2] - Gao et al., “Screening Possible Solid Electrolytes by Calculating the Conduction Pathways Using Bond Valence Method.” [3] - Guan et al., “Superior Ionic Conduction in LiAlO 2 Thin-Film Enabled by Triply Coordinated Nitrogen.”
5

Takada, K. „Lithium ion conduction in lithium magnesium thio-phosphate“. Solid State Ionics 147, Nr. 1-2 (01.03.2002): 23–27. http://dx.doi.org/10.1016/s0167-2738(02)00007-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Li, Yongjian, Liping Dong, Pei Shi, Zhongqi Ren und Zhiyong Zhou. „Selective recovery of lithium from lithium iron phosphate“. Journal of Power Sources 598 (April 2024): 234158. http://dx.doi.org/10.1016/j.jpowsour.2024.234158.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Abrahams, I., und K. S. Easson. „Structure of lithium nickel phosphate“. Acta Crystallographica Section C Crystal Structure Communications 49, Nr. 5 (15.05.1993): 925–26. http://dx.doi.org/10.1107/s0108270192013064.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Richardson, Thomas J. „Phosphate-stabilized lithium intercalation compounds“. Journal of Power Sources 119-121 (Juni 2003): 262–65. http://dx.doi.org/10.1016/s0378-7753(03)00244-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pozas, R., S. Madueño, S. Bruque, L. Moreno-Real, M. Martinez-Lara, C. Criado und J. Ramos-Barrado. „Lithium insertion in vanadyl phosphate“. Solid State Ionics 51, Nr. 1-2 (März 1992): 79–83. http://dx.doi.org/10.1016/0167-2738(92)90347-r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhang, Qian, Xinming Zhang, Ya Zhang und Qiang Shen. „Influence of lithium phosphate on the structural and lithium-ion conducting properties of lithium aluminum titanium phosphate pellets“. Ionics 27, Nr. 6 (26.03.2021): 2473–81. http://dx.doi.org/10.1007/s11581-021-04011-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Oxynitrure de phosphate de lithium":

1

Bayzou, Racha. „Caractérisation par RMN de la structure à l'échelle atomique des couches minces de LiPON utilisées comme électrolyte dans les microbatteries“. Electronic Thesis or Diss., Université de Lille (2022-....), 2022. http://www.theses.fr/2022ULILR056.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Les micro-batteries « tout-solides » sont des dispositifs prometteurs pour de nombreuses applications, telles que la communication, l'électronique pour le grand publique, la traçabilité, la sécurité ainsi que l'internet des objets. Néanmoins, l'une des principales limitations de ces dispositifs est la faible conductivité ionique des électrolytes solides. En particulier, l'oxynitrure de phosphate de lithium (LiPON), qui est l'électrolyte le plus couramment utilisé dans les micro-batteries tout-solides commerciales, a une conductivité trois fois plus faibles que les électrolytes liquides utilisés dans les batteries Li-ion. L'amélioration raisonnée de la conductivité du LiPON et de ses dérivés nécessite de mieux comprendre leur structure et leur dynamique à l'échelle atomique. Dans ce travail de thèse, nous avons exploré comment la spectroscopie RMN des solides peut permettre de caractériser la structure et la dynamique à l'échelle atomique des couches minces à base de LiPON. Les données RMN ont été comparées à celles de spectroscopie d'impédance électrochimique, afin de mieux comprendre les mécanismes de conduction. En particulier, nous avons notamment montré que l'augmentation de la conductivité ionique avec la teneur en azote des LiPON provient de la formation d'azotes pontants, qui interagissent plus faiblement avec les ions Li+ que les azotes apicaux. Cette étude a ensuite été étendue à des couches minces de LiSiPON afin d'étudier l'effet de l'incorporation d'atomes de silicium sur la structure et la dynamique des LiPON. Ces travaux de thèse ont également porté sur le développement de nouvelles séquences d'impulsion pour la détection indirecte des noyaux soumis à des interactions anisotropes élevées via d'autres isotopes soumis à des interactions anisotropes plus faibles. L'objectif était notamment de détecter les noyaux 14N (spin I = 1, soumis à des interactions quadripolaires de quelques megahertz) via les noyaux 31P ou 6,7Li. Pour cela, nous avons démontré la possibilité de détecter avec un faible bruit en t1 les cohérences double-quantum entre les niveaux d'énergie mI = +1 et −1 des noyaux 14N via les protons dans les molécules organiques, telles que L-histidine·HCl, grâce à la séquence HMQC utilisant un recouplage de type TRAPDOR. Nous avons également démontré que cette expérience dite T-HMQC permet la détection indirecte des noyaux de spin-1/2 soumis à des fortes anisotropies de déplacement chimique via les protons. Néanmoins, faute de temps, nous n'avons pu appliquer l'expérience T-HMQC à l'étude des LiPON au cours de cette thèse
All-solid-state microbatteries are promising devices for a wide range of applications pertaining to communication, consumer electronics, products and people identification, traceability, security as well as the internet of things. Nevertheless, low ionic conductivity of the solid electrolytes remains a major limitation of these devices. In particular, lithium phosphorus oxynitride (LiPON), which is currently the commercial standard electrolyte for all-solid-state microbatteries, has a three-fold lower conductivity than liquid electrolytes used Li-ion batteries. The rational improvement of the conductivity of LiPON and its derivatives requires a better understanding of their atomic-scale structure and dynamics. In this thesis, we explored how solid-state NMR spectroscopy can be used to characterize the structure and atomic-scale dynamics of LiPON thin films. The NMR data were compared to those of electrochemical impedance spectroscopy to better understand the conduction mechanisms. In particular, we have shown that the ionic conductivity increases with the nitrogen content of LiPONs. This is due to the formation of bridging nitrogens, which less interact with Li+ ions than the apical nitrogens. This study was then extended to LiSiPON thin films in order to study the effect of the incorporation of silicon atoms on the structure and dynamics of LiPON. This thesis also focused on the development of new pulse sequences for the indirect detection of nuclei subject to large anisotropic interactions via other isotopes subject to small anisotropic interactions. The objective was notably to detect the 14N nuclei (with spin I = 1 and subject to quadrupole interactions of a few megahertz), via the 31P or 6,7Li nuclei. For that purpose, we have demonstrated the possibility to detect with low t1 noise the double-quantum coherences between the mI = +1 and −1 energy levels of 14N nuclei via protons in organic molecules, such as L-histidine-HCl, thanks to the HMQC sequence using a TRAPDOR recoupling. We have also demonstrated that T-HMQC experiment allows the indirect detection of spin-1/2 nuclei subject to large chemical shift anisotropy (CSA) via protons. Nevertheless, due to time constraints, we were not able to apply the T-HMQC sequence to the study of LiPON during this thesis
2

Popovic, Jelena. „Novel lithium iron phosphate materials for lithium-ion batteries“. Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5459/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Conventional energy sources are diminishing and non-renewable, take million years to form and cause environmental degradation. In the 21st century, we have to aim at achieving sustainable, environmentally friendly and cheap energy supply by employing renewable energy technologies associated with portable energy storage devices. Lithium-ion batteries can repeatedly generate clean energy from stored materials and convert reversely electric into chemical energy. The performance of lithium-ion batteries depends intimately on the properties of their materials. Presently used battery electrodes are expensive to be produced; they offer limited energy storage possibility and are unsafe to be used in larger dimensions restraining the diversity of application, especially in hybrid electric vehicles (HEVs) and electric vehicles (EVs). This thesis presents a major progress in the development of LiFePO4 as a cathode material for lithium-ion batteries. Using simple procedure, a completely novel morphology has been synthesized (mesocrystals of LiFePO4) and excellent electrochemical behavior was recorded (nanostructured LiFePO4). The newly developed reactions for synthesis of LiFePO4 are single-step processes and are taking place in an autoclave at significantly lower temperature (200 deg. C) compared to the conventional solid-state method (multi-step and up to 800 deg. C). The use of inexpensive environmentally benign precursors offers a green manufacturing approach for a large scale production. These newly developed experimental procedures can also be extended to other phospho-olivine materials, such as LiCoPO4 and LiMnPO4. The material with the best electrochemical behavior (nanostructured LiFePO4 with carbon coating) was able to delive a stable 94% of the theoretically known capacity.
Konventionelle Energiequellen sind weder nachwachsend und daher nachhaltig nutzbar, noch weiterhin langfristig verfügbar. Sie benötigen Millionen von Jahren um gebildet zu werden und verursachen in ihrer Nutzung negative Umwelteinflüsse wie starke Treibhausgasemissionen. Im 21sten Jahrhundert ist es unser Ziel nachhaltige und umweltfreundliche, sowie möglichst preisgünstige Energiequellen zu erschließen und nutzen. Neuartige Technologien assoziiert mit transportablen Energiespeichersystemen spielen dabei in unserer mobilen Welt eine große Rolle. Li-Ionen Batterien sind in der Lage wiederholt Energie aus entsprechenden Prozessen nutzbar zu machen, indem sie reversibel chemische in elektrische Energie umwandeln. Die Leistung von Li-Ionen Batterien hängen sehr stark von den verwendeten Funktionsmaterialien ab. Aktuell verwendete Elektrodenmaterialien haben hohe Produktionskosten, verfügen über limitierte Energiespeichekapazitäten und sind teilweise gefährlich in der Nutzung für größere Bauteile. Dies beschränkt die Anwendungsmöglichkeiten der Technologie insbesondere im Gebiet der hybriden Fahrzeugantriebe. Die vorliegende Dissertation beschreibt bedeutende Fortschritte in der Entwicklung von LiFePO4 als Kathodenmaterial für Li-Ionen Batterien. Mithilfe einfacher Syntheseprozeduren konnten eine vollkommen neue Morphologie (mesokristallines LiFePo4) sowie ein nanostrukturiertes Material mit exzellenten elektrochemischen Eigenschaften hergestellt werden. Die neu entwickelten Verfahren zur Synthese von LiFePo4 sind einschrittig und bei signifikant niedrigeren Temperaturen im Vergleich zu konventionellen Methoden. Die Verwendung von preisgünstigen und umweltfreundlichen Ausgangsstoffen stellt einen grünen Herstellungsweg für die large scale Synthese dar. Mittels des neuen Synthesekonzepts konnte meso- und nanostrukturiertes LiFe PO4 generiert werden. Die Methode ist allerdings auch auf andere phospho-olivin Materialien (LiCoPO4, LiMnPO4) anwendbar. Batterietests der besten Materialien (nanostrukturiertes LiFePO4 mit Kohlenstoffnanobeschichtung) ergeben eine mögliche Energiespeicherung von 94%.
3

Myalo, Zolani. „Graphenised Lithium Iron Phosphate and Lithium Manganese Silicate Hybrid Cathode Systems for Lithium-Ion Batteries“. University of the Western Cape, 2017. http://hdl.handle.net/11394/6036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Magister Scientiae - MSc (Chemistry)
This research was based on the development and characterization of graphenised lithium iron phosphate-lithium manganese silicate (LiFePO4-Li2MnSiO4) hybrid cathode materials for use in Li-ion batteries. Although previous studies have mainly focused on the use of a single cathode material, recent works have shown that a combination of two or more cathode materials provides better performances compared to a single cathode material. The LiFePO4- Li2MnSiO4 hybrid cathode material is composed of LiFePO4 and Li2MnSiO4. The Li2MnSiO4 contributes its high working voltage ranging from 4.1 to 4.4 V and a specific capacity of 330 mA h g-1, which is twice that of the LiFePO4 which, in turn, offers its long cycle life, high rate capacity as well as good electrochemical and thermal stability. The two cathode materials complement each other's properties however they suffer from low electronic conductivities which were suppressed by coating the hybrid material with graphene nanosheets. The synthetic route entailed a separate preparation of the individual pristine cathode materials, using a sol-gel protocol. Then, the graphenised LiFePO4-Li2MnSiO4 and LiFePO4-Li2MnSiO4 hybrid cathodes were obtained in two ways: the hand milling (HM) method where the pristine cathodes were separately prepared and then mixed with graphene using a pestle and mortar, and the in situ sol-gel (SG) approach where the Li2MnSiO4 and graphene were added into the LiFePO4 sol, stirred and calcined together.
2021-04-30
4

Hsiung, Chwan Hai H. (Chwan Hai Harold) 1982. „Synthesis and electrochemical characterization of lithium vanadium phosphate“. Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32730.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2004.
Includes bibliographical references (leaf 41).
In a world where the miniaturization and the portability of electronic devices is king, batteries play an ever-increasingly important role. They are vital components in many consumer electronics such as cell phones and PDAs, in medical devices, and in novel applications, such as unmanned vehicles and hybrids. As the power demands of these devices increases, battery performance must improve accordingly. This thesis is an introductory investigation into the electrochemical properties of a promising new battery cathode material: lithium vanadium phosphate (Li3V2(PO4)3) (LVP). Studies of other members of the phospho-olivine family, which LVP is a part of, indicate that the olivines have high lithium diffusivity but low electronic conductivity. LVP is part of the phosphor- olivine family, which traditionally has been shown to have high lithium diffusivity but low electronic conductivity. LVP was synthesized via a solid-state reaction and cast into composite cathodes. (90/5/5 ratio of LVP, Super P Carbon, and PVDF.) These composite cathodes were used in lithium anode, LiPF6 liquid electrolyte, Swage-type cells that were galvanostatically cycled from 3.OV to 4.2V and from 3.4V to 4.8V at C/20 rates. Electrochemical impedance spectroscopy was carried out on an LVP / liquid electrolyte / LVP cells from 0.01Hz to 1MHz. Finally, temperature conductivity measurements were taken from a die-pressed LVP bar. The results of the experimentation indicate that LVP has much promise as a new battery cathode material, but there are still a number of concerns to address.
(cont.) LVP has a higher operating voltage (4.78V) than the current Li-ion battery standard (3.6V), but there are issues with becoming amorphous, cycleability, and active material accessibility. From the EIS data, passivating films on the surface of the LVP cathode do not seem to be a factor in limiting performance. The conductivity data gives a higher than expected conductivity (4.62* 10-4 S/cm).
by Chwan Hai H. Hsiung.
S.B.
5

Popovi´c, Jelena [Verfasser], und Markus [Akademischer Betreuer] Antonietti. „Novel lithium iron phosphate materials for lithium-ion batteries / Jelena Popovi´c. Betreuer: Markus Antonietti“. Potsdam : Universitätsbibliothek der Universität Potsdam, 2011. http://d-nb.info/1016576242/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Perea, Alexis. „Les phosphates de structure olivine LiMPO4 (M=Fe, Mn) comme matériau actif d’électrode positive des accumulateurs Li-ion“. Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20074/document.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Ce mémoire est consacré à la recherche de matériaux d'électrode positive pour batteries Li-ion et plus particulièrement aux phases de type olivine : LiFePO4, LiFe1-yMnyPO4, LiFe1-yCoyPO4 et LiMnyCo1-yPO4 obtenues par voie céramique. Une étude des propriétés physico-chimiques et structurales de ces composés a été réalisée par les techniques classiques de la Chimie du Solide et de la Science des Matériaux : spectrométrie Mössbauer de 57Fe, microscopie MEB et diffraction des rayons X. L'objectif de cette étude est d'identifier et de comprendre les mécanismes de réaction lors du cyclage de la batterie qui peuvent améliorer ou limiter les performances de la batterie.Cette étude a permis de montrer la complémentarité de la spectrométrie Mössbauer et de la diffraction des rayons X pour l'analyse des mécanismes d'oxydo-réduction mis en jeu dans les réactions électrochimiques. A partir du mécanisme biphasé bien connu de LiFePO4, des mécanismes électrochimiques en trois étapes et les phases formées lors du cyclage ont été identifiés pour les phases substituées au manganèse. L'aptitude de ces composés à fonctionner comme matériaux d'électrode positive de batteries Li-Ion de puissance a été démontrée par des cyclages à longue durée à différentes températures et vitesses de cyclage
This thesis is devoted to finding positive electrode materials for Li-ion batteries and more particularlycompounds of olivine type: LiFePO4, LiFe1-yMnyPO4, LiFe1-yCoyPO4 and LiMnyCo1-yPO4. An in-depth study of their physicochemical and structural properties was done combining Solid State Chemistry and Material Sciences techniques: Mössbauer spectrometry of 57Fe, microscopy SEM and X-ray diffraction. The aim of this study is to identify and understand the electrochemical mechanism during the cycling of the battery that can enhance or limit the battery performance. This study has shown the complementarity of Mössbauer spectrometry and X-ray diffraction to analyze the redox mechanisms involved into the electrochemical reactions. From the well-known two-phase mechanism of LiFePO4, electrochemical mechanisms in three steps and phases formed during cycling have been identified for phase substituted manganese. The ability of these compounds to be used as positive electrode materials for powerful Li-Ion batteries was demonstrated by long-term cycling at different temperatures and rates of cycling
7

Möller, Alexander [Verfasser]. „Study of the mechanism of lithium insertion and depletion in lithium iron phosphate thin films / Alexander Möller“. Gießen : Universitätsbibliothek, 2014. http://d-nb.info/106887449X/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kolesnikov-Lindsey, Rachel. „Virus constructed iron phosphate lithium ion batteries in unmanned aircraft systems“. Thesis, Massachusetts Institute of Technology, 2010. https://hdl.handle.net/1721.1/122859.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2010
Cataloged from PDF version of thesis. "September 2010."
Includes bibliographical references (pages 48-49).
Since lithium ion batteries first became commercially available in 1991, they have been repeatedly improved, continually redefining just how much we can do with electronic devices. Today, battery powered Unmanned Aerial Systems (UAS) the size of a model plane such as the Raven allow soldiers to see dangerous situations and potential threats without ever needing to enter the area and put their lives in danger. This technology is saving lives and redefining warfare. However, the Raven and other UAS are limited by the amount of time they are able to spend in the air and quality of the cameras they can power. This thesis focuses on the scale up of FePO₄ lithium ion batteries that have cathodes constructed by viruses with the purpose of using them as an auxiliary battery in the Raven to power the payload equipment. These batteries are assembled at standard temperature and pressure, yet are consistently able to achieve 20nm FePO 4 particle size, creating higher energy density. A prototype auxiliary battery design is created, tested, and refined to determine how virally constructed FePO₄ batteries behave as they are scaled up.
by Rachel Kolesnikov-Lindsey.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Materials Science and Engineering
9

Volk, Martin [Verfasser]. „Optical ridge waveguides in lithium niobate and potassium titanyl phosphate / Martin Volk“. Hamburg : Helmut-Schmidt-Universität, Bibliothek, 2019. http://d-nb.info/1179197119/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sifuba, Sabelo. „Electrochemically enhanced ferric lithium manganese phosphate / multi-walled carbon nanotube, as a possible composite cathode material for lithium ion battery“. University of the Western Cape, 2019. http://hdl.handle.net/11394/7077.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
>Magister Scientiae - MSc
Lithium iron manganese phosphate (LiFe0.5Mn0.5PO4), is a promising, low cost and high energy density (700 Wh/kg) cathode material with high theoretical capacity and high operating voltage of 4.1 V vs. Li/Li+, which falls within the electrochemical stability window of conventional electrolyte solutions. However, a key problem prohibiting it from large scale commercialization is its severe capacity fading during cycling. The improvement of its electrochemical cycling stability is greatly attributed to the suppression of Jahn-Teller distortion at the surface of the LiFe0.5Mn0.5PO4 particles. Nanostructured materials offered advantages of a large surface to volume ratio, efficient electron conducting pathways and facile strain relaxation. The LiFe0.5Mn0.5PO4 nanoparticles were synthesized via a simple-facile microwave method followed by coating with multi-walled carbon nanotubes (MWCNTs) nanoparticles to enhance electrical and thermal conductivity. The pristine LiFe0.5Mn0.5PO4 and LiFe0.5Mn0.5PO4-MWCNTs composite were examined using a combination of spectroscopic and microscopic techniques along with electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Microscopic results revealed that the LiFe0.5Mn0.5PO4-MWCNTs composite contains well crystallized particles and regular morphological structures with narrow size distributions. The composite cathode exhibits better reversibility and kinetics than the pristine LiFe0.5Mn0.5PO4 due to the presence of the conductive additives in the LiFe0.5Mn0.5PO4-MWCNTs composite. For the composite cathode, D = 2.0 x 10-9 cm2/s while for pristine LiFe0.5Mn0.5PO4 D = 4.81 x 10-10 cm2/s. The charge capacity and the discharge capacity for LiFe0.5Mn0.5PO4-MWCNTs composite were 259.9 mAh/g and 177.6 mAh/g, respectively, at 0.01 V/s. The corresponding values for pristine LiFe0.5Mn0.5PO4 were 115 mAh/g and 44.75 mAh/g, respectively. This was corroborated by EIS measurements. LiFe0.5Mn0.5PO4-MWCNTs composite showed to have better conductivity which corresponded to faster electron transfer and therefore better electrochemical performance than pristine LiFe0.5Mn0.5PO4. The composite cathode material (LiFe0.5Mn0.5PO4-MWCNTs) with improved electronic conductivity holds great promise for enhancing electrochemical performances and the suppression of the reductive decomposition of the electrolyte solution on the LiFe0.5Mn0.5PO4 surface. This study proposes an easy to scale-up and cost-effective technique for producing novel high-performance nanostructured LiFe0.5Mn0.5PO4 nano-powder cathode material.
2023-12-01

Bücher zum Thema "Oxynitrure de phosphate de lithium":

1

Cheruvally, Gouri. Lithium iron phosphate: A promising cathode-active material for lithium secondary batteries. Stafa-Zuerich: Trans Tech Publications Ltd., 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Prosini, Pier Paolo. Iron Phosphate Materials as Cathodes for Lithium Batteries. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-745-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Prosini, Pier Paolo. Iron phosphate materials as cathodes for lithium batteries: The use of environmentally friendly iron in lithium batteries. London: Springer, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Cheruvally, Gouri. Lithium Iron Phosphate: A Promising Cathode-Active Material for Lithium Secondary Batteries. Trans Tech Publications, Limited, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Prosini, Pier Paolo Paolo. Iron Phosphate Materials as Cathodes for Lithium Batteries: The Use of Environmentally Friendly Iron in Lithium Batteries. Springer, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Prosini, Pier Paolo. Iron Phosphate Materials as Cathodes for Lithium Batteries: The Use of Environmentally Friendly Iron in Lithium Batteries. Springer, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Behbahani, Farahnaz K. Iron Phosphate: Production and Their Uses in Organic Synthesis. Nova Science Publishers, Incorporated, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Behbahani, Farahnaz K. Iron Phosphate: Production and Their Uses in Organic Synthesis. Nova Science Publishers, Incorporated, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lithium and the mating response of Saccharomyces cerevisae: A possible role for inositol phosphate signalling. Ottawa: National Library of Canada, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Oxynitrure de phosphate de lithium":

1

Prosini, Pier Paolo. „Amorphous Iron Phosphate“. In Iron Phosphate Materials as Cathodes for Lithium Batteries, 37–45. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-745-7_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ragan, C. Ian. „The Effect of Lithium on Inositol Phosphate Metabolism“. In Lithium and Cell Physiology, 102–20. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3324-4_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Balakrishnan, Neethu T. M., M. A. Krishnan, Akhila Das, Nikhil Medhavi, Jou-Hyeon Ahn, M. J. Jabeen Fatima und Raghavan Prasanth. „Electrospun Lithium Iron Phosphate (LiFePO4) Electrodes for Lithium-Ion Batteries“. In Electrospinning for Advanced Energy Storage Applications, 479–98. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8844-0_17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Prosini, Pier Paolo. „Electrode Materials for Lithium-ion Batteries“. In Iron Phosphate Materials as Cathodes for Lithium Batteries, 1–12. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-745-7_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Strand, Dee, Bruce Gerhart, Brian Landes, Brandon Kern, Andrew Pasztor, Brian Nickless und Amber Wallace. „Evaluation of Lithium Manganese Iron Phosphate Thermal Stability“. In Ceramic Transactions Series, 101–15. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118491638.ch11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Balakrishnan, Neethu T. M., Asha Paul, M. A. Krishnan, Akhila Das, Leya Rose Raphaez, Jou-Hyeon Ahn, M. J. Jabeen Fatima und Raghavan Prasanth. „Lithium Iron Phosphate (LiFePO4) as High-Performance Cathode Material for Lithium Ion Batteries“. In Metal, Metal-Oxides and Metal Sulfides for Batteries, Fuel Cells, Solar Cells, Photocatalysis and Health Sensors, 35–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63791-0_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chekannikov, A. A., A. A. Kuz’mina, T. L. Kulova, S. A. Novikova, A. M. Skundin, I. A. Stenina und A. B. Yaroslavtsev. „Development of Lithium-Ion Battery of the “Doped Lithium Iron Phosphate–Doped Lithium Titanate” System for Power Applications“. In Proceedings of the Scientific-Practical Conference "Research and Development - 2016", 341–50. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62870-7_37.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Li, Yin, Keyu Zhang, Li Wang, Meimei Yuan und Yaochun Yao. „Tunable Morphology Synthesis of Lithium Iron Phosphate as Cathode Materials for Lithium-Ion Batteries“. In TMS 2021 150th Annual Meeting & Exhibition Supplemental Proceedings, 943–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65261-6_84.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Prosini, Pier Paolo. „Modeling the Voltage Profile for LiFePO4“. In Iron Phosphate Materials as Cathodes for Lithium Batteries, 73–82. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-745-7_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Prosini, Pier Paolo. „Triphylite“. In Iron Phosphate Materials as Cathodes for Lithium Batteries, 13–19. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-745-7_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Oxynitrure de phosphate de lithium":

1

Ku, Chun-Yang, und Jyh-Herng Chen. „The Recovery of Lithium Iron Phosphate from Lithium Ion Battery“. In 2022 8th International Conference on Applied System Innovation (ICASI). IEEE, 2022. http://dx.doi.org/10.1109/icasi55125.2022.9774480.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Dabas, Prashant, und K. Hariharan. „Fragility index of lithium phosphate binary glasses“. In SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4710116.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hu, Yinquan, Xiaobing Wu, Guorui Hu und Qiheng Fan. „Analysis of Lithium Iron Phosphate Battery Damage“. In 2015 International Symposium on Material, Energy and Environment Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/ism3e-15.2015.46.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Marongiu, A., A. Damiano und M. Heuer. „Experimental analysis of lithium iron phosphate battery performances“. In 2010 IEEE International Symposium on Industrial Electronics (ISIE 2010). IEEE, 2010. http://dx.doi.org/10.1109/isie.2010.5637749.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Jodi, Heri, Evi Yulianti, Muhammad Fakhrudin und Wahyudianingsih. „Electrochemical characteristics of lithium phosphate-lithium iodide composite for solid state battery application“. In 5TH INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2022): Strengthening research and innovation in metallurgy and materials for sustainable economic development. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0186523.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Baronti, F., W. Zamboni, R. Roncella, R. Saletti und G. Spagnuolo. „Open-circuit voltage measurement of Lithium-Iron-Phosphate batteries“. In 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2015. http://dx.doi.org/10.1109/i2mtc.2015.7151538.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kaneko, Genki, Soichiro Inoue, Koichiro Taniguchi, Toshio Hirota, Yushi Kamiya, Yasuhiro Daisho und Shoichi Inami. „Analysis of degradation mechanism of lithium iron phosphate battery“. In 2013 World Electric Vehicle Symposium and Exhibition (EVS27). IEEE, 2013. http://dx.doi.org/10.1109/evs.2013.6914847.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hirankumar, G., M. Vijayakumar und S. Selvasekarapandian. „Synthesis and Electrical Characterization of Gd doped Lithium Phosphate“. In Proceedings of the 8th Asian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776259_0071.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Banday, Azeem, Monika Sharma und Sevi Murugavel. „Structure and transport investigations on lithium-iron-phosphate glasses“. In DAE SOLID STATE PHYSICS SYMPOSIUM 2015. Author(s), 2016. http://dx.doi.org/10.1063/1.4947874.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sun, Yin-Qiu, Zheng Wei, Xiao-Tao Luo und Chang-Jiu Li. „Characterization of Lithium Phosphate Deposit by Atmospheric Plasma Spraying“. In ITSC2021, herausgegeben von F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0682.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Plasma spraying was used to deposit Li3PO4 coatings from sintered dense powders in three size ranges to study the effects of particle size and spraying distance. Coating microstructure, crystal structure, and composition were characterized using SEM, XRD, ICP-MS, and FTIR. It was found that sintered dense powders have a high temperature orthorhombic phase (γ-Li3PO4) that differs from the β-Li3PO4 phase associated with agglomerated Li3PO4. Plasma-sprayed coatings produced from these powders have similarly dense microstructures with fracture-surface morphology like that of sintered bulk. The effect of particle size and spraying distance on atomic ratio is also investigated in the study.

Berichte der Organisationen zum Thema "Oxynitrure de phosphate de lithium":

1

Steven Wallace. Gamma-Free Neutron Detector Based upon Lithium Phosphate Nanoparticles. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/913098.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie