Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Oxygen (O2)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Oxygen (O2)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Oxygen (O2)"
Reading, Stacey A., und Maggie Yeomans. „Oxygen absorption by skin exposed to oxygen supersaturated water“. Canadian Journal of Physiology and Pharmacology 90, Nr. 5 (Mai 2012): 515–24. http://dx.doi.org/10.1139/y2012-020.
Der volle Inhalt der QuelleMangum, C. P. „Oxygen transport in invertebrates“. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 248, Nr. 5 (01.05.1985): R505—R514. http://dx.doi.org/10.1152/ajpregu.1985.248.5.r505.
Der volle Inhalt der QuelleHochachka, P. W. „Metabolic suppression and oxygen availability“. Canadian Journal of Zoology 66, Nr. 1 (01.01.1988): 152–58. http://dx.doi.org/10.1139/z88-021.
Der volle Inhalt der QuelleHoffman, David L., und Paul S. Brookes. „Oxygen Sensitivity of Mitochondrial Reactive Oxygen Species Generation Depends on Metabolic Conditions“. Journal of Biological Chemistry 284, Nr. 24 (14.04.2009): 16236–45. http://dx.doi.org/10.1074/jbc.m809512200.
Der volle Inhalt der QuelleKizaki, Z., und R. G. Thurman. „Stimulation of oxygen uptake by glucagon is oxygen dependent in perfused rat liver“. American Journal of Physiology-Gastrointestinal and Liver Physiology 256, Nr. 2 (01.02.1989): G369—G376. http://dx.doi.org/10.1152/ajpgi.1989.256.2.g369.
Der volle Inhalt der QuelleNakagawa, Y., T. Matsumura, M. Goto, W. Qu, F. C. Kauffman und R. G. Thurman. „Increase in oxygen uptake due to arachidonic acid is oxygen dependent in the perfused liver“. American Journal of Physiology-Gastrointestinal and Liver Physiology 266, Nr. 5 (01.05.1994): G953—G959. http://dx.doi.org/10.1152/ajpgi.1994.266.5.g953.
Der volle Inhalt der QuellePuntarulo, S., und A. I. Cederbaum. „Effect of oxygen concentration on microsomal oxidation of ethanol and generation of oxygen radicals“. Biochemical Journal 251, Nr. 3 (01.05.1988): 787–94. http://dx.doi.org/10.1042/bj2510787.
Der volle Inhalt der QuelleHan, Jiuli, Lu Bai, Bingbing Yang, Yinge Bai, Shuangjiang Luo, Shaojuan Zeng, Hongshuai Gao et al. „Highly Selective Oxygen/Nitrogen Separation Membrane Engineered Using a Porphyrin-Based Oxygen Carrier“. Membranes 9, Nr. 9 (03.09.2019): 115. http://dx.doi.org/10.3390/membranes9090115.
Der volle Inhalt der QuelleZhou, J., B. Delille, F. Brabant und J. L. Tison. „Insights into oxygen transport and net community production in sea ice from oxygen, nitrogen and argon concentrations“. Biogeosciences 11, Nr. 18 (18.09.2014): 5007–20. http://dx.doi.org/10.5194/bg-11-5007-2014.
Der volle Inhalt der QuelleTrushina, Aleksandra P., Veniamin G. Goldort, Sergei A. Kochubei und Alexey V. Baklanov. „UV-photoexcitation of encounter complexes of oxygen O2–O2 as a source of singlet oxygen O2(1Δg) in gas phase“. Chemical Physics Letters 485, Nr. 1-3 (Januar 2010): 11–15. http://dx.doi.org/10.1016/j.cplett.2009.11.058.
Der volle Inhalt der QuelleDissertationen zum Thema "Oxygen (O2)"
Arcidiacono, Paul. „Nouvelles électrodes pour électrolyseurs H2/O2“. Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT196.
Der volle Inhalt der QuelleThe electrolyzer efficiency is directly related to the electrode reaction overpotentials. To improve this efficiency, new composite electrodes with selected binders and electrocatalysts showing large active area have been formulated to enhance the electrochemical kinetics. First, a state of the art of electrode materials and electrolysis parameters have been reported in a relevant literature survey about different topics developed in the thesis manuscript. Then, a few laboratory and preindustrial electrode fabrication processes were explored and compared on both technical and economical aspects. Moreover, the electrochemical performances of composite cathodes and anodes for hydrogen and oxygen evolution reactions have been studied by cyclic voltammetry, linear polarization and electrochemical impedance spectroscopy. This comprehensive study leads to a precise description of the interfacial phenomena at the microscopic scale during gas production and the evaluation of key parameters for the formulation of advanced electrodes. Many electrode formulations were studied for the correlation of physicochemical properties of components and corresponding electrochemical behaviors. These results are discussed in terms of overpotentials, electrochemical kinetics and active site density. Finally, scale-up of composite cathode is reported. The aim of this work is to integrate the best formulated composite electrodes in a real scale prototype. The scale-up process, experimental devices developed and some electrochemical results are presented
Liu, Jia. „The O2 electrode performance in the Li-O2 battery“. Doctoral thesis, Uppsala universitet, Strukturkemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-259589.
Der volle Inhalt der QuelleZhang, Wensheng. „SO2/O2 as an oxidant in hydrometallurgy“. Murdoch University, 2000. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20080115.141151.
Der volle Inhalt der QuelleChen, Guo. „O2 Carrier Facilitated O2 Transport in a Hepatic Hollow Fiber Bioreactor“. The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1283207065.
Der volle Inhalt der QuelleLiu, Zheng. „Synthesis and battery application of nanomaterials and the mechanism of O2 reduction in aprotic Li-O2 batteries“. Thesis, University of St Andrews, 2016. http://hdl.handle.net/10023/15694.
Der volle Inhalt der QuelleZhou, Haiying. „Multi-scale model analysis of O2 transport and metabolism effects of hypoxia and exercise /“. Cleveland, Ohio : Case Western Reserve University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=case1254502393.
Der volle Inhalt der QuelleLaferty, Edward Alan. „Oxygen and Carbon Dioxide Levels During Qualitative Respirator Fit Testing“. University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1086808006.
Der volle Inhalt der QuelleBresolí, Obach Roger. „Novel strategies for singlet molecular oxygen O2(1Δg) generation and detection in cells“. Doctoral thesis, Universitat Ramon Llull, 2018. http://hdl.handle.net/10803/662972.
Der volle Inhalt der QuelleEn esta tesis se han utilizado distintas estrategias para obtener el control en la producción y detección de diferentes especies reactivas de oxígeno (ROS), especialmente para el oxígeno singlete (1O2). En la primera parte de la tesis, el enfoque principal consiste en entender la generación de ROS e intentar potenciar su efecto. En primer lugar, demostramos que la modificación de distintos fotosensibilizadores, añadiendo un catión de trifenilfosfonio como elemento diana, produce derivados con una excelente actividad fotoantimicrobiana contra bacterias Gram-positivas (S. aureus y E. faecalis). En segundo lugar, descubrimos una serie de nuevos aspectos de la reacción de "-phenyl quenching" por derivados de 9-fenilfenalenona. La fototoxicidad de estos derivados ya se encuentra mencionada en el libro: "el origen de las especies" de C. Darwin. También se sugiere una vía metabólica mediada por la reacción BPQ en la biosíntesis de los pigmentos vegetales derivados de fluorenonas. Además, si el grupo fenilo es sustituido por otros grupos arilos, se observan diferencias en la reacción de BPQ. En tercer lugar, se ha demostrado que distintas antraquinonas de origen natural inducen fototoxicidad en biofilms de C. tropicalis debido a la generación de O2•, teniendo el 1O2 un rol menor. En cuarto lugar, se demuestra que el fármaco antitumoral Doxorubicina produce cantidades significantes de 1O2, pero se reduce su generación cuando se compleja con el ADN. En quinto lugar, se ha estudiado el efecto de adsorción o unión covalente de un fotosensibilizador a nanopartículas mesoporosas de sílice. Además, se han derivatizado para añadir elementos diana. Sexto y último, se han estudiado las propiedades fotoquímicas de una nueva diada que contiene un bromo-bodipy como fotosensibilizador y trampa química de ROS (que desactiva la capacidad del bromo-bodipy para generar 1O2). Una vez oxidada la trampa química, la diada recupera la capacidad para generar 1O2 y causar daño celular. Se observan diferentes propiedades foto-antitumorales de esta diada en función del estrés celular o de la localización celular. La segunda parte de la tesis, se ha centrado en la detección de ROS. En primer lugar, se han diseñado, sintetizado y caracterizado nanosondas fluorescentes para la detección de 1O2 en sistemas biológicos. La nanovehiculización elimina algunas de las limitaciones de las distintas sondas fluorescentes de 1O2. En este sentido, varias sondas tales como SOSG, ADPA o furilo-vinilo-naftooxazol se han unido covalentemente a nanopartículas utilizando distintas cadenas espaciadoras para optimizar su reactividad frente 1O2. A diferencia de cuando se encuentran libres en solución, las nanosondas son fácilmente internalizadas por células eucariotas y procariotas y se minimiza la interacción con proteínas (como por ejemplo con la albúmina de suero bovino). Las distintas nanosondas responden al 1O2 generado intracelular. Como prueba de concepto, también se ha desarrollado una nanosonda fluorescente para la detección no selectiva de ROS, basada en 2',7'-diclorodihidrofluoresceina. En segundo lugar, se ha caracterizado la estructura y reactividad de la sonda fluorescente: CellROX Deep Red. En tercer lugar, se ha desarrollado la primera sonda de optoacústica para la detección de ROS basada en la oxidación de la tetrametilbenzidina. Se ha logrado detectar 1O2 producido por bacterias emprando tal sonda. Finalmente, y como prueba de concepto, se ha diseñado un "self-reporter" nanofotosensibilitzador. El nanosistema es capaz de producir y detectar 1O2 simultáneamente. Este nanodispositivo ha sido utilizado con éxito para la fotoinactivación de S. aureus, observándose una correlación entre el cambio de fluorescencia de la sonda y la muerte bacteriana.
In this thesis, different strategies have been used in order to gain control in reactive oxygen species (ROS) production and detection, especially for singlet oxygen (1O2). In the first part of the thesis, the main focus is towards understanding ROS generation and try to potentiate its effect. First, we demonstrate that modification of different photosensitisers with the triphenylphosphonium cation yields derivatives with an excellent photoantimicrobial activity against Gram‐positive bacteria (i.e., S. aureus and E. faecalis). Second, we uncover a number of new aspects of -phenyl quenching reaction in 9-phenylphenalenone scaffold, whose phototoxicity was already mentioned in Darwin’s Origin of Species. It is suggested an excited state-mediated metabolic pathway in the biosynthesis of fluorone plant pigments. Moreover, if phenyl moiety is substituted for other aryl groups, it is observed that the electrocyclic ring opening back to ground state ketones have lifetimes between miliseconds and picoseconds. Third, we demonstrate that the main photosensitizing mechanism, involved in the photo-induced C. tropicalis antibiofilm activity by natural anthraquinones, is via O2• production, whereas 1O2 participation seems of lesser importance. Fourth, we demonstrate that doxorubicin produces significant amounts of 1O2, however, this is largely suppressed when bound to DNA. Fifth, we studied the effect of PS adsorption or covalently bond onto the surface of mesoporous silica nanoparticles. Moreover, we further derivatitze them for attach targeting elements. Sixth and last, we studied the activation a new dyad comprising a bromo-bodipy, which acts as PS, plus a non-selective ROS chemical trap, which quenches the ability of bromo-bodipy to produce 1O2. For that aPS we observe a differential behaviour in function of the cellular stress or even in function of the organelle. In the second part of the thesis, focus has been shifted towards ROS detection. First, we designed, synthesized, and characterized biocompatible fluorescent nanoprobes for 1O2 detection in biological systems that circumvents many of the limitations of the different molecular 1O2 fluorescent probes. Under that purpose different 1O2 probes (Singlet Oxygen Sensor Green, anthracene dipropionic acid and furyl-vinyl-naphthoxazole) were covalently linked to nanoparticles core using different architectures to optimize their response to 1O2. In contrast to its molecular counterpart, the optimum nanoprobes are readily internalized by prokaryotic and eukaryotic cells and they do not interact with proteins (i.e. bovine serum albumin). Furthermore, the spectral characteristics do not change inside cells, and the probe responds to intracellular generated 1O2 with the corresponding change in fluorescence. As a proof of concept, a non-selective ROS fluorescent nanoprobe, based on diacetyl 2’,7’-dichlorodihydrofluorescein, has been synthetized and successfully used for detecting intracellular ROS. Second, we have performed the chemical characterization of the CellROX Deep Red, a new commercial non-selective ROS fluorescent probe, ascertained its putative chemical structure and evaluated its reactivity towards different reactive oxygen/nitrogen species and light in solution. Third, we developed the first ROS optoacoustic probe based on the oxidation of tetramethylbenzidine and successfully used for detecting 1O2 produced by bacteria. Finally, as proof of concept we have designed a self-reporter nanophotosensitizer. The nanosystem is capable to produce and detect the 1O2 generated simultaneously. It has been successfully used for S. aureus photoinactivation in which a correlation was observed between fluorescent change of the probe and bacterial cellular death.
Rabie, Samuel Liversage. „SO2 and O2 separation by using ionic liquid absorption / S.L. Rabie“. Thesis, North-West University, 2012. http://hdl.handle.net/10394/9100.
Der volle Inhalt der QuelleThesis (MIng (Chemical Engineering))--North-West University, Potchefstroom Campus, 2013
Liu, Chenjuan. „Exploration of Non-Aqueous Metal-O2 Batteries via In Operando X-ray Diffraction“. Doctoral thesis, Uppsala universitet, Strukturkemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-330889.
Der volle Inhalt der QuelleBücher zum Thema "Oxygen (O2)"
Swift, Kerry. Microwave excitation of oxygen O2(super 1 delta) for an oxygen-iodine laser. Koln: DFVLR, 1989.
Den vollen Inhalt der Quelle findenHitch, B. D. Reduced H2-O2 mechanisms for use in reacting flow simulation. New York: AIAA, 1988.
Den vollen Inhalt der Quelle finden1946-, Frimer Aryeh A., Hrsg. Singlet O2. Boca Raton, Fla: CRC Press, 1985.
Den vollen Inhalt der Quelle findenFawkner, Samantha G., und Neil Armstrong. Oxygen uptake kinetics. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199232482.003.0022.
Der volle Inhalt der QuelleKato, Masato. Oxygen Potentials and Defect Chemistry in Nonstoichiometric (U, Pu)O2. INTECH Open Access Publisher, 2012.
Den vollen Inhalt der Quelle findenTemperature dependence of the collisional removal of O2(A(sup 3)Sigma(sup +)(sub u), upsilon=9) with O2 and N2. [Washington, DC: National Aeronautics and Space Administration, 1997.
Den vollen Inhalt der Quelle findenA, Copeland Richard, und United States. National Aeronautics and Space Administration., Hrsg. Temperature dependence of the collisional removal of O2(A(sup 3)Sigma(sup +)(sub u), upsilon=9) with O2 and N2. [Washington, DC: National Aeronautics and Space Administration, 1997.
Den vollen Inhalt der Quelle findenA, Copeland Richard, und United States. National Aeronautics and Space Administration., Hrsg. Temperature dependence of the collisional removal of O2(A(sup 3)Sigma(sup +)(sub u), upsilon=9) with O2 and N2. [Washington, DC: National Aeronautics and Space Administration, 1997.
Den vollen Inhalt der Quelle findenZhang, Wensheng. SO 2/O2 as an oxidant in hydrometallurgy. Murdoch University, 2000.
Den vollen Inhalt der Quelle findenKreit, John W. Gas Exchange. Herausgegeben von John W. Kreit. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190670085.003.0002.
Der volle Inhalt der QuelleBuchteile zum Thema "Oxygen (O2)"
Baak, Marleen A., Bernard Gutin, Kim A. Krawczewski Carhuatanta, Stephen C. Woods, Heinz W. Harbach, Megan M. Wenner, Nina S. Stachenfeld et al. „Oxygen (O2)“. In Encyclopedia of Exercise Medicine in Health and Disease, 683. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_2827.
Der volle Inhalt der QuelleBaak, Marleen A., Bernard Gutin, Kim A. Krawczewski Carhuatanta, Stephen C. Woods, Heinz W. Harbach, Megan M. Wenner, Nina S. Stachenfeld et al. „Oxygen (O2) Debt“. In Encyclopedia of Exercise Medicine in Health and Disease, 683. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_2826.
Der volle Inhalt der QuelleA, S. L., E. K. W, H. L. R und E. M. „Molecular Identification of O2 Sensors and O2-Sensitive Potassium Channels in the Pulmonary Circulation“. In Oxygen Sensing, 219–40. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-46825-5_21.
Der volle Inhalt der QuelleO’Kelly, Ita, Chris Peers und Paul J. Kemp. „O2-Sensing by Model Airway Chemoreceptors“. In Oxygen Sensing, 611–22. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-46825-5_59.
Der volle Inhalt der QuelleJue, Thomas, Youngran Chung, Paul Mole, Tuan Khan Tran, Ulrike Kreutzer, Napapon Sailasuta und Ralph Hurd. „O2 and Respiration in Exercising Human Muscle“. In Oxygen Sensing, 769–83. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-46825-5_77.
Der volle Inhalt der QuelleSawyer, Donald T. „The Chemistry and Activation of Dioxygen Species (O2, O2 -., and HOOH) in Biology“. In Oxygen Complexes and Oxygen Activation by Transition Metals, 131–48. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0955-0_11.
Der volle Inhalt der QuelleBocci, Velio. „Rectal Insufflation of O2-O3 (RI)“. In Oxygen-Ozone Therapy, 213–22. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9952-8_19.
Der volle Inhalt der QuelleFercher, Andreas, Alexander V. Zhdanov und Dmitri B. Papkovsky. „O2 Imaging in Biological Specimens“. In Phosphorescent Oxygen-Sensitive Probes, 71–101. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0525-4_3.
Der volle Inhalt der QuelleHaddad, Gabriel G., und Huajun Liu. „Different O2-Sensing Mechanisms by Different K+ Channels“. In Oxygen Sensing, 441–52. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-46825-5_43.
Der volle Inhalt der QuelleThompson, Roger J., und Colin A. Nurse. „O2-Chemosensitivity in Developing Rat Adrenal Chromaffin Cells“. In Oxygen Sensing, 601–9. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-46825-5_58.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Oxygen (O2)"
ALLEN, ROBERT C. „MOLECULAR OXYGEN (O2): REACTIVITY AND LUMINESCENCE“. In Bioluminescence and Chemiluminescence - Progress and Current Applications - 12th International Symposium on Bioluminescence (BL) and Chemiluminescence (CL). WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776624_0049.
Der volle Inhalt der QuelleTorbin, A. P., M. C. Heaven, V. N. Azyazov, A. A. Pershin und A. M. Mebel. „O2(a1∆) vibrational kinetics in oxygen-iodine laser“. In Saratov Fall Meeting 2017: Fifth International Symposium on Optics and Biophotonics: Laser Physics and Photonics XIX; Computational Biophysics and Analysis of Biomedical Data IV, herausgegeben von Vladimir L. Derbov und Dmitry E. Postnov. SPIE, 2018. http://dx.doi.org/10.1117/12.2317881.
Der volle Inhalt der QuelleMcGillis, Wade R., Chris Langdon, Albert J. Williams und Brice Loose. „O2-MAVS: An instrument for measuring oxygen flux“. In OCEANS 2009. IEEE, 2009. http://dx.doi.org/10.23919/oceans.2009.5422166.
Der volle Inhalt der QuelleRakhimova, T., A. Kovalev, A. Rakhimov, K. Klopovsky, D. Lopaev, Y. Mankelevich und O. Braginsky. „Radio-Frequency Plasma Generation of Singlet Oxygen in O2 and O2:AR (HE) Mixtures“. In 34th AIAA Plasmadynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-4306.
Der volle Inhalt der QuelleDeshpande, Girish, Gautham Oroskar und Derek Oswald. „A Portable Handheld Oxygen Blender: A Novel Design to Reduce Early Oxygen Toxicity“. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36619.
Der volle Inhalt der QuelleKobtsev, V. D., S. A. Kostritsa, V. V. Smirnov, N. S. Titova und S. A. Torokhov. „IGNITION DELAY REDUCTION IN THE SYNGAS-O2 MIXTURE DUE TO EXCITATION OF O2 MOLECULES TO THE A1-G STATE“. In 8TH INTERNATIONAL SYMPOSIUM ON NONEQUILIBRIUM PROCESSES, PLASMA, COMBUSTION, AND ATMOSPHERIC PHENOMENA. TORUS PRESS, 2020. http://dx.doi.org/10.30826/nepcap2018-2-05.
Der volle Inhalt der QuelleVasilchenko, S. S., L. N. Sinitsa, V. I. Serdyukov, B. A. Voronin und E. R. Polovtseva. „Ground-based spectroscopic measurements of atmospheric oxygen complexes (O2)2“. In Eighteenth International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, herausgegeben von Oleg A. Romanovskii. SPIE, 2012. http://dx.doi.org/10.1117/12.2008450.
Der volle Inhalt der QuelleZagidullin, Marsel V. „Liquid-jet O2(1Delta) generator for chemical oxygen-iodine laser“. In Gas Flow and Chemical Lasers: Tenth International Symposium, herausgegeben von Willy L. Bohn und Helmut Huegel. SPIE, 1995. http://dx.doi.org/10.1117/12.204916.
Der volle Inhalt der QuelleKumar, B. Karthik, James P. Cassell und Robin N. Coger. „Computational Model to Predict Oxygen Availability for Cells Cultured Under Flow Conditions“. In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19334.
Der volle Inhalt der QuelleShi, Gengbei, und Robin N. Coger. „Enhanced Oxygen Delivery to Liver Tissue Equivalent by Perfluorocarbon“. In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19190.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Oxygen (O2)"
Andersson, Anders D., und Xiang-Yang Liu. Oxygen diffusion in UO2+x and (U,Pu)O2+-x. Office of Scientific and Technical Information (OSTI), Mai 2012. http://dx.doi.org/10.2172/1040018.
Der volle Inhalt der QuelleZhou, James. O2 Binding Materials and highly Efficient Modular System for Oxygen Production. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1578151.
Der volle Inhalt der QuelleFactory, Fish. Evaluation of Pure Oxygen Systems at the Umatilla Hatchery: Task 1-Review and Evaluation of Supplemental O2 Systems, Final Report. Office of Scientific and Technical Information (OSTI), März 1991. http://dx.doi.org/10.2172/753986.
Der volle Inhalt der Quelle