Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Oxide composite“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Oxide composite" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Oxide composite"
Sugianto, Sugianto, Ngurah Made Dharma Putra, Endah F. Rahayu, Wahyu B. Widayatno, Cherly Firdharini, Slamet Priyono und Didik Aryanto. „Synthesis, Characterization, and Electrochemical Performance of Reduced Graphene Oxide-Metal (Cu,Zn)-Oxide Materials“. Indonesian Journal of Science and Technology 8, Nr. 2 (10.03.2023): 329–44. http://dx.doi.org/10.17509/ijost.v8i2.56065.
Der volle Inhalt der QuelleMatveev, E. S. „Composite Solid Electrolytes“. Membrany i membrannye tehnologii 14, Nr. 4 (27.11.2024): 263–75. http://dx.doi.org/10.31857/s2218117224040027.
Der volle Inhalt der QuelleLiang, Yong-Xin, Ze-Rong Ma, Si-Ting Yu, Xin-Yue He, Xu-Yang Ke, Ri-Feng Yan, Xiao-Xian Liang et al. „Preparation and property analysis of solid carbonate-oxide composite materials for an electrolyte used in low-temperature solid oxide fuel cell“. Science and Technology for Energy Transition 77 (2022): 4. http://dx.doi.org/10.2516/stet/2022003.
Der volle Inhalt der QuelleZhu, Chenkai, Lei Nie, Xiaofei Yan, Jiawei Li und Dongming Qi. „Ramie fiber reinforced composites with flame retardant structure design: flammability, smoke suppression, and mechanical properties“. Journal of Polymer Engineering 42, Nr. 1 (29.11.2021): 9–17. http://dx.doi.org/10.1515/polyeng-2021-0221.
Der volle Inhalt der QuelleSingh, Tej, Chandramani Goswami, Amar Patnaik und László Lendvai. „Optimal Design of Ceramic Based Hip Implant Composites Using Hybrid AHP-MOORA Approach“. Materials 15, Nr. 11 (26.05.2022): 3800. http://dx.doi.org/10.3390/ma15113800.
Der volle Inhalt der QuelleAphesteguy, Juan C., und Silvia E. Jacobo. „Preparation and Characterization of Nanocomposites for Technological Applications“. Solid State Phenomena 202 (Mai 2013): 97–111. http://dx.doi.org/10.4028/www.scientific.net/ssp.202.97.
Der volle Inhalt der QuelleHO, M. Y., P. S. KHIEW, D. ISA, T. K. TAN, W. S. CHIU und C. H. CHIA. „A REVIEW OF METAL OXIDE COMPOSITE ELECTRODE MATERIALS FOR ELECTROCHEMICAL CAPACITORS“. Nano 09, Nr. 06 (August 2014): 1430002. http://dx.doi.org/10.1142/s1793292014300023.
Der volle Inhalt der QuelleChausov, Denis N., Veronika V. Smirnova, Dmitriy E. Burmistrov, Ruslan M. Sarimov, Alexander D. Kurilov, Maxim E. Astashev, Oleg V. Uvarov et al. „Synthesis of a Novel, Biocompatible and Bacteriostatic Borosiloxane Composition with Silver Oxide Nanoparticles“. Materials 15, Nr. 2 (11.01.2022): 527. http://dx.doi.org/10.3390/ma15020527.
Der volle Inhalt der QuelleKaya, Cengiz. „Current Status of Oxide Fibre-Reinforced Oxide Ceramic Matrix Composites for Gas Turbine Applications“. Key Engineering Materials 434-435 (März 2010): 1–4. http://dx.doi.org/10.4028/www.scientific.net/kem.434-435.1.
Der volle Inhalt der QuelleJoshi, P. S., und D. S. Sutrave. „Study of Ruthenium Oxide, Manganese Oxide and Composite (Ru:Mn)O2 thin film Electrodes Assembled by Layer by Layer Spin Coating Method“. Material Science Research India 13, Nr. 1 (06.06.2016): 43–49. http://dx.doi.org/10.13005/msri/130107.
Der volle Inhalt der QuelleDissertationen zum Thema "Oxide composite"
Li, Wei. „Composite polymer/graphite/oxide electrode systems for supercapacitors“. University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439309266.
Der volle Inhalt der QuelleCreaser, Dale Abel. „Aspects of composite lanthanide oxide chemistry“. Thesis, University of Nottingham, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334547.
Der volle Inhalt der QuelleSaintonge, Arnaud. „Élaboration d’un composite oxyde/oxyde à matrice d'aluminosilicate de baryum et fibres d'alumine“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0243.
Der volle Inhalt der QuelleIn the aerospace and defense industry, thermostructural applications require increasingly high-performance materials, combining mechanical strength, refractoriness, and lightness. To meet these demands, all-oxide ceramic matrix composites (OCMC) are considered promising candidates. Among the matrices for these OCMCs, barium aluminosilicate (BAS) stands out due to its advantageous physical properties, particularly as a material for radomes. However, to make this material functional at high temperatures, close to its melting point (1750°C), it is essential to reinforce it with a thermochemically stable material that has an appropriate architecture. Previous theses have successfully mastered the hexagonal phase of BAS. The chemical nature of the reinforcement, which offers the desired stability with BAS, has been identified, and OCMC Al2O3/BAS composites with 1D and 2D fibrous reinforcements have been developed. However, to achieve materials with enhanced properties under severe thermostructural conditions, these OCMCs need to be produced with a "3D" reinforcement architecture. This work focuses on the development of such a composite with a complex (3D) fiber reinforcement architecture and the evaluation of its properties. To achieve this, the research involves studying the sintering of BAS-H to predict its behavior as a matrix, improving its rheological behavior in suspension to facilitate infiltration into the fibrous reinforcement preform, and implementing an impregnation process suitable for 3D reinforcements. Following these studies, the fabrication of OCMC Al2O3/BAS was completed, demonstrating promising characteristics for the intended application
Joshi, Sharmad Vinod. „Characterization of 3D printed metal oxide composite polymers“. Miami University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=miami1595511295182678.
Der volle Inhalt der QuelleMilsom, Elizabeth Victoria. „Metal oxide-organic nano-composite and mesoporous oxide films : fundamental properties and applications“. Thesis, University of Bath, 2007. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.441523.
Der volle Inhalt der QuelleDearn, Sophie Clare. „Development of a novel oxide-oxide ceramic matrix composite for high temperature structural applications“. Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5924/.
Der volle Inhalt der QuelleRicca, Chiara. „Combined theoretical and experimental study of the ionic conduction in oxide-carbonate composite materials as electrolytes for solid oxide fuel cells (SOFC)“. Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066623/document.
Der volle Inhalt der QuelleOxide-carbonate composites are promising electrolytes for LT-SOFC, thanks to their high conductivity (0.1-1 S/cm at 600°C). A deeper understanding on the origins of their improved performances is still necessary. For this purpose, a combined theoretical and experimental approach was developed. We first studied systematically the conductivity of the material, measured through EIS, as a function of different oxide or carbonate phases and of the operating atmosphere. Results on YSZ- and CeO2-based materials indicate that by only taking into account the interfaces it is possible to rationalize some surprising observations, while reactivity issues have been observed for TiO2-carbonate composites. We then proposed a computational strategy based on periodic DFT calculations: we first studied the bulk structure of each phase so as to select an adequate computational protocol, which has then been used to identify a suitable model of the most stable surface for each phase. These surface models have thus been combined to obtain a model of the oxide-carbonate interface that through static DFT and MD provides a deeper insight on the interface at the atomic level. This strategy was applied to provide information on the structure, stability and electronic properties of the interface. YSZ-LiKCO3 was used as a case study to investigate the conduction mechanisms of different species. Results showed a strong influence of the interfaces on the transport properties. The TiO2-LiKCO3 model was, instead, used to investigate the reactivity of these materials. Overall, these results pave the way toward a deeper understanding of the basic operating principles of SOFC based on these materials
Besnard, Clémence. „Elaboration de composites céramiques oxyde/oxyde par caléfaction“. Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0162/document.
Der volle Inhalt der QuelleNowadays, oxide/oxide composites are most of the time developed by sintering, sol-gel process or CVI (Chemical Vapor Infiltration). These techniques include many steps of synthesis leading to a long time of synthesis and possible deteriorations of the properties of the composite. This thesis focuses on an original and rapid process developed by French Alternative Energies and Atomic Energy Commission (CEA): the film boiling chemical vapor infiltration. This technique is already used to synthesize C/C and C/SiC composites but works have never focused on oxide/oxide composites. The main goal of this thesis is to synthesize oxide/oxide composites by film boiling chemical vapor infiltration. Works were focused on alumina, silica and barium aluminosilicate matrices. Several experimental parameters were studied: temperature, time and liquid precursor. Microstructural and physicochemical characterizations were done on composites. Several modifications of the experimental setup have been made in order to allow a better reproducibility of the tests and a better thermal monitoring
Sivasundram, Gopiraj. „Composite cathodes for intermediate temperature solid oxide fuel cells“. Thesis, Imperial College London, 2006. http://hdl.handle.net/10044/1/11518.
Der volle Inhalt der QuelleDharmadasa, Ruvini. „Studies of composite metal oxide based ETA solar cells“. Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/9117.
Der volle Inhalt der QuelleBücher zum Thema "Oxide composite"
Pearce, David Henry. Fabrication and evaluation of an oxide-oxide ceramic matrix composite. Birmingham: University of Birmingham, 1996.
Den vollen Inhalt der Quelle findenO, Book Patricia, DellaCorte Christopher und United States. National Aeronautics and Space Administration., Hrsg. Sliding wear of self-mated AlO□-□SiC whisker reinforced composites at 23-1200 C̊. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Den vollen Inhalt der Quelle findenO, Book Patricia, DellaCorte Christopher und United States. National Aeronautics and Space Administration., Hrsg. Sliding wear of self-mated AlO-SiC whisker reinforced composites at 23-1200 C̊. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Den vollen Inhalt der Quelle findenO, Book Patricia, DellaCorte Christopher und United States. National Aeronautics and Space Administration., Hrsg. Sliding wear of self-mated AlO-SiC whisker reinforced composites at 23-1200 C̊. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Den vollen Inhalt der Quelle findenHameed, Abdulrahman Shahul. Phosphate Based Cathodes and Reduced Graphene Oxide Composite Anodes for Energy Storage Applications. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2302-6.
Der volle Inhalt der QuelleP, Shapiro A., und United States. National Aeronautics and Space Administration., Hrsg. Magnesium-aluminum-zirconium oxide amorphous ternary composite: A dense and stable optical coating. [Washington, D.C: National Aeronautics and Space Administration, 1998.
Den vollen Inhalt der Quelle findenP, Shapiro A., und United States. National Aeronautics and Space Administration., Hrsg. Magnesium-aluminum-zirconium oxide amorphous ternary composite: A dense and stable optical coating. [Washington, D.C: National Aeronautics and Space Administration, 1998.
Den vollen Inhalt der Quelle findenP, Shapiro A., und United States. National Aeronautics and Space Administration., Hrsg. Magnesium-aluminum-zirconium oxide amorphous ternary composite: A dense and stable optical coating. [Washington, D.C: National Aeronautics and Space Administration, 1998.
Den vollen Inhalt der Quelle findenP, Shapiro A., und United States. National Aeronautics and Space Administration., Hrsg. Magnesium-aluminum-zirconium oxide amorphous ternary composite: A dense and stable optical coating. [Washington, D.C: National Aeronautics and Space Administration, 1998.
Den vollen Inhalt der Quelle findenInternational, Conference on Advanced Ceramics and Composites (29th 2005 Cocoa Beach Fla ). Advances in solid oxide fuel cells: A collection of papers presented at the 29th International Conference on Advanced Ceramics and Composites, January 23-28, 2005, Cocoa Beach, Florida. Westerville, Ohio: American Ceramic Society, 2005.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Oxide composite"
Gudarzi, Mohsen Moazzami, Seyed Hamed Aboutalebi und Farhad Sharif. „Graphene Oxide-Based Composite Materials“. In Graphene Oxide, 314–63. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch10.
Der volle Inhalt der QuellePaipetis, A., und V. Kostopoulos. „Ultrasonic Stiffness Matrix Measurements of Oxide/Oxide Composites“. In Recent Advances in Composite Materials, 167–80. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2852-2_14.
Der volle Inhalt der QuelleMatsuura, Takeshi. „Reverse Osmosis and Nanofiltration by Composite Polyphenylene Oxide Membranes“. In Polyphenylene Oxide and Modified Polyphenylene Oxide Membranes, 181–212. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1483-1_6.
Der volle Inhalt der QuelleSingh, Surendra. „Pulp and Paper Wastewater Treatment by Composite Polyphenylene Oxide Membranes“. In Polyphenylene Oxide and Modified Polyphenylene Oxide Membranes, 213–29. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1483-1_7.
Der volle Inhalt der QuelleDorey, Robert, Subhasis Roy, A. Sharma, Chandan Ghanty und Subhasish B. Majumder. „Composite Film Processing“. In Chemical Solution Deposition of Functional Oxide Thin Films, 445–82. Vienna: Springer Vienna, 2013. http://dx.doi.org/10.1007/978-3-211-99311-8_19.
Der volle Inhalt der QuelleKostopoulos, V., und D. E. Vlachos. „Long Term Behaviour of Continuous Fiber Oxide/Oxide Composites Under Thermal Exposure“. In Recent Advances in Composite Materials, 215–26. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2852-2_18.
Der volle Inhalt der QuelleRevcolevschi, Alexandre. „Nickel Oxide - Based Aligned Eutectics“. In Tailoring Multiphase and Composite Ceramics, 115–30. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2233-7_10.
Der volle Inhalt der QuelleLehmann, J., und G. Ziegler. „Oxide-Based Ceramic Composites“. In Developments in the Science and Technology of Composite Materials, 425–34. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0787-4_58.
Der volle Inhalt der QuelleKaur, Gurbinder. „Mixed Alkaline/Composite Glasses and Coated Interconnects“. In Solid Oxide Fuel Cell Components, 261–314. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25598-9_7.
Der volle Inhalt der QuelleWu, M. K., B. H. Loo, P. N. Peters und C. Y. Huang. „High-Temperature Processing of Oxide Superconductors and Superconducting Oxide—Silver Oxide Composite“. In ACS Symposium Series, 181–93. Washington, DC: American Chemical Society, 1988. http://dx.doi.org/10.1021/bk-1988-0377.ch015.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Oxide composite"
Lee, Changkyun, Jiawei Song, Haiyan Wang, Jie Zhu, Vidisha Singhal und Peter Bermel. „Temperature-dependent optical dispersion of composite oxide multilayers“. In Nonimaging Optics: Efficient Design for Illumination and Concentration XIX, herausgegeben von Lun Jiang, Roland Winston, Håkon Jarand Dugstad Johnsen und Thomas A. Cooper, 13. SPIE, 2024. http://dx.doi.org/10.1117/12.3029039.
Der volle Inhalt der QuelleXie, X. H., X. R. Yan, J. Xie und S. Y. Liu. „Composite oxide powders“. In Third International Conference on Smart Materials and Nanotechnology in Engineering. SPIE, 2012. http://dx.doi.org/10.1117/12.916768.
Der volle Inhalt der QuelleRazzell, Anthony G., Ludovic Molliex, Magnus Holmquist und Olivier Sudre. „Oxide/Oxide Ceramic Matrix Composites in Gas Turbine Combustors“. In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-030.
Der volle Inhalt der QuelleGo¨ring, Ju¨rgen, Bernd Kanka, Martin Schmu¨cker und Hartmut Schneider. „A Potential Oxide/Oxide Ceramic Matrix Composite for Gas Turbine Applications“. In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38836.
Der volle Inhalt der QuelleMore, Karren L., Edgar Lara-Curzio, Peter F. Tortorelli, Tracie M. Brummett und Andy Szweda. „The High-Temperature Stability of an Oxide/Oxide Composite at High Water-Vapor Pressure“. In ASME Turbo Expo 2005: Power for Land, Sea, and Air. ASMEDC, 2005. http://dx.doi.org/10.1115/gt2005-69065.
Der volle Inhalt der QuelleChoi, Sung R., Donald J. Alexander und Robert W. Kowalik. „Foreign Object Damage in an Oxide/Oxide Composite at Ambient Temperature“. In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50505.
Der volle Inhalt der QuelleAndrada, D. M., T. M. Serodre, A. P. Santos und C. A. Furtado. „REDUCED GRAPHENE OXIDE AS REINFORCEMENT IN ALUMINIUM NANOCOMPOSITES PREPARED BY POWDER METALLURGY“. In Brazilian Conference on Composite Materials. Pontifícia Universidade Católica do Rio de Janeiro, 2018. http://dx.doi.org/10.21452/bccm4.2018.11.01.
Der volle Inhalt der QuellePinto, João P. C., Nancy I. A. Acevedo und Marisa C. G. Rocha. „Niobium oxide (NB2O5) filled high modulus polyethylene extrudable (HMPEX) composites: tensile properties“. In Brazilian Conference on Composite Materials. Pontifícia Universidade Católica do Rio de Janeiro, 2018. http://dx.doi.org/10.21452/bccm4.2018.13.08.
Der volle Inhalt der QuelleMuzikova, Barbora, Liam Gollino, Radek Zouzelka, Jiri Rathousky und Thierry Pauporté. „Graphene/TiO2 composite films for efficient photocatalytic degradation of antibiotics in wastewaters“. In Oxide-based Materials and Devices XIV, herausgegeben von Ferechteh H. Teherani und David J. Rogers. SPIE, 2023. http://dx.doi.org/10.1117/12.2659658.
Der volle Inhalt der QuelleBas, Salih Zeki, Mustafa Ozmen und Salih Yildiz. „Electrochemical H2O2 sensor based on graphene oxide-iron oxide nanoparticles composite“. In 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190318.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Oxide composite"
SUGAMA, T., R. SABATINI und K. GAWLIK. SELF-ASSEMBLY CE OXIDE/ORGANOPOLYSILOXANE COMPOSITE COATINGS. Office of Scientific and Technical Information (OSTI), Januar 2005. http://dx.doi.org/10.2172/15011205.
Der volle Inhalt der QuelleGorte, Raymond J., und John M. Vohs. The Development of Nano-Composite Electrodes for Solid Oxide Electrolyzers. Office of Scientific and Technical Information (OSTI), März 2014. http://dx.doi.org/10.2172/1124583.
Der volle Inhalt der QuelleIlwon Kim, Scott Barnett, Yi Jiang, Manoj Pillai, Nikkia McDonald, Dan Gostovic, Zhongryang Zhan und Jiang Liu. Composite Cathode for High-Power Density Solid Oxide Fuel Cells. Office of Scientific and Technical Information (OSTI), Januar 2004. http://dx.doi.org/10.2172/882534.
Der volle Inhalt der QuelleWeber, J. K., J. J. Felten, P. C. Nordine und W. M. Kriven. Melt Drawing/Coating of Oxide Fibers for Composite Materials Applications. Fort Belvoir, VA: Defense Technical Information Center, März 1996. http://dx.doi.org/10.21236/ada329561.
Der volle Inhalt der QuelleSadykov, Vladislav, Ekaterina Sadovskaya, Yulia Bespalko, Nikita Eremeev, Mikhail Mikhailenko und Mikhail Korobeynikov. Radiation thermal sintering of oxide and composite materials for hydrogen energy. Peeref, Juni 2023. http://dx.doi.org/10.54985/peeref.2306p8613414.
Der volle Inhalt der QuelleFederer, J. I., H. E. Kim und A. J. Moorhead. Corrosion of SiC and oxide-composite ceramics by a simulated steam-reformer atmosphere. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/5128601.
Der volle Inhalt der QuelleWeber, Richard, Waltraud M. Kriven, Paul C. Nordine, Benjamine Cho und William Jellison. Advanced Oxide Fibers and Coatings for High Temperature Composite Materials Applications. Phase 1. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1997. http://dx.doi.org/10.21236/ada333768.
Der volle Inhalt der QuelleKathy Lu und Jr W. T. Reynolds. Gradient Meshed and Toughened SOEC (Solid Oxide Electrolyzer Cell) Composite Seal with Self-Healing Capabilities. Office of Scientific and Technical Information (OSTI), Juni 2010. http://dx.doi.org/10.2172/981927.
Der volle Inhalt der QuelleIndacochea, J. E., V. K. Gattu, X. Chen und T. Rahman. Performance of a Steel/Oxide Composite Waste Form for Combined Waste Steams from Advanced Electrochemical Processes. Office of Scientific and Technical Information (OSTI), Juni 2017. http://dx.doi.org/10.2172/1364135.
Der volle Inhalt der QuelleMahendran, Subramanian, und Rajamani Jeyapaul. Preparation of Aluminium Calcium Oxide Composite Material Using Stir Casting Method and Testing of Its Mechanical Properties. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, Oktober 2018. http://dx.doi.org/10.7546/crabs.2018.10.13.
Der volle Inhalt der Quelle