Zeitschriftenartikel zum Thema „Oxidative arylation“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Oxidative arylation.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Oxidative arylation" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Zhou, Yao, Ya Wang, Zhiyi Song, Tamaki Nakano und Qiuling Song. „Cu-catalyzed C–N bond cleavage of 3-aminoindazoles for the C–H arylation of enamines“. Organic Chemistry Frontiers 7, Nr. 1 (2020): 25–29. http://dx.doi.org/10.1039/c9qo01177c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wei, Xiao-Hong, Gang-Wei Wang und Shang-Dong Yang. „Enantioselective synthesis of arylglycine derivatives by direct C–H oxidative cross-coupling“. Chemical Communications 51, Nr. 5 (2015): 832–35. http://dx.doi.org/10.1039/c4cc07361d.

Der volle Inhalt der Quelle
Annotation:
A new method for the synthesis of chiral α-amino acid derivatives by enantioselective C–H arylation of N-aryl glycine esters with aryl boric acids by direct C–H oxidative cross-coupling has been performed. This work successfully integrates the direct C–H oxidation with asymmetric arylation and exhibits excellent enantioselectivity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Park, Soo J., Jason R. Price und Matthew H. Todd. „Oxidative Arylation of Isochroman“. Journal of Organic Chemistry 77, Nr. 2 (29.12.2011): 949–55. http://dx.doi.org/10.1021/jo2021373.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yu, Congjun, und Frederic W. Patureau. „Regioselective Oxidative Arylation of Fluorophenols“. Angewandte Chemie International Edition 58, Nr. 51 (31.10.2019): 18530–34. http://dx.doi.org/10.1002/anie.201910352.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Singh, Keisham. „Recent Advances in C–H Bond Functionalization with Ruthenium-Based Catalysts“. Catalysts 9, Nr. 2 (12.02.2019): 173. http://dx.doi.org/10.3390/catal9020173.

Der volle Inhalt der Quelle
Annotation:
The past decades have witnessed rapid development in organic synthesis via catalysis, particularly the reactions through C–H bond functionalization. Transition metals such as Pd, Rh and Ru constitute a crucial catalyst in these C–H bond functionalization reactions. This process is highly attractive not only because it saves reaction time and reduces waste,but also, more importantly, it allows the reaction to be performed in a highly region specific manner. Indeed, several organic compounds could be readily accessed via C–H bond functionalization with transition metals. In the recent past, tremendous progress has been made on C–H bond functionalization via ruthenium catalysis, including less expensive but more stable ruthenium(II) catalysts. The ruthenium-catalysed C–H bond functionalization, viz. arylation, alkenylation, annulation, oxygenation, and halogenation involving C–C, C–O, C–N, and C–X bond forming reactions, has been described and presented in numerous reviews. This review discusses the recent development of C–H bond functionalization with various ruthenium-based catalysts. The first section of the review presents arylation reactions covering arylation directed by N–Heteroaryl groups, oxidative arylation, dehydrative arylation and arylation involving decarboxylative and sp3-C–H bond functionalization. Subsequently, the ruthenium-catalysed alkenylation, alkylation, allylation including oxidative alkenylation and meta-selective C–H bond alkylation has been presented. Finally, the oxidative annulation of various arenes with alkynes involving C–H/O–H or C–H/N–H bond cleavage reactions has been discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hata, Kazuhiro, Hideto Ito, Yasutomo Segawa und Kenichiro Itami. „Pyridylidene ligand facilitates gold-catalyzed oxidative C–H arylation of heterocycles“. Beilstein Journal of Organic Chemistry 11 (28.12.2015): 2737–46. http://dx.doi.org/10.3762/bjoc.11.295.

Der volle Inhalt der Quelle
Annotation:
Triaryl-2-pyridylidene effectively facilitates the gold-catalyzed oxidative C–H arylation of heteroarenes with arylsilanes as a unique electron-donating ligand on gold. The employment of the 2-pyridylidene ligand, which is one of the strongest electron-donating N-heterocyclic carbenes, resulted in the rate acceleration of the C–H arylation reaction of heterocycles over conventional ligands such as triphenylphosphine and a classical N-heterocyclic carbene. In situ observation and isolation of the 2-pyridylidene-gold(III) species, as well as a DFT study, indicated unusual stability of gold(III) species stabilized by strong electron donation from the 2-pyridylidene ligand. Thus, the gold(I)-to-gold(III) oxidation process is thought to be facilitated by the highly electron-donating 2-pyridylidene ligand.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chen, Wei W., Nahiane Pipaon Fernández, Marta Díaz Baranda, Anton Cunillera, Laura G. Rodríguez, Alexandr Shafir und Ana B. Cuenca. „Exploring benzylic gem-C(sp3)–boron–silicon and boron–tin centers as a synthetic platform“. Chemical Science 12, Nr. 31 (2021): 10514–21. http://dx.doi.org/10.1039/d1sc01741a.

Der volle Inhalt der Quelle
Annotation:
This work explores divergent reactivity of the benzylic gem-boron–silicon and boron–tin double nucleophiles, including the arylation of the C–B bond with Ar–Cl, along with a complementary oxidative λ3-iodane-guided arylation of the C–Si/Sn moiety.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ho, Nga Kim T., Beate Neumann, Hans-Georg Stammler, Vitor H. Menezes da Silva, Daniel G. Watanabe, Ataualpa A. C. Braga und Rajendra S. Ghadwal. „Nickel-catalysed direct C2-arylation of N-heterocyclic carbenes“. Dalton Transactions 46, Nr. 36 (2017): 12027–31. http://dx.doi.org/10.1039/c7dt03099a.

Der volle Inhalt der Quelle
Annotation:
Direct C2-arylation of NHCs to C2-arylated imidazolium salts (III) is achieved using Ni-catalysis. The dinuclear Ni(i) species I undergoes oxidative addition with ArX to give the Ni(ii) intermediate II. Reductive elimination delivers the arylation product III and regenerates the catalyst I.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chen, Kai, Xin Li, Shuo-Qing Zhang und Bing-Feng Shi. „Palladium-catalyzed C(sp3)–H arylation of lactic acid: efficient synthesis of chiral β-aryl-α-hydroxy acids“. Organic Chemistry Frontiers 3, Nr. 2 (2016): 204–8. http://dx.doi.org/10.1039/c5qo00319a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Querard, Pierre, Inna Perepichka, Eli Zysman-Colman und Chao-Jun Li. „Copper-catalyzed asymmetric sp3 C–H arylation of tetrahydroisoquinoline mediated by a visible light photoredox catalyst“. Beilstein Journal of Organic Chemistry 12 (06.12.2016): 2636–43. http://dx.doi.org/10.3762/bjoc.12.260.

Der volle Inhalt der Quelle
Annotation:
This report describes a highly enantioselective oxidative sp3 C–H arylation of N-aryltetrahydroisoquinolines (THIQs) through a dual catalysis platform. The combination of the photoredox catalyst, [Ir(ppy)2(dtbbpy)]PF6, and chiral copper catalysts provide a mild and highly effective sp3 C–H asymmetric arylation of THIQs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Yuan, Jin-Wei, Wei-Jie Li, Liang-Ru Yang, Pu Mao und Yong-Mei Xiao. „Regioselective C-3 arylation of coumarins with arylhydrazines via radical oxidation by potassium permanganate“. Zeitschrift für Naturforschung B 71, Nr. 11 (01.11.2016): 1115–23. http://dx.doi.org/10.1515/znb-2016-0109.

Der volle Inhalt der Quelle
Annotation:
AbstractAn efficient protocol for oxidative C-3 arylation of coumarins with arylhydrazine has been developed using potassium permanganate as an oxidant. The arylated coumarins with different electronic properties were obtained in moderate to good yields. The developed protocol for direct C-3 arylation of coumarins could be extended to quinolinones.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Park, Soo J., Jason R. Price und Matthew H. Todd. „ChemInform Abstract: Oxidative Arylation of Isochroman.“ ChemInform 43, Nr. 21 (26.04.2012): no. http://dx.doi.org/10.1002/chin.201221135.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Faradhiyani, Alanna, Qiao Zhang, Keisuke Maruyama, Junpei Kuwabara, Takeshi Yasuda und Takaki Kanbara. „Synthesis of bithiazole-based semiconducting polymers via Cu-catalysed aerobic oxidative coupling“. Materials Chemistry Frontiers 2, Nr. 7 (2018): 1306–9. http://dx.doi.org/10.1039/c7qm00584a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Bu, Meijie, Teng Fei Niu und Chun Cai. „Visible-light-mediated oxidative arylation of vinylarenes under aerobic conditions“. Catalysis Science & Technology 5, Nr. 2 (2015): 830–34. http://dx.doi.org/10.1039/c4cy01523a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Shen, Xianfu, Yongyun Zhou, Yongkai Xi, Jingfeng Zhao und Hongbin Zhang. „Copper catalyzed sequential arylation−oxidative dimerization of o-haloanilides: synthesis of dimeric HPI alkaloids“. Chemical Communications 51, Nr. 80 (2015): 14873–76. http://dx.doi.org/10.1039/c5cc05378a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Jiang, Huanfeng, Wanfei Yang, Huoji Chen, Jianxiao Li und Wanqing Wu. „Palladium-catalyzed aerobic oxidative allylic C–H arylation of alkenes with polyfluorobenzenes“. Chem. Commun. 50, Nr. 54 (2014): 7202–4. http://dx.doi.org/10.1039/c4cc02023e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Ghosh, Asim Kumar, Sadhanendu Samanta, Payel Ghosh, Sukanya Neogi und Alakananda Hajra. „Regioselective hydroarylation and arylation of maleimides with indazoles via a Rh(iii)-catalyzed C–H activation“. Organic & Biomolecular Chemistry 18, Nr. 16 (2020): 3093–97. http://dx.doi.org/10.1039/d0ob00353k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Chen, Lijun, Lin Ju, Katelyn A. Bustin und Jessica M. Hoover. „Copper-catalyzed oxidative decarboxylative C–H arylation of benzoxazoles with 2-nitrobenzoic acids“. Chemical Communications 51, Nr. 81 (2015): 15059–62. http://dx.doi.org/10.1039/c5cc06645j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

GUO, HAN, und YING XUE. „THEORETICAL STUDY ON CUI-CATALYZED LIGAND-FREE N-ARYLATION OF IMIDAZOLE WITH BROMOBENZENE“. Journal of Theoretical and Computational Chemistry 11, Nr. 05 (Oktober 2012): 1135–47. http://dx.doi.org/10.1142/s0219633612500757.

Der volle Inhalt der Quelle
Annotation:
The density functional theory (DFT) is used to investigate the mechanism of ligand-free CuI -catalyzed N -arylation of imidazole with aryl halide. The oxidative addition/reductive elimination mechanism is adopted via two different pathways to form the same Cu(III) intermediate. Comparing two pathways, the path 1 in which the imidazolyl coordination occurs prior to the oxidative addition is more favorable, because the free energy barrier of the rate-limiting step of path 1 is lower than the barrier of the other. In addition, it leads to a relative stable intermediate which can promote the reaction to process via path 1. And the overall free energy barrier of oxidative addition to imidazole-ligated Cu(I) complex is not high enough when comparing with the diamine-promote process, which can further prove that the N -arylation of imidazole is feasible in the absence of additional ligands. Nucleophile coordination and reductive elimination steps are facile, while the oxidative addition is the rate-limiting step.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Jiang, Tuo, Andreas K. Å. Persson und Jan-E. Bäckvall. „Palladium-Catalyzed Oxidative Carbocyclization/Arylation of Enallenes“. Organic Letters 13, Nr. 21 (04.11.2011): 5838–41. http://dx.doi.org/10.1021/ol202451f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Lee, Kathleen S., und Joseph M. Ready. „Titanium-Mediated Oxidative Arylation of Homoallylic Alcohols“. Angewandte Chemie International Edition 50, Nr. 9 (25.01.2011): 2111–14. http://dx.doi.org/10.1002/anie.201007244.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Lee, Kathleen S., und Joseph M. Ready. „Titanium-Mediated Oxidative Arylation of Homoallylic Alcohols“. Angewandte Chemie 123, Nr. 9 (25.01.2011): 2159–62. http://dx.doi.org/10.1002/ange.201007244.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Huang, Guanghao, Lin Lu, Huanfeng Jiang und Biaolin Yin. „Aerobic oxidative α-arylation of furans with boronic acids via Pd(ii)-catalyzed C–C bond cleavage of primary furfuryl alcohols: sustainable access to arylfurans“. Chemical Communications 53, Nr. 90 (2017): 12217–20. http://dx.doi.org/10.1039/c7cc07111f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Fan, Jian, Li Li, Jitan Zhang und Meihua Xie. „Expeditious synthesis of phenanthridines through a Pd/MnO2-mediated C–H arylation/oxidative annulation cascade from aldehydes, aryl iodides and amino acids“. Chemical Communications 56, Nr. 18 (2020): 2775–78. http://dx.doi.org/10.1039/d0cc00300j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Luo, Haiqing, Qi Xie, Kai Sun, Jianbo Deng, Lin Xu, Kejun Wang und Xuzhong Luo. „Rh(iii)-catalyzed C-7 arylation of indolines with arylsilanes via C–H activation“. RSC Advances 9, Nr. 32 (2019): 18191–95. http://dx.doi.org/10.1039/c9ra04142g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Araneo, Silvia, Francesca Fontana, Francesco Minisci, Francesco Recupero und Anna Serri. „Hydroperoxides as pseudohalides: oxidation, oxidative alkylation, acylation and arylation of acrylonitrile“. Journal of the Chemical Society, Chemical Communications, Nr. 14 (1995): 1399. http://dx.doi.org/10.1039/c39950001399.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Chen, Xin, Yunyun Bian, Baichuan Mo, Peng Sun, Chunxia Chen und Jinsong Peng. „Copper(ii)-catalyzed synthesis of multisubstituted indoles through sequential Chan–Lam and cross-dehydrogenative coupling reactions“. RSC Advances 10, Nr. 42 (2020): 24830–39. http://dx.doi.org/10.1039/d0ra04592f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Yuan, Jin-Wei, Liang-Ru Yang, Pu Mao und Ling-Bo Qu. „AgNO3-catalyzed direct C–H arylation of quinolines by oxidative decarboxylation of aromatic carboxylic acids“. Organic Chemistry Frontiers 4, Nr. 4 (2017): 545–54. http://dx.doi.org/10.1039/c6qo00533k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Morimoto, Koji, Yusuke Ohnishi, Daichi Koseki, Akira Nakamura, Toshifumi Dohi und Yasuyuki Kita. „Stabilized pyrrolyl iodonium salts and metal-free oxidative cross-coupling“. Organic & Biomolecular Chemistry 14, Nr. 38 (2016): 8947–51. http://dx.doi.org/10.1039/c6ob01764a.

Der volle Inhalt der Quelle
Annotation:
We have developed a direct oxidative C–H bond arylation of pyrroles with various aromatic compounds via stabilized pyrrolyl iodonium(iii) salts generated from modified hypervalent iodine(iii) and TMSCl as an activator.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Terai, Seiya, Yuki Sato, Takuya Kochi und Fumitoshi Kakiuchi. „Efficient synthesis of 3,6,13,16-tetrasubstituted-tetrabenzo[a,d,j,m]coronenes by selective C–H/C–O arylations of anthraquinone derivatives“. Beilstein Journal of Organic Chemistry 16 (31.03.2020): 544–50. http://dx.doi.org/10.3762/bjoc.16.51.

Der volle Inhalt der Quelle
Annotation:
An efficient synthesis of tetrabenzo[a,d,j,m]coronene derivatives having alkyl and alkoxy substituents at the 3, 6, 13, and 16-positions was achieved based on the ruthenium-catalyzed coupling reactions of anthraquinone derivatives with arylboronates via C–H and C–O bond cleavage. The reaction sequence involving the arylation, carbonyl methylenation, and oxidative cyclization effectively provided various tetrabenzo[a,d,j,m]coronenes in short steps from readily available starting materials. Tetrabenzo[a,d,j,m]coronenes possessing two different types of substituents were obtained selectively by sequential chemoselective C–O arylation and C–H arylation. The 1H NMR spectra of the tetrabenzo[a,d,j,m]coronene product indicated its self-assembling behavior in CDCl3.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Nareddy, Pradeep, Frank Jordan und Michal Szostak. „Ruthenium(ii)-catalyzed ortho-C–H arylation of diverse N-heterocycles with aryl silanes by exploiting solvent-controlled N-coordination“. Organic & Biomolecular Chemistry 15, Nr. 22 (2017): 4783–88. http://dx.doi.org/10.1039/c7ob00818j.

Der volle Inhalt der Quelle
Annotation:
We report the first method for the direct, regioselective Ru(ii)-catalyzed oxidative arylation of C–H bonds in diverse N-heterocycles with aryl silanes by exploiting solvent-controlled N-coordination.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Laha, Joydev K., Shubhra Sharma, Rohan A. Bhimpuria, Neetu Dayal, Gurudutt Dubey und Prasad V. Bharatam. „Integration of oxidative arylation with sulfonyl migration: one-pot tandem synthesis of densely functionalized (NH)-pyrroles“. New Journal of Chemistry 41, Nr. 17 (2017): 8791–803. http://dx.doi.org/10.1039/c7nj01709j.

Der volle Inhalt der Quelle
Annotation:
A one-pot synthesis of 2-aryl-3-alkyl/aryl-sulfonyl-(NH)-pyrroles from N-sulfonylpyrroles, developed for the first time, via palladium-catalyzed oxidative C-2 arylation followed by sulfonyl migration is described.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Rodriguez, Jessica, Abdallah Zeineddine, E. Daiann Sosa Carrizo, Karinne Miqueu, Nathalie Saffon-Merceron, Abderrahmane Amgoune und Didier Bourissou. „Catalytic Au(i)/Au(iii) arylation with the hemilabile MeDalphos ligand: unusual selectivity for electron-rich iodoarenes and efficient application to indoles“. Chemical Science 10, Nr. 30 (2019): 7183–92. http://dx.doi.org/10.1039/c9sc01954e.

Der volle Inhalt der Quelle
Annotation:
The ability of the MeDalphos ligand to trigger oxidative addition of iodoarenes preferentially electron-rich, to gold has been thoroughly studied and exploited to develop an efficient Au(i)/Au(iii)-catalysed C3-arylation of indoles.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Zhang, Shuyao, Xiaohan Ye, Lukasz Wojtas, Wenyan Hao und Xiaodong Shi. „Electrochemical gold redox catalysis for selective oxidative arylation“. Green Synthesis and Catalysis 2, Nr. 1 (Februar 2021): 82–86. http://dx.doi.org/10.1016/j.gresc.2021.01.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Volla, Chandra M. R., und Jan-E. Bäckvall. „Palladium-Catalyzed Oxidative Domino Carbocyclization–Arylation of Bisallenes“. ACS Catalysis 6, Nr. 10 (29.08.2016): 6398–402. http://dx.doi.org/10.1021/acscatal.6b02070.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Basnet, Prakash, Melissa B. Sebold, Charles E. Hendrick und Marisa C. Kozlowski. „Copper Catalyzed Oxidative Arylation of Tertiary Carbon Centers“. Organic Letters 22, Nr. 24 (02.12.2020): 9524–28. http://dx.doi.org/10.1021/acs.orglett.0c03581.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Wolf, C., und R. Lerebours. „Arylation and Oxidative Esterification of Aldehydes with Siloxanes“. Synfacts 2006, Nr. 12 (Dezember 2006): 1277. http://dx.doi.org/10.1055/s-2006-955616.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Bagnell, Laurence, Ulf Kreher und Christopher R. Strauss. „Pd-catalysed arylation of propan-1-ol and derivatives: oxidative role of the arylating agent“. Chemical Communications, Nr. 1 (2001): 29–30. http://dx.doi.org/10.1039/b005323f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Matsumoto, Takaya, und Hajime Yoshida. „Oxidative Arylation of Ethylene with Benzene to Produce Styrene“. Chemistry Letters 29, Nr. 9 (September 2000): 1064–65. http://dx.doi.org/10.1246/cl.2000.1064.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Vershinin, Vlada, Alina Dyadyuk und Doron Pappo. „Iron-catalyzed selective oxidative arylation of phenols and biphenols“. Tetrahedron 73, Nr. 26 (Juni 2017): 3660–68. http://dx.doi.org/10.1016/j.tet.2017.03.094.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Kapłon, Katarzyna, Oleg M. Demchuk, Marta Wieczorek und K. Michał Pietrusiewicz. „Brönsted acid catalyzed direct oxidative arylation of 1,4-naphthoquinone“. Current Chemistry Letters 3, Nr. 1 (2013): 23–36. http://dx.doi.org/10.5267/j.ccl.2013.10.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Cai, Chun, Jie Feng, Guoping Lu und Meifang Lv. „Palladium(II)-Catalyzed Oxidative ortho-Arylation of 2-Phenylpyridines“. Synlett 24, Nr. 16 (21.08.2013): 2153–59. http://dx.doi.org/10.1055/s-0033-1339516.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Hofer, Manuel, Alexandre Genoux, Roopender Kumar und Cristina Nevado. „Gold-Catalyzed Direct Oxidative Arylation with Boron Coupling Partners“. Angewandte Chemie International Edition 56, Nr. 4 (21.12.2016): 1021–25. http://dx.doi.org/10.1002/anie.201610457.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Hofer, Manuel, Alexandre Genoux, Roopender Kumar und Cristina Nevado. „Gold-Catalyzed Direct Oxidative Arylation with Boron Coupling Partners“. Angewandte Chemie 129, Nr. 4 (21.12.2016): 1041–45. http://dx.doi.org/10.1002/ange.201610457.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Lee, Kathleen S., und Joseph M. Ready. „ChemInform Abstract: Titanium-Mediated Oxidative Arylation of Homoallylic Alcohols.“ ChemInform 42, Nr. 24 (19.05.2011): no. http://dx.doi.org/10.1002/chin.201124090.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Zhang, Rui, Qin Xu, Kai Chen, Peng Gu und Min Shi. „Gold-Catalyzed Cascade Oxidative Cyclization and Arylation of Allenoates“. European Journal of Organic Chemistry 2013, Nr. 32 (24.09.2013): 7366–71. http://dx.doi.org/10.1002/ejoc.201300896.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Jiang, Tuo, Andreas K. Aa Persson und Jan-E. Baeckvall. „ChemInform Abstract: Palladium-Catalyzed Oxidative Carbocyclization/Arylation of Enallenes.“ ChemInform 43, Nr. 12 (23.02.2012): no. http://dx.doi.org/10.1002/chin.201212049.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

ARANEO, S., F. FONTANA, F. MINISCI, F. RECUPERO und A. SERRI. „ChemInform Abstract: Hydroperoxides as Pseudohalides: Oxidation, Oxidative Alkylation, Acylation and Arylation of Acrylonitrile.“ ChemInform 26, Nr. 48 (17.08.2010): no. http://dx.doi.org/10.1002/chin.199548077.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Maurya, Sundaram, Sandip B. Jadhav und Rambabu Chegondi. „Metal-free oxidative formal C(sp2)–H arylation of cyclopentene-1,3-diones with β-naphthols“. Organic & Biomolecular Chemistry 20, Nr. 10 (2022): 2059–63. http://dx.doi.org/10.1039/d2ob00156j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Hong, Fenglin, Nannan Lu, Beili Lu und Jiajia Cheng. „Synthesis of Fused Heterocycles via One-pot Oxidative O-Arylation, Pd-Catalyzed C(sp3)-H Arylation“. Advanced Synthesis & Catalysis 359, Nr. 19 (21.08.2017): 3299–303. http://dx.doi.org/10.1002/adsc.201700761.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie