Zeitschriftenartikel zum Thema „Oxidative alkenylation“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Oxidative alkenylation.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Oxidative alkenylation" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Koubachi, Jamal, Nabil El Brahmi, Gérald Guillaumet und Saïd El Kazzouli. „Oxidative Alkenylation of Fused Bicyclic Heterocycles“. European Journal of Organic Chemistry 2019, Nr. 15 (01.04.2019): 2568–86. http://dx.doi.org/10.1002/ejoc.201900199.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sunke, Rajnikanth, Vimal Kumar, Mohd Ashraf Ashfaq, Swapna Yellanki, Raghavender Medisetti, Pushkar Kulkarni, E. V. Venkat Shivaji Ramarao, Nasreen Z. Ehtesham und Manojit Pal. „A Pd(ii)-catalyzed C–H activation approach to densely functionalized N-heteroaromatics related to neocryptolepine and their evaluation as potential inducers of apoptosis“. RSC Advances 5, Nr. 56 (2015): 44722–27. http://dx.doi.org/10.1039/c5ra06764b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Cao, Hao, Dong Liu, Chao Liu, Xinquan Hu und Aiwen Lei. „Copper-catalyzed oxidative alkenylation of thioethers via Csp3–H functionalization“. Organic & Biomolecular Chemistry 13, Nr. 8 (2015): 2264–66. http://dx.doi.org/10.1039/c4ob02564d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Tang, Jingjie, Mei Cong, Yi Xia, Gilles Quéléver, Yuting Fan, Fanqi Qu und Ling Peng. „Pd-catalyzed oxidative C–H alkenylation for synthesizing arylvinyltriazole nucleosides“. Organic & Biomolecular Chemistry 13, Nr. 1 (2015): 110–14. http://dx.doi.org/10.1039/c4ob01836b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mishra, Neeraj Kumar, Jihye Park, Satyasheel Sharma, Sangil Han, Mirim Kim, Youngmi Shin, Jinbong Jang, Jong Hwan Kwak, Young Hoon Jung und In Su Kim. „Direct access to isoindolines through tandem Rh(iii)-catalyzed alkenylation and cyclization of N-benzyltriflamides“. Chem. Commun. 50, Nr. 18 (2014): 2350–52. http://dx.doi.org/10.1039/c3cc49486a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Katsina, Tania, Elissavet E. Anagnostaki, Foteini Mitsa, Vasiliki Sarli und Alexandros L. Zografos. „Palladium-catalyzed direct alkenylation of 4-hydroxy-2-pyridones“. RSC Advances 6, Nr. 9 (2016): 6978–82. http://dx.doi.org/10.1039/c5ra26360c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Miyasaka, Mitsuru, Koji Hirano, Tetsuya Satoh und Masahiro Miura. „Palladium-Catalyzed Direct Oxidative Alkenylation of Azoles“. Journal of Organic Chemistry 75, Nr. 15 (06.08.2010): 5421–24. http://dx.doi.org/10.1021/jo101214y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zhu, Weihao, und T. Brent Gunnoe. „Advances in Rhodium-Catalyzed Oxidative Arene Alkenylation“. Accounts of Chemical Research 53, Nr. 4 (02.04.2020): 920–36. http://dx.doi.org/10.1021/acs.accounts.0c00036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cao, Hua, Sai Lei, Jinqiang Liao, Jianping Huang, Huifang Qiu, Qinlin Chen, Shuxian Qiu und Yaoyi Chen. „Palladium(ii)-catalyzed intermolecular oxidative C-3 alkenylations of imidazo[1,2-a]pyridines by substrate-contolled regioselective C–H functionalization“. RSC Adv. 4, Nr. 91 (2014): 50137–40. http://dx.doi.org/10.1039/c4ra09669j.

Der volle Inhalt der Quelle
Annotation:
An efficient and highly regioselective palladium(ii)-catalyzed oxidative C-3 alkenylation of imidazo[1,2-a]pyridines with acrylate, acrylonitrile, or vinylarenes has been developed by using oxygen as an oxidant.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tang, Shan, Yong Wu, Wenqing Liao, Ruopeng Bai, Chao Liu und Aiwen Lei. „Revealing the metal-like behavior of iodine: an iodide-catalysed radical oxidative alkenylation“. Chem. Commun. 50, Nr. 34 (2014): 4496–99. http://dx.doi.org/10.1039/c4cc00644e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Singh, Keisham. „Recent Advances in C–H Bond Functionalization with Ruthenium-Based Catalysts“. Catalysts 9, Nr. 2 (12.02.2019): 173. http://dx.doi.org/10.3390/catal9020173.

Der volle Inhalt der Quelle
Annotation:
The past decades have witnessed rapid development in organic synthesis via catalysis, particularly the reactions through C–H bond functionalization. Transition metals such as Pd, Rh and Ru constitute a crucial catalyst in these C–H bond functionalization reactions. This process is highly attractive not only because it saves reaction time and reduces waste,but also, more importantly, it allows the reaction to be performed in a highly region specific manner. Indeed, several organic compounds could be readily accessed via C–H bond functionalization with transition metals. In the recent past, tremendous progress has been made on C–H bond functionalization via ruthenium catalysis, including less expensive but more stable ruthenium(II) catalysts. The ruthenium-catalysed C–H bond functionalization, viz. arylation, alkenylation, annulation, oxygenation, and halogenation involving C–C, C–O, C–N, and C–X bond forming reactions, has been described and presented in numerous reviews. This review discusses the recent development of C–H bond functionalization with various ruthenium-based catalysts. The first section of the review presents arylation reactions covering arylation directed by N–Heteroaryl groups, oxidative arylation, dehydrative arylation and arylation involving decarboxylative and sp3-C–H bond functionalization. Subsequently, the ruthenium-catalysed alkenylation, alkylation, allylation including oxidative alkenylation and meta-selective C–H bond alkylation has been presented. Finally, the oxidative annulation of various arenes with alkynes involving C–H/O–H or C–H/N–H bond cleavage reactions has been discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Chen, Weiqiang, Hui-Jing Li, Qin-Ying Li und Yan-Chao Wu. „Direct oxidative coupling of N-acyl pyrroles with alkenes by ruthenium(ii)-catalyzed regioselective C2-alkenylation“. Organic & Biomolecular Chemistry 18, Nr. 3 (2020): 500–513. http://dx.doi.org/10.1039/c9ob02421b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Qiu, Youai, Alexej Scheremetjew und Lutz Ackermann. „Electro-Oxidative C–C Alkenylation by Rhodium(III) Catalysis“. Journal of the American Chemical Society 141, Nr. 6 (12.01.2019): 2731–38. http://dx.doi.org/10.1021/jacs.8b13692.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Li, Jie, Christoph Kornhaaß und Lutz Ackermann. „Ruthenium-catalyzed oxidative C–H alkenylation of aryl carbamates“. Chemical Communications 48, Nr. 92 (2012): 11343. http://dx.doi.org/10.1039/c2cc36196e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Jiao, Lin-Yu, und Martin Oestreich. „Oxidative Palladium(II)-Catalyzed C-7 Alkenylation of Indolines“. Organic Letters 15, Nr. 20 (08.10.2013): 5374–77. http://dx.doi.org/10.1021/ol402687t.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Kang, Dongjin, Jaeyoung Cho und Phil Ho Lee. „Palladium-catalyzed direct C-3 oxidative alkenylation of phosphachromones“. Chemical Communications 49, Nr. 89 (2013): 10501. http://dx.doi.org/10.1039/c3cc45874a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Miyasaka, Mitsuru, Koji Hirano, Tetsuya Satoh und Masahiro Miura. „ChemInform Abstract: Palladium-Catalyzed Direct Oxidative Alkenylation of Azoles.“ ChemInform 41, Nr. 50 (18.11.2010): no. http://dx.doi.org/10.1002/chin.201050131.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Lah, Hafiz Ul, Faheem Rasool und Syed Khalid Yousuf. „Palladium catalyzed C(sp2)–C(sp2) bond formation. A highly regio- and chemoselective oxidative Heck C-3 alkenylation of pyrones and pyridones“. RSC Advances 5, Nr. 96 (2015): 78958–61. http://dx.doi.org/10.1039/c5ra12631b.

Der volle Inhalt der Quelle
Annotation:
Palladium catalysed ligand free highly regio- and chemoselective dehydrogenative C-3 alkenylation of pyrones and unprotected pyridones from unactivated alkenes is reported. Simple reaction conditions and broad substrate scope make the process useful.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Li, Yu-An, Ge Wu und Jia Li. „Palladium-Catalyzed N-Alkenylation of N-Aryl Phosphoramidates with Alkenes“. Molecules 28, Nr. 11 (31.05.2023): 4466. http://dx.doi.org/10.3390/molecules28114466.

Der volle Inhalt der Quelle
Annotation:
Versatile and concise Pd-catalyzed oxidative N-alkenylation of N-aryl phosphoramidates with alkenes is described in this study, a reaction that is of great significance but surprisingly unexploited. The transformation proceeds under mild reaction conditions, using O2 as a green oxidant and TBAB as an effective additive. An efficient catalytic system allows a variety of drug-related substrates to participate in these transformations, which is of great interest in the drug discovery and development of phosphoramidates.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Tian, Yunfei, Luping Zheng, Ying Chen, Yufei Li, Mengna Wang, Weijun Fu und Zejiang Li. „Ferrous Salt-Catalyzed Oxidative Alkenylation of Indoles: Facile Access to 3-Alkylideneindolin-2-Ones“. Catalysts 13, Nr. 6 (25.05.2023): 930. http://dx.doi.org/10.3390/catal13060930.

Der volle Inhalt der Quelle
Annotation:
The direct oxidative alkenylation of indoles is achieved by ferrous salts under mild conditions, which provides one effective strategy for the synthesis of 3-alkylideneindolin-2-one in a single step. This reaction system features simple and readily available materials, mild conditions, and easy accessibility. The control experiments also demonstrate a radical pathway was involved in the reaction. Moreover, the method performs well on the gram-scale experiment, which indicates that this method enjoys a broad prospect in synthetic chemistry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Kang, Dongjin, Jaeyoung Cho und Phil Ho Lee. „ChemInform Abstract: Palladium-Catalyzed Direct C-3 Oxidative Alkenylation of Phosphachromones.“ ChemInform 45, Nr. 11 (27.02.2014): no. http://dx.doi.org/10.1002/chin.201411200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Jiao, Lin-Yu, und Martin Oestreich. „ChemInform Abstract: Oxidative Palladium(II)-Catalyzed C-7 Alkenylation of Indolines.“ ChemInform 45, Nr. 13 (14.03.2014): no. http://dx.doi.org/10.1002/chin.201413114.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Li, Jie, Christoph Kornhaass und Lutz Ackermann. „ChemInform Abstract: Ruthenium-Catalyzed Oxidative C-H Alkenylation of Aryl Carbamates.“ ChemInform 44, Nr. 13 (18.03.2013): no. http://dx.doi.org/10.1002/chin.201313030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Lu, Nan, Chengxia Miao und Xiaozheng Lan. „Theoretical investigation on Rh(III)-catalyzed switchable C–H alkenylation of enamide with enone and Rh(I)-catalyzed decarbonylative version of 1,2,3,4-tetrahydroquinoline with anhydride“. Thermal Science and Engineering 7, Nr. 1 (01.07.2024): 6267. http://dx.doi.org/10.24294/tse.v7i1.6267.

Der volle Inhalt der Quelle
Annotation:
The mechanism is investigated for Rh(III)-catalyzed C-H alkenylation of enamide with enone and Rh(I)-catalyzed decarbonylative version of 1,2,3,4-tetrahydroquinoline with anhydride. The former contains β-C(sp2)−H activation of enamide, 1,2-migratory insertion of enone, β-hydride elimination or protodemetalation with additional HCl. The diastereoselectivity is kinetically controlled favoring alkenylation N-(2Z,4E)-butadiene while the regio-divergence is switchable to alkylation. The latter is composed of rate-limiting oxidative addition of anhydride to Rh(I), C8-selective C–H activation after ligand exchange producing tBuCO2H and six-membered rhodacycle, decarbonylation releasing CO as new carboxylate ligand and reductive elimination of Rh-alkenyl precursor leading to C8-alkenylated product. The whole process with huge heat release is favorable thermodynamically and all barriers capable to overcome under microwave assistance. The positive solvation effect is suggested by decreased absolute and activation energies in solution compared with in gas. These results are supported by Multiwfn analysis on FMO composition of specific TSs, and MBO value of vital bonding, breaking.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Kim, Namhoon, Minsik Min und Sungwoo Hong. „Regioselective palladium(ii)-catalyzed aerobic oxidative Heck-type C3 alkenylation of sulfocoumarins“. Organic Chemistry Frontiers 2, Nr. 12 (2015): 1621–24. http://dx.doi.org/10.1039/c5qo00294j.

Der volle Inhalt der Quelle
Annotation:
An efficient method for the direct C–H olefination of sulfocoumarins with a wide range of alkenes is developed. Moreover, O2 was successfully utilized as the sole oxidant for the oxidative Heck reaction. This approach enables the rapid generation of various 3-alkenylated sulfocoumarins.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Lessi, Marco, Attilio Nania, Melania Pittari, Laura Lodone, Angela Cuzzola und Fabio Bellina. „Palladium-Catalyzed Dehydrogenative C-2 Alkenylation of 5-Arylimidazoles and Related Azoles with Styrenes“. Catalysts 11, Nr. 7 (23.06.2021): 762. http://dx.doi.org/10.3390/catal11070762.

Der volle Inhalt der Quelle
Annotation:
The construction of carbon–carbon bonds by direct involvement of two unactivated carbon–hydrogen bonds, without any directing group, ensures a high atom economy of the entire process. Here, we describe a simple protocol for the Pd(II)/Cu(II)-promoted intermolecular cross-dehydrogenative coupling (CDC) of 5-arylimidazoles, benzimidazoles, benzoxazole and 4,5-diphenylimidazole at their C-2 position with functionalized styrenes. This specific CDC, known as the Fujiwara–Moritani reaction or oxidative Heck coupling, also allowed the C-4 alkenylation of the imidazole nucleus when both 2 and 5 positions were occupied.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Berteina-Raboin, Sabine, Jamal Koubachi, Abderrahim Mouaddib und Gérald Guillaumet. „Pd/Cu-Catalyzed Oxidative C-H Alkenylation of Imidazo[1,2-a]pyridines“. Synthesis 2009, Nr. 02 (12.12.2008): 271–76. http://dx.doi.org/10.1055/s-0028-1083252.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Zhang, Guangling, Ziyuan Li, Yue Huang, Jinyi Xu, Xiaoming Wu und Hequan Yao. „Direct C3-alkenylation of pyridin-4(1H)-one via oxidative Heck coupling“. Tetrahedron 69, Nr. 3 (Januar 2013): 1115–19. http://dx.doi.org/10.1016/j.tet.2012.11.061.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Tang, Jingjie, Mei Cong, Yi Xia, Gilles Quelever, Yuting Fan, Fanqi Qu und Ling Peng. „ChemInform Abstract: Pd-Catalyzed Oxidative C-H Alkenylation for Synthesizing Arylvinyltriazole Nucleosides.“ ChemInform 46, Nr. 21 (Mai 2015): no. http://dx.doi.org/10.1002/chin.201521235.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Sun, Peng, Jiaojiao Yang, Zirui Song, Yichao Cai, Yajie Liu, Chunxia Chen, Xin Chen und Jinsong Peng. „Copper-Mediated One-Pot Synthesis of Indoles through Sequential Hydroamination and Cross-Dehydrogenative Coupling Reaction“. Synthesis 52, Nr. 01 (05.11.2019): 75–84. http://dx.doi.org/10.1055/s-0039-1690240.

Der volle Inhalt der Quelle
Annotation:
Starting from simple anilines and ester arylpropiolates, an efficient one-pot synthesis of 2-arylindole-3-carboxylate derivatives has been developed through copper-mediated sequential hydroamination and cross-dehydrogenative coupling (CDC) reaction. The initial hydroamination of anilines to ester arylpropiolates in benzene can proceed in a stereoselective manner to give ester (Z)-3-(arylamino)acrylates in the presence of CuCl2/phenanthroline, KMnO4, and KHCO3 at 120 °C. Sequentially, these in situ functionalized adducts can undergo direct intramolecular oxidative alkenylation of aromatic C–H bond in mixed solvents (benzene/DMSO 1:1) at 130 °C affording multi-substituted­ indoles in good to high yields.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Sawant, Devesh, Ram Pardasani, Iqubal Singh, Gaurav Tulsyan und Kishor Abbagani. „Ruthenium-Catalyzed Oxidative C–H Bond Alkenylation of 2-Phenylimidazo[1,2-a]pyridine“. Synlett 26, Nr. 12 (21.05.2015): 1671–76. http://dx.doi.org/10.1055/s-0034-1380746.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Kozhushkov, Sergei I., und Lutz Ackermann. „Ruthenium-catalyzed direct oxidative alkenylation of arenes through twofold C–H bond functionalization“. Chem. Sci. 4, Nr. 3 (2013): 886–96. http://dx.doi.org/10.1039/c2sc21524a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Suzuki, Yudai, Bo Sun, Tatsuhiko Yoshino, Motomu Kanai und Shigeki Matsunaga. „Cp∗Co(III)-catalyzed oxidative C–H alkenylation of benzamides with ethyl acrylate“. Tetrahedron 71, Nr. 26-27 (Juli 2015): 4552–56. http://dx.doi.org/10.1016/j.tet.2015.02.032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Kannaboina, Prakash, K. Anil Kumar und Parthasarathi Das. „Site-Selective Intermolecular Oxidative C-3 Alkenylation of 7-Azaindoles at Room Temperature“. Organic Letters 18, Nr. 5 (04.02.2016): 900–903. http://dx.doi.org/10.1021/acs.orglett.5b03429.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Graczyk, Karolina, Wenbo Ma und Lutz Ackermann. „Oxidative Alkenylation of Aromatic Esters by Ruthenium-Catalyzed Twofold C–H Bond Cleavages“. Organic Letters 14, Nr. 16 (31.07.2012): 4110–13. http://dx.doi.org/10.1021/ol301759v.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Meng, Lingkui, Kun Wu, Chao Liu und Aiwen Lei. „Palladium-catalysed aerobic oxidative Heck-type alkenylation of Csp3–H for pyrrole synthesis“. Chemical Communications 49, Nr. 52 (2013): 5853. http://dx.doi.org/10.1039/c3cc42307g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Shi, Renyi, Lijun Lu, Hua Zhang, Borui Chen, Yuchen Sha, Chao Liu und Aiwen Lei. „Palladium/Copper-Catalyzed Oxidative CH Alkenylation/N-Dealkylative Carbonylation of Tertiary Anilines“. Angewandte Chemie 125, Nr. 40 (14.08.2013): 10776–79. http://dx.doi.org/10.1002/ange.201303911.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Vora, Harit U., Anthony P. Silvestri, Casper J. Engelin und Jin-Quan Yu. „Rhodium(II)-Catalyzed Nondirected Oxidative Alkenylation of Arenes: Arene Loading at One Equivalent“. Angewandte Chemie 126, Nr. 10 (30.01.2014): 2721–24. http://dx.doi.org/10.1002/ange.201310539.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Vora, Harit U., Anthony P. Silvestri, Casper J. Engelin und Jin-Quan Yu. „Rhodium(II)-Catalyzed Nondirected Oxidative Alkenylation of Arenes: Arene Loading at One Equivalent“. Angewandte Chemie International Edition 53, Nr. 10 (30.01.2014): 2683–86. http://dx.doi.org/10.1002/anie.201310539.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Shi, Renyi, Lijun Lu, Hua Zhang, Borui Chen, Yuchen Sha, Chao Liu und Aiwen Lei. „Palladium/Copper-Catalyzed Oxidative CH Alkenylation/N-Dealkylative Carbonylation of Tertiary Anilines“. Angewandte Chemie International Edition 52, Nr. 40 (14.08.2013): 10582–85. http://dx.doi.org/10.1002/anie.201303911.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Jadhav, Pankaj P., Nilesh M. Kahar und Sudam G. Dawande. „Ruthenium(II)-Catalyzed Highly Chemo- and Regioselective Oxidative C6 Alkenylation of Indole-7-carboxamides“. Organic Letters 23, Nr. 22 (01.11.2021): 8673–77. http://dx.doi.org/10.1021/acs.orglett.1c02948.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Anastasiou, Ioannis, Francesco Ferlin, Orlando Viteritti, Stefano Santoro und Luigi Vaccaro. „Pd/C-catalyzed aerobic oxidative C–H alkenylation of arenes in γ-valerolactone (GVL)“. Molecular Catalysis 513 (August 2021): 111787. http://dx.doi.org/10.1016/j.mcat.2021.111787.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Mo, Juntae, Sujin Lim, Sangjune Park, Taekyu Ryu, Sanghyuck Kim und Phil Ho Lee. „Oxidative ortho-alkenylation of arylphosphine oxides by rhodium-catalyzed C–H bond twofold cleavage“. RSC Advances 3, Nr. 40 (2013): 18296. http://dx.doi.org/10.1039/c3ra43764g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Sharma, Satyasheel, Sangil Han, Youngmi Shin, Neeraj Kumar Mishra, Hyunji Oh, Jihye Park, Jong Hwan Kwak, Beom Soo Shin, Young Hoon Jung und In Su Kim. „Rh-catalyzed oxidative C2-alkenylation of indoles with alkynes: unexpected cleavage of directing group“. Tetrahedron Letters 55, Nr. 19 (Mai 2014): 3104–7. http://dx.doi.org/10.1016/j.tetlet.2014.04.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Suzuki, Yudai, Bo Sun, Tatsuhiko Yoshino, Motomu Kanai und Shigeki Matsunaga. „ChemInform Abstract: Cp*Co(III)-Catalyzed Oxidative C-H Alkenylation of Benzamides with Ethylacrylate.“ ChemInform 46, Nr. 42 (Oktober 2015): no. http://dx.doi.org/10.1002/chin.201542066.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Kim, Namhoon, Minsik Min und Sungwoo Hong. „ChemInform Abstract: Regioselective Palladium(II)-Catalyzed Aerobic Oxidative Heck-Type C3 Alkenylation of Sulfocoumarins.“ ChemInform 47, Nr. 12 (März 2016): no. http://dx.doi.org/10.1002/chin.201612185.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Zhang, Guangling, Ziyuan Li, Yue Huang, Jinyi Xu, Xiaoming Wu und Hequan Yao. „ChemInform Abstract: Direct C3-Alkenylation of Pyridin-4(1H)-one via Oxidative Heck Coupling.“ ChemInform 44, Nr. 22 (13.05.2013): no. http://dx.doi.org/10.1002/chin.201322159.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Laha, Joydev K., Rohan A. Bhimpuria und Gajanan B. Mule. „Site-Selective Oxidative C4 Alkenylation of (NH)-Pyrroles Bearing an Electron-Withdrawing C2 Group“. ChemCatChem 9, Nr. 6 (24.02.2017): 1092–96. http://dx.doi.org/10.1002/cctc.201601468.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Martínez, Ángel Manu, Nuria Rodríguez, Ramón Gómez Arrayás und Juan C. Carretero. „Synthesis of alkylidene pyrrolo[3,4-b]pyridin-7-one derivatives via RhIII-catalyzed cascade oxidative alkenylation/annulation of picolinamides“. Chem. Commun. 50, Nr. 46 (2014): 6105–7. http://dx.doi.org/10.1039/c4cc02322f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Knight, Brian J., Jacob O. Rothbaum und Eric M. Ferreira. „The design of a readily attachable and cleavable molecular scaffold for ortho-selective C–H alkenylation of arene alcohols“. Chemical Science 7, Nr. 3 (2016): 1982–87. http://dx.doi.org/10.1039/c5sc03948g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie