Auswahl der wissenschaftlichen Literatur zum Thema „Oxidation reduction“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Oxidation reduction" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Oxidation reduction"

1

Nam, K. W., H. R. Jeong und S. H. Ahn. „VOCs Removal by Oxidation/Reduction Reaction of Cu-Doped Photocatalyst“. International Journal of Chemical Engineering and Applications 7, Nr. 6 (Dezember 2016): 359–64. http://dx.doi.org/10.18178/ijcea.2016.7.6.605.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nan Yao and Yu Lin Hu, Nan Yao and Yu Lin Hu. „Recent Progress in the Application of Ionic Liquids in Electrochemical Oxidation and Reduction“. Journal of the chemical society of pakistan 41, Nr. 2 (2019): 264. http://dx.doi.org/10.52568/000728/jcsp/41.02.2019.

Der volle Inhalt der Quelle
Annotation:
Electrochemical oxidation and reduction, with clean power, are key to energy conversion and storage. For example, electrochemical oxidation is a determining step for fuel cells, combination of electrochemical oxidation and reduction can form a metal-air battery. Electrochemical oxidation and reduction make significant contributions to prepare valuable chemicals directly and improve yield efficiency and reduce the three wastes, which have become one of the green methodologies. Ionic liquids have attracted increasing attentions in the area of electrochemistry due to their significant properties including good chemical and thermal stability, wide liquid temperature range, considerable ionic conductivity, nonflammability, broad electrochemical potential window and tunable solvent properties. Up to now, abundant studies of ionic liquids have reported for their practical applications for electrochemical reactions. This review covers recent studies on the applications of ILs as green and universal replacements for the traditional reagents in electrochemical oxidation and reduction. The adaptabilities of ILs in these reactions are predicted as a solution to the problems of conventional electrochemical processes and to become a powerful method in electrochemical oxidation and reduction.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hertz, Leif. „Brain Glutamine Synthesis Requires Neuronal Aspartate: A Commentary“. Journal of Cerebral Blood Flow & Metabolism 31, Nr. 1 (10.11.2010): 384–87. http://dx.doi.org/10.1038/jcbfm.2010.199.

Der volle Inhalt der Quelle
Annotation:
Inspired by the paper, ‘Brain glutamine synthesis requires neuronal-born aspartate as amino donor for glial glutamate formation’ by Pardo et al, a modified model of oxidation–reduction, transamination, and mitochondrial carrier reactions involved in aspartate-dependent astrocytic glutamine synthesis and oxidation is proposed. The alternative model retains the need for cytosolic aspartate for transamination of α-ketoglutarate, but the ‘missing’ aspartate molecule is generated within astrocytes during subsequent glutamate oxidation. Oxaloacetate formed during glutamate formation is used during glutamate degradation, and all transmitochondrial reactions, oxidations–reductions, and cytosolic and mitochondrial transaminations are stoichiometrically balanced. The model is consistent with experimental observations made by Pardo et al.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Cerciello, Francesca, Antonio Fabozzi, Christoph Yannakis, Sebastian Schmitt, Oğuzhan Narin, Viktor Scherer und Osvalda Senneca. „Kinetics of iron reduction upon reduction/oxidation cycles“. International Journal of Hydrogen Energy 65 (Mai 2024): 337–47. http://dx.doi.org/10.1016/j.ijhydene.2024.04.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

HIROHASHI, Ryo. „Oxidation-Reduction of Organic Dyes“. Journal of the Japan Society of Colour Material 64, Nr. 2 (1991): 92–99. http://dx.doi.org/10.4011/shikizai1937.64.92.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Khandelwal, Y., G. Moraes, N. J. de Souza, H. W. Fehihaber und E. F. Paulus. „Oxidation/reduction studies with forskolin“. Tetrahedron Letters 27, Nr. 51 (Januar 1986): 6249–52. http://dx.doi.org/10.1016/s0040-4039(00)85444-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Millis, Kevin K., Kim H. Weaver und Dallas L. Rabenstein. „Oxidation/reduction potential of glutathione“. Journal of Organic Chemistry 58, Nr. 15 (Juli 1993): 4144–46. http://dx.doi.org/10.1021/jo00067a060.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Schrittwieser, Joerg H., Johann Sattler, Verena Resch, Francesco G. Mutti und Wolfgang Kroutil. „Recent biocatalytic oxidation–reduction cascades“. Current Opinion in Chemical Biology 15, Nr. 2 (April 2011): 249–56. http://dx.doi.org/10.1016/j.cbpa.2010.11.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Schink, Bernhard, und Michael Friedrich. „Phosphite oxidation by sulphate reduction“. Nature 406, Nr. 6791 (Juli 2000): 37. http://dx.doi.org/10.1038/35017644.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Davis, B. G. „ChemInform Abstract: Oxidation and Reduction“. ChemInform 31, Nr. 17 (08.06.2010): no. http://dx.doi.org/10.1002/chin.200017252.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Oxidation reduction"

1

Monsen, Bodil Elisabeth. „Iron ore concentrates : oxidation and reduction“. Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 1992. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-5747.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hong, William Sungil. „Oxidation-reduction kinetics of porous titanium dioxide /“. The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487331541711442.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zweni, Pumza P. „Dendrimer-transition metal catalyzed oxidation and reduction reactions“. Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/10529.

Der volle Inhalt der Quelle
Annotation:
This project was launched with the aim of developing dendrimer catalysts for oxidation and reduction reactions. Poly(amidoamine) (PAMAM) and poly(propyleneimine) (PPI) dendrimers were of interest because of their well-established synthesis. Chapter 1 describes the fundamentals of dendrimers and provides a brief insight of their application in catalysis. In particular, examples of dendritic catalysts that have been previously employed as oxidation and reduction catalysts are presented. Chapter 2 presents the synthesis and characterization of silica-supported PAMAM dendrimers, their phosphomethylation with Ph2 PCH2OH, and their complexation to palladium complexes. Chapter 3 reports the application of the silica-supported PAMAM-Pd complexes to the oxidation of alkenes to methyl ketones under Wacker-type conditions as well as the use of tBuOOH as the oxidant in these reactions. Chapter 4 discusses the use of the above-mentioned complexes to catalyze the selective hydrogenation of dienes to monoolefins in the presence of H2 under mild reaction conditions. Chapter 5 presents our efforts in modifying PPI dendrimers with the salen moiety to give ligands that are coordinated to the metals Ti and V. Attempts at using the former complexes to promote the epoxidation of alkenes and the latter complexes to catalyze the epoxidation of olefinic alcohols are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bowsher, C. G. „Nitrite reduction and carbohydrate oxidation in root plastids“. Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234223.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Minuzzi, Felipe Crivellaro. „Reduction techniques applied to the oxidation of ethanol“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2018. http://hdl.handle.net/10183/182056.

Der volle Inhalt der Quelle
Annotation:
A simulação numérica de escoamentos reativos, como a combustão, tem um caráter altamente não-linear devido a presença de diversas reações químicas que acontecem entre as espécies que descrevem o processo de oxidação do combustível. Além disso, tais processos ocorrem a nível molecular, tornando o sistema de equações governantes rígido, o que implica na necessidade de esquemas numéricos de alta ordem bem como malhas finas e passo de tempo pequeno, aumentando consideravelmente o custo computacional. Neste sentido, o uso de mecanismos de oxidação detalhados na simulação numérica é proibitivo, e técnicas de redução química são necessárias de modo a desenvolver modelos reduzidos com menos variáveis e rigidez moderado, mantendo a precisão e abrangência do modelo detalhado. O objetivo do presente trabalho é obter uma comparação dos resultados obtidos para duas técnicas de redução química diferentes, Directed Relation Graph - DRG, baseada no desenvolvimento de mecanismos esqueletos, e a Reaction Diffusion Manifolds - REDIM, baseada na separação das escalas de tempo. Como validação dos modelos propostos, simulações numéricas 1D de chamas pré-misturadas e não pré-misturadas, bem como de reatores homogêneos, são desenvolvidas. Além disso, uma estratégia que une as duas técnicas de redução é apresentada, com o objetivo de ser aplicada em mecanismos cinéticos grandes.
Numerical simulation of reactive flows, such as combustion, has a highly non-linear character due to the presence of several chemical reactions that occur among the chemical species that describe the process of fuel’s oxidation. Besides, such processes occur at a molecular level, making the system of governing equations stiff, which implies in the need of high order numerical schemes as well as fine meshes and small time step, enhancing considerably the computational cost. In this sense, the use of detailed oxidation mechanisms in the numerical simulation is prohibitive, and chemical reduction techniques are needed in order to develop reduced models with less variables and moderate stiffness, while maintaining the accuracy and comprehensiveness of the detailed model. The objective of the present works if to obtain a comparison between two chemical reduction techniques, the Directed Relation Graph - DRG, based on the skeletal mechanisms generation, and the Reaction Diffusion Manifolds - REDIM, based on the separation of time scales. As validation of the proposed models, one-dimensional numerical simulations of premixed and non-premixed flames, as well as homogeneous reactors, are carry out. Besides, a coupled methodology between DRG and REDIM is presented, that will provide a useful tool for simulation of fuels with very large detailed kinetic mechanisms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ayub, Ibrar. „Oxidation and reduction properties of iron-containing oxides“. Thesis, n.p, 2001. http://ethos.bl.uk/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sim, Andrew Gregory Chemical Sciences &amp Engineering Faculty of Engineering UNSW. „Reduction-oxidation cycling of metal oxides for hydrogen production“. Awarded By:University of New South Wales. Chemical Sciences & Engineering, 2010. http://handle.unsw.edu.au/1959.4/44763.

Der volle Inhalt der Quelle
Annotation:
A process for the production of clean hydrogen from methane based upon the sequential reduction and oxidation of metal oxides has been studied. The original process, based on iron oxide, suffers from significant disadvantages including deactivation by sintering and coke deposition. Improvement of the iron based system and identification and development of alternative metal oxides for hydrogen production has formed the basis of this study. The literature review outlines current methods for hydrogen production, followed by a review of the Steam-Iron Process as an improved and simpler method for clean hydrogen production. Thermodynamic assessment shows Fe3O4/FeO/Fe, WO3/WO2/W and SnO2/SnO/Sn to be the most prospective systems for the Steam-Metal Process. Experimental testing showed that Fe and W based systems were suitable for hydrogen production, but Sn based systems were unsuitable due to poor reducibility using methane. Attention was then focused on the addition of CeO2/ZrO2 promoters to Fe and W based systems in order to improve reactivity and prevent catalyst deactivation. CeO2/ZrO2 promoted Fe2O3 showed improved redox reactivity and increased stability, with formation of FeO. This aided in mitigation of sintering and introduced the possibility of prevention of coking, as catalysed by methane decomposition over fully reduced Fe metal. Although WO3 was found to be a suitable oxide, complete reduction to tungsten metal resulted in the formation of tungsten carbide and contamination of hydrogen produced. The formation of 31mol% [CeO2/ZrO2] / 69 mol% WO3 showed stabilised reduction using methane, allowing for redox cycling of the WO3-WO2 couple and preventing complete reduction to W metal. The use of the doped metal oxide showed the best performance of all the metal oxides tested, with clean hydrogen production over multiple redox cycles and high metal oxide stability. Further kinetic studies of both the reduction and oxidation reactions show reduction is chemical reaction controlled process (WO3/WO2.9 → WO2) with an apparent activation energy of 142 ?? 3 kJ/mol. Oxidation is also fitted to a chemically controlled process, with a reaction rate expression derived as: rH2 = [0.064 + (F x 0.00038)].e^(-108750/8.314xT).[PH2O]^(0.75) The apparent activation energy for oxidation was calculated as 109 ?? 1 kJ/mol.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Aldea, Ioana Raluca. „Oxidation and reduction processes, investigation of new catalytic systems“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0018/NQ48082.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shan, Jingning. „Polymer-supported catalysts for oxygen reduction and methanol oxidation“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0017/MQ55541.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Yu, Kyunghee. „Test of copper red glazes in reduction and oxidation“. Virtual Press, 1987. http://liblink.bsu.edu/uhtbin/catkey/495302.

Der volle Inhalt der Quelle
Annotation:
The problem is to test how the copper red color will turn out depending on the recipes of the glazes and the firing methods. Sixteen different copper red glazes are tested for the reduction and the oxidation firing. Through the repeated firings some glazes are recommended for its consistency and color. It is also learned that the unpredictability is the biggest problem in the reduction firing. Unlike the reduction firing, the result from the oxidation firing is quite consistent, but none of the glazes has the successful local reduction in the oxidation firing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Oxidation reduction"

1

name, No. Hydrolysis, oxidation and reduction. Chichester: Wiley, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

M, Roberts Stanley, und Poignant Geraldine, Hrsg. Hydrolysis, oxidation and reduction. Chichester, West Sussex, England: Wiley, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

1927-, Scott Gerald, Hrsg. Atmospheric oxidation and antioxidants. Amsterdam: Elsevier, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Reyes, Adolfo M. Handbook on oxidative stress: New research. Hauppauge, N.Y: Nova Science Publisher's, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Humiston, T. J. Production-scale direct oxide reduction demonstration. Herausgegeben von Santi D. J, Long J. L, Rockwell International. Rocky Flats Plant und United States. Dept. of Energy. Albuquerque Operations Office. Golden, Colo: Rockwell International, Aerospace Operations, Rocky Flats Plant, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Prousek, Josef. Reakce iniciované přenosem elektronu. Praha: Academia, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Stucki, J. W. Oxidation-reduction mechanisms in iron-bearing phyllosilicates. Athens, GA: U.S. Environmental Protection Agency, Environmental Research Laboratory, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Stucki, J. W. Oxidation-reduction mechanisms in iron-bearing phyllosilicates. Athens, GA: U.S. Environmental Protection Agency, Environmental Research Laboratory, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Stucki, J. W. Oxidation-reduction mechanisms in iron-bearing phyllosilicates. Athens, GA: U.S. Environmental Protection Agency, Environmental Research Laboratory, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Geoghegan, Susan M. Modulating the redox propertoes of a flavoprotein; cloning, expression and site-directed mutagenesis of flavodoxin from M. elsdenii. Dublin: University College Dublin, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Oxidation reduction"

1

Gooch, Jan W. „Oxidation-Reduction“. In Encyclopedic Dictionary of Polymers, 510. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8313.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Mehrotra, R. N. „Oxidation and Reduction“. In Organic Reaction Mechanisms Series, 69–132. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470975800.ch3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Madsen, Robert. „Oxidation and Reduction“. In Glycoscience: Chemistry and Chemical Biology I–III, 195–229. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56874-9_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Banerji, K. K. „Oxidation and Reduction“. In Organic Reaction Mechanisms · 2008, 79–128. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470979525.ch3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lewis, Rob, und Wynne Evans. „Oxidation and Reduction“. In Chemistry, 100–117. London: Macmillan Education UK, 2011. http://dx.doi.org/10.1007/978-0-230-34492-1_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lewis, Rob, und Wynne Evans. „Oxidation and Reduction“. In Chemistry, 95–116. London: Macmillan Education UK, 1997. http://dx.doi.org/10.1007/978-1-349-14045-9_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dennis, David T. „Oxidation-Reduction Reactions“. In The Biochemistry of Energy Utilization in Plants, 9–18. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3121-3_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Mehrotra, R. N. „Oxidation and Reduction“. In Organic Reaction Mechanisms Series, 117–90. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119972471.ch3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Mehrotra, R. N. „Oxidation and Reduction“. In Organic Reaction Mechanisms Series, 97–197. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118560273.ch3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

K., Lawrence, und Yan Li. „Chemical Reduction/Oxidation“. In Advanced Physicochemical Treatment Processes, 483–519. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1007/978-1-59745-029-4_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Oxidation reduction"

1

Ferreri, Paolo, Giuseppe Cerrelli, Yong Miao, Stefano Pellegrino und Lorenzo Bianchi. „Conventional and Electrically Heated Diesel Oxidation Catalyst Physical Based Modeling“. In CO2 Reduction for Transportation Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2018. http://dx.doi.org/10.4271/2018-37-0010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nosova, Maria Anatolyevna, und Anastasia Vyacheslavovna Levshina. „Oxidation-reduction processes in oscillating reaction“. In III International Research-to-practice Conference, chair Svetlana Vladislavovna Levshina. TSNS Interaktiv Plus, 2016. http://dx.doi.org/10.21661/r-112420.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lee, Christina M., Kevin A. Davis, Robert Seeley, Adel F. Sarofim, Wilford Burton, Dana W. Overacker, Eric G. Eddings und JoAnn S. Lighty. „Catalytic Reduction and Oxidation of Biomass Combustor Effluent“. In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-2185.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lu, Tianfeng, und Chung Law. „Approaches to Mechanism Reduction for Hydrocarbon Oxidation: Ethylene“. In 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-1326.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Rittmann, B. E. „Oxidation/reduction of multivalent actinides in the subsurface“. In Plutonium futures-The science (Topical conference on Plutonium and actinides). AIP, 2000. http://dx.doi.org/10.1063/1.1292202.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Fukano, Izumi, Katsuyuki Sugawara, Kenji Sasaki, Takeshi Honjou und Shigekazu Hatano. „A Diesel Oxidation Catalyst for Exhaust Emissions Reduction“. In International Truck & Bus Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/932958.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gao Meijuan, Zhang Fan und Tian Jingwen. „Oxidation Reduction Potential network sensor based on Kalman filtering“. In 2008 Chinese Control Conference (CCC). IEEE, 2008. http://dx.doi.org/10.1109/chicc.2008.4605265.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zelenka, Paul, Klaus Ostgathe und Egbert Lox. „Reduction of Diesel Exhaust Emissions by Using Oxidation Catalysts“. In International Fuels & Lubricants Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1990. http://dx.doi.org/10.4271/902111.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Powell, Ronald A., Derryck Settles, Larry Lane, Carlos L. Ygartua, Arun R. Srivatsa und Clive Hayzelden. „Characterization of copper oxidation and reduction using spectroscopic ellipsometry“. In Microelectronic Manufacturing, herausgegeben von Michael L. Miller und Kaihan A. Ashtiani. SPIE, 2000. http://dx.doi.org/10.1117/12.410065.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lehtoranta, K., P. Matilainen, T. J. J. Kinnunen, J. Heikkilä, T. Rönkkö, J. Keskinen und T. Murtonen. „Diesel Particle Emission Reduction by a Particle Oxidation Catalyst“. In SAE 2009 Powertrains Fuels and Lubricants Meeting. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2009. http://dx.doi.org/10.4271/2009-01-2705.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Oxidation reduction"

1

Zafiriou, Oliver C. Oxidation-Reduction Photochemistry in Marine Systems. Fort Belvoir, VA: Defense Technical Information Center, März 1997. http://dx.doi.org/10.21236/ada324011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Phelps, M. R., und W. A. Wilcox. Oxidative reduction of glove box wipers with a downdraft thermal oxidation system. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/239332.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Badrinarayanan und Olsen. PR-179-11201-R01 Performance Evaluation of Multiple Oxidation Catalysts on a Lean Burn Natural Gas Engine. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2012. http://dx.doi.org/10.55274/r0010772.

Der volle Inhalt der Quelle
Annotation:
Two-way catalysts or oxidation catalysts are the common after-treatment systems used on lean burn natural gas engines to reduce CO, VOCs and formaldehyde emissions. The study evaluates the performance of oxidation catalysts from commercial vendors for varying catalyst temperature and space velocity. For this study, a part of the exhaust from a Waukesha VGF-18 GL lean burn natural gas engine was flowed through a catalyst slipstream system to assess the performance of the oxidation catalysts. The slipstream is used to reduce the size of the catalysts and to allow precise control of temperature and space velocity. Analyzers used include Rosemount 5-gas emissions bench, Nicolet Fourier Transform Infra-Red spectrometer and HP 5890 Series II Gas Chromatograph. The oxidation catalysts were degreened at 1200oF (650oC) for 24 hours prior to performance testing. The reduction efficencies for the emission species varied among the oxidation catalysts tested from different vendors. Most oxidation catalysts showed over 90% maximum reduction efficiencies on CO, VOCs and formaldehyde. VOC reduction efficiency was limited by poor propane emission reduction efficiency at the catalyst temperatures tested. Saturated hydrocarbons such as propane showed low reduction efficiencies on all oxidation catalysts due to high activation energy. Variation in space velocity showed very little effect on the conversion efficiencies. Most species showed over 90% conversion efficiency during the space velocity sweep. Adding more catalyst volume may not increase the reduction efficiency of emission species. Varying cell density showed very little effect on performance of the oxidation catalysts. The friction factor correlation showed the friction factor for flow through a single channel is inversely proportional to cell density.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Grimes, Travis Shane, Bruce Jay Mincher und Nicholas C. Schmitt. Reduction Rates for Higher Americium Oxidation States in Nitric Acid. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1244636.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hurst, J. K. [Fundamental studies in oxidation reduction in relation to water photolysis]. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/7068972.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hurst, J. K. (Fundamental studies in oxidation-reduction in relation to water photolysis). Office of Scientific and Technical Information (OSTI), Januar 1991. http://dx.doi.org/10.2172/5327232.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Walker, Robert A. In-Situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2010. http://dx.doi.org/10.21236/ada535217.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ambrosini, Andrea, Peter Loutzenhiser, Sheldon Jeter, Ellen Stechel und Hany Al-Ansary. High Performance Reduction/Oxidation Metal Oxides for Thermochemical Energy Storage (PROMOTES) /CSP. Office of Scientific and Technical Information (OSTI), Januar 2018. http://dx.doi.org/10.2172/1513523.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Prater, W. Reduction of Resistivity in Cu Thin Films by Partial Oxidation: Microstructural Mechanisms. Office of Scientific and Technical Information (OSTI), Oktober 2003. http://dx.doi.org/10.2172/826466.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Barker, Amanda, Taylor Sullivan, W. Baxter, Robyn Barbato, Shawn Gallaher, Grace Patton, Joseph Smith und Thomas Douglas. Iron oxidation–reduction processes in warming permafrost soils and surface waters expose a seasonally rusting Arctic watershed. Engineer Research and Development Center (U.S.), Juni 2024. http://dx.doi.org/10.21079/11681/48714.

Der volle Inhalt der Quelle
Annotation:
Landscape-scale changes from climate change in the Arctic affect the soil thermal regime and impact the depth to permafrost in vulnerable tundra watersheds. When top-down thaw of permafrost occurs, oxygen and porewaters infiltrate deeper in the soil column exposing fresh, previously frozen material and altering redox conditions. A gap remains in understanding how redox stratifications in thawing permafrost impact the geochemistry of watersheds in response to climate change and how investigations into redox may be scaled by coupling extensive geophysical mapping techniques. In this study, we collected soils and soil porewaters from three soil pits and surface water samples from an Arctic watershed on the North Slope of Alaska and analyzed for trace metals iron (Fe) and manganese (Mn) and Fe oxidation state using bulk and microscale techniques. We also used geophysical mapping and soil thermistors to measure active layer depths across the watershed to relate accelerating permafrost thaw to watershed geochemistry. Overall, evidence showed that Fe and Mn could be useful as geochemical indicators of permafrost thaw and release of Fe(II) from thawing permafrost and further oxidation to Fe(III) could translate to a higher degree of seasonal rusting coinciding with the warming and thawing of near surface-permafrost.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie