Dissertationen zum Thema „Oxidační procesy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-16 Dissertationen für die Forschung zum Thema "Oxidační procesy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Vlach, Tomáš. „Studium degradace pesticidů pomocí pokročilých oxidačních procesů“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2020. http://www.nusl.cz/ntk/nusl-433114.
Der volle Inhalt der QuelleStříteský, Luboš. „Využití oxidačních procesů (AOP) pro odstraňování mikropolutantů“. Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-226161.
Der volle Inhalt der QuelleProcházková, Petra. „Posouzení účinnosti pokročilých oxidačních procesů prostřednictvím testů ekotoxicity“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2019. http://www.nusl.cz/ntk/nusl-401843.
Der volle Inhalt der QuelleMoravčíková, Světlana. „Sledování účinnosti odstraňování léčiva z vody vybranými adsorbenty“. Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2020. http://www.nusl.cz/ntk/nusl-409703.
Der volle Inhalt der QuelleDalajková, Nikola. „Odstranění vybraných organických polutantů z vody s využitím pokročilých oxidačních procesů“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2018. http://www.nusl.cz/ntk/nusl-376792.
Der volle Inhalt der QuelleVenská, Petra. „Odstranění organického znečistění z vody s využitím UV záření“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2017. http://www.nusl.cz/ntk/nusl-295686.
Der volle Inhalt der QuellePrehradná, Jana. „Úprava oxidačních vlastností TiAl intermetalik přetavováním povrchu v řízené atmosféře“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231717.
Der volle Inhalt der QuelleBílková, Zuzana. „Studium degradace léčiv s využitím pokročilých oxidačních procesů“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2015. http://www.nusl.cz/ntk/nusl-234378.
Der volle Inhalt der QuelleBurton, Robert M. „Oxidant concentration effects in the hydroxylation of phenol over titanium-based zeolites Al-free Ti-Beta and TS-1“. Thesis, Stellenbosch : University of Stellenbosch, 2006. http://hdl.handle.net/10019.1/2366.
Der volle Inhalt der QuelleThis work focuses on the effects of hydrogen peroxide concentration on the catalytic activity and product selectivity in the liquid-phase hydroxylation of phenol over titanium-substituted zeolites Al-free Ti-Beta and TS-1 in water and methanol solvents. Hydroquinone is typically the desired product, and these solvents employed have previously been shown to be of importance in controlling the selectivity of this reaction. Different volumetric quantities of an aqueous 30 wt-% peroxide solution were added to either water or methanol solutions containing the catalyst and phenol substrate, and the reaction monitored by withdrawing samples over a period of 6-8 hours. For Al-free Ti-Beta catalysed reactions, the peroxide concentration affects the selectivity and activity differently in water and methanol solvents. Using methanol solvent, the selectivity to hydroquinone formation is dominant for all peroxide concentrations (p/o-ratio > 1), and favoured by higher initial peroxide concentrations (> 1.27 vol-%), where p/o-ratios of up to can be reached; in water solvent, increasing the peroxide concentration above this level results in almost unchanging selectivity (p/o-ratio of ca. 0.35). For lower peroxide concentrations in water, the p/o-ratio increases slightly, but never exceeds the statistical distribution of ca. 0.5. Using water as a solvent, higher phenol conversion is obtained as the initial peroxide concentration increases; in methanol the phenol conversion is largely independent of peroxide concentration. As expected for the smaller pore TS-1, higher hydroquinone selectivity is obtained in methanol than for Al-free Ti-Beta, which is consistent with shape-selectivity effects enhanced by the use of this protic solvent. Interestingly, with TS-1 the p/o-ratio is higher at lower phenol conversions, and specifically when the initial peroxide concentration is low (p/o-ratio exceeding 3 were obtained at low phenol conversion), and decreases to a near constant value at higher conversions regardless of the starting peroxide concentration. Thus, low peroxide concentrations favour hydroquinone formation when TS-1 is used as the catalyst. Comparing the performance of the two catalysts using methanol solvent, the phenol conversion on TS-1 is more significantly influenced by higher hydrogen peroxide concentrations than Al-free Ti-Beta. However, with higher initial concentrations the unselective phenol conversion to tars is more severe since the hydroquinone selectivity is not higher at these high peroxide concentrations. The increased tar formation, expressed as tar deposition on the catalyst or as the tar formation rate constant, confirms that the greater amount of free-peroxide present is mainly responsible for the non-selective conversion of phenol. Kinetic modelling of the reaction data with an overall second-order kinetic model gave a good fit in both solvents, and the phenol rate constant is independent of changing hydrogen peroxide concentration for the hydroxylation over Al-free Ti-Beta using water as the solvent (kPhenol = 1.93 x 10-9 dm3/mmol.m2.s). This constant value suggests that the model developed to represent the experimental data is accurate. For TS-1 in methanol solvent the rate constant is also independent of peroxide concentration (kPhenol = 1.36 x 10-8 dm3/mmol.m2.s). The effect of the method of peroxide addition was also investigated by adding discrete amounts over a period of 4.5 hours, and was seen to improve hydroquinone selectivity for reaction on both catalysts, and most significantly for Al-free Ti-Beta in methanol solvent. With TS-1, the mode of peroxide addition had little influence on phenol conversion, but the initial selectivity to hydroquinone was ca. 1.6 times higher than for an equivalent single-portion addition (at a similar phenol conversion). Discrete peroxide addition for hydroxylation in methanol over Al-free Ti-Beta gave greatly improved hydroquinone selectivities compared to the equivalent single-dose addition. Compared to TS-1, the initial selectivity was not as high (p/o-ratios of 0.86 and 1.40 respectively at 10 mol-% phenol conversion), but this can be explained on the basis of geometric limitations in the micropores of TS-1 favouring hydroquinone formation. The final selectivity, however, is marginally higher (using the same mode of peroxide addition, and at the same phenol conversion). Discrete peroxide addition has an additional benefit in that it also reduces the quantity of free-peroxide available for product over-oxidation, and consequently reduces the amount of tars formed. Thus, the interaction of the effects of peroxide concentration and the solvent composition and polarity on the product selectivity and degree of tar formation is important. Particularly with TS-1, lower peroxide concentrations in bulk methanol solvent are highly beneficial for hydroquinone formation, because of the implicit geometric constraints in the micropores, the lower water concentration, and the decreased tar formation associated with high methanol concentrations. This could have significant reactor design implications, as the results obtained here suggest that the reaction should be terminated after approximately 30 minutes to maximise hydroquinone production (under the conditions evaluated in these experiments), even though the corresponding phenol conversions are low (ca. 10 mol-%). The higher hydroquinone selectivities reached at low phenol conversions for the discrete peroxide addition experiments also confirm this. Practically, to enhance the hydroquinone selectivity for reaction over TS-1, the initial phenol-peroxide molar ratio should be ca. 10, methanol should constitute not less than 90 vol-% of the reaction volume, and the peroxide should be added in discrete amounts. For reaction over Al-free Ti-Beta, methanol solvent also enhances the hydroquinone formation as expected. At low phenol conversions (ca. 10 mol-%) hydroquinone is still the preferred product, although in contrast to TS-1 the selectivity increases with phenol conversion, and is higher with higher initial peroxide concentrations. Under the best conditions evaluated here for optimal hydroquinone formation, the initial phenol-peroxide molar ratio should be ca. 2.5, with methanol making up at least 90 vol-% of the total volume. Discrete peroxide addition in methanol solvent for the Al-free Ti-Beta catalysed hydroxylation gives excellent improvements in hydroquinone selectivity (2.5 times higher than water solvent), and the addition in more discrete portions might further improve hydroquinone formation, and should therefore be examined.
Franz, Rudolf. „Výzkum progresivních metod snižování obsahu škodlivých látek ve výfukových plynech vznětových motorů“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-418061.
Der volle Inhalt der QuelleOLŠAN, Pavel. „Pokročilé oxidační procesy v environmentálních aplikacích“. Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-156306.
Der volle Inhalt der QuelleŠRAM, Vlastimil. „Funkční tenké vrstvy pro aplikace využívající pokročilé oxidační procesy“. Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-156307.
Der volle Inhalt der QuellePetr, Tomáš. „Změny ve složení a lokalizaci gangliosidů u cholestázy v návaznosti na markery signalizující patologické procesy v jaterních buňkách“. Doctoral thesis, 2016. http://www.nusl.cz/ntk/nusl-265171.
Der volle Inhalt der QuelleSu, Hsin-Wei, und 蘇信瑋. „An investigation of radical oxidant generated in thermally activated persulfate process“. Thesis, 2008. http://ndltd.ncl.edu.tw/handle/00838235574471313344.
Der volle Inhalt der Quelle國立中興大學
環境工程學系所
96
In situ chemical oxidation (ISCO) is an alternative to remediate soil and groundwater. Sodium peruslfate (Na2S2O8), a strong oxidant with a redox potential of 2.01 V, is recently used for ISCO. It has been postulated that persulfate anion can be thermally activated to produce a powerful oxidant known as the sulfate radical (SO4-•), which can potentially destroy organic compounds. Under alkaline condition, the sulfate radical can proceed radical interconversion reaction with hydroxyl ions to generate the hydroxyl radical (HO•). As sulfate and hydroxyl radicals are possibly simultaneously present or either one can prevail over the other during the activated persulfate process depending on solution conditions (especially pH), SO4-• and HO•present different reactivities towards organic contaminants. Therefore, the objective of this research focuses on identifying the sulfate and hydroxyl radicals produced from persulfate activation under different pH conditions. It is difficult to measure or identify SO4-• and HO• because short half-lives of two radicals. The chemical probe technique was attempted for identifying the radical produced in the thermal persulfate activation system. Due to the differences of their reaction rates between SO4-• and HO•, tert-butyl alcohol (TBA), nitrobenzene (NB) and phenol were selected as chemical probes. Experimental results revealed that TBA can be degraded with the sulfate radical, but also with persulfate anion. Therefore, TBA may not be a suitable chemical probe. However, NB and phenol were demonstrated to react only with radical oxidants and application as chemical probes. Furthermore, the reaction orders with respect to persulfate and chemical probe (NB and phenol) are nearly 1 and 0, respectively. The results of radical identification experiments revealed that the degradation rate of NB at pH = 2, 4 and 7 is much slower than those at pH = 9 and 12. For example, the degradation rates at pH = 9 and 12 were increased by 13.8% and 388%, respectively, comparing to that at pH = 2. Because the reaction rate constant between NB and HO• is higher than that between NB and SO4-•, it can be deduced that the concentration of HO• increased when pH was increased for pH = 9 and HO• would be the major radical oxidant. On the other hand, it was observed that the degradation rate of phenol are faster than that of NB under pH = 2, 4 and 7. The reaction rates between phenol and SO4-•/HO• have been reported at near diffusion rates (109 M-1s-1). When comparing reactions of SO4-•/HO• towards NB and phenol, it can be conducted that under neutral and acidic conditions, SO4-• is the major radical oxidant species.
KRAJČOVIČ, Jan. „Vytváření tenkých vrstev pro aplikace pokročilých oxidačních procesů s využitím kovových dopantů“. Master's thesis, 2014. http://www.nusl.cz/ntk/nusl-170232.
Der volle Inhalt der QuelleSherikar, Baburao Neelkantappa. „Investigations of Solution Combustion Process and their Utilization for Bioceramic Applications“. Thesis, 2014. http://hdl.handle.net/2005/3015.
Der volle Inhalt der Quelle