Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Oxidační procesy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Oxidační procesy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Oxidační procesy"
Bilets, D. Yu, D. V. Miroshnichenko, P. V. Karnozhitskiy und Yu V. Nikolaichuk. „Finding of kinetic characteristics of the process co-gasification of heavy coal tars with lignite and walnut shell“. Chemistry, Technology and Application of Substances 3, Nr. 2 (01.11.2020): 46–52. http://dx.doi.org/10.23939/ctas2020.02.046.
Der volle Inhalt der QuelleYang, Cheng, Tian Yu Zhao, Li Juan Sun, Hong Song Song und Da Bo Liu. „Process Conditions of Exfoliated Single-Layer Graphite“. Advanced Materials Research 430-432 (Januar 2012): 350–54. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.350.
Der volle Inhalt der QuelleLiang, Yu-Feng, Xiaoyang Wang, Conghui Tang, Tao Shen, Jianzhong Liu und Ning Jiao. „NHPI and palladium cocatalyzed aerobic oxidative acylation of arenes through a radical process“. Chemical Communications 52, Nr. 7 (2016): 1416–19. http://dx.doi.org/10.1039/c5cc08945j.
Der volle Inhalt der QuelleGupta, Madhu, Amrita Srivastava und Sheila Srivastava. „Sodium Periodate as a Selective Oxidant for Diclofenac Sodium in Alkaline Medium: A Quantum Chemical Approach“. Bulletin of Chemical Reaction Engineering & Catalysis 15, Nr. 2 (06.07.2020): 545–60. http://dx.doi.org/10.9767/bcrec.15.2.7555.545-560.
Der volle Inhalt der QuelleNurhadi, Mukhamad, Ratna Kusumawardani, Teguh Wirawan, Sumari Sumari, Sin Yuan Lai und Hadi Nur. „Catalytic Performance of TiO2–Carbon Mesoporous-Derived from Fish Bones in Styrene Oxidation with Aqueous Hydrogen Peroxide as an Oxidant“. Bulletin of Chemical Reaction Engineering & Catalysis 16, Nr. 1 (04.02.2021): 88–96. http://dx.doi.org/10.9767/bcrec.16.1.9729.88-96.
Der volle Inhalt der QuelleNurhadi, Mukhamad, Ratna Kusumawardani und Hadi Nur. „Negative Effect of Calcination to Catalytic Performance of Coal Char-loaded TiO2 Catalyst in Styrene Oxidation with Hydrogen Peroxide as Oxidant“. Bulletin of Chemical Reaction Engineering & Catalysis 13, Nr. 1 (02.04.2018): 113. http://dx.doi.org/10.9767/bcrec.13.1.1171.113-118.
Der volle Inhalt der QuelleLiu, Yu, Qin Yu Gao, Lian Xin Liu und Guang Xia Shi. „Study on Industry Process of the Rubber Anti-Oxidant RD“. Applied Mechanics and Materials 79 (Juli 2011): 99–104. http://dx.doi.org/10.4028/www.scientific.net/amm.79.99.
Der volle Inhalt der QuelleLiu, Yu, Qinyu Gao, Lianxin Liu und Guangxia Shi. „Study on the Industrial Process of Rubber Anti-oxidant RD“. Journal of the Korean Chemical Society 55, Nr. 5 (20.10.2011): 830–34. http://dx.doi.org/10.5012/jkcs.2011.55.5.830.
Der volle Inhalt der QuelleChen, Qiaonan, Lan Sheng, Jiahui Du, Guan Xi und Sean Xiao-An Zhang. „Photooxidation of oxazolidine molecular switches: uncovering an intramolecular ionization facilitated cyclization process“. Chemical Communications 54, Nr. 40 (2018): 5094–97. http://dx.doi.org/10.1039/c8cc00983j.
Der volle Inhalt der QuelleWang, Shizong, und Jianlong Wang. „Comparative study on sulfamethoxazole degradation by Fenton and Fe(ii)-activated persulfate process“. RSC Adv. 7, Nr. 77 (2017): 48670–77. http://dx.doi.org/10.1039/c7ra09325j.
Der volle Inhalt der QuelleDissertationen zum Thema "Oxidační procesy"
Vlach, Tomáš. „Studium degradace pesticidů pomocí pokročilých oxidačních procesů“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2020. http://www.nusl.cz/ntk/nusl-433114.
Der volle Inhalt der QuelleStříteský, Luboš. „Využití oxidačních procesů (AOP) pro odstraňování mikropolutantů“. Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-226161.
Der volle Inhalt der QuelleProcházková, Petra. „Posouzení účinnosti pokročilých oxidačních procesů prostřednictvím testů ekotoxicity“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2019. http://www.nusl.cz/ntk/nusl-401843.
Der volle Inhalt der QuelleMoravčíková, Světlana. „Sledování účinnosti odstraňování léčiva z vody vybranými adsorbenty“. Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2020. http://www.nusl.cz/ntk/nusl-409703.
Der volle Inhalt der QuelleDalajková, Nikola. „Odstranění vybraných organických polutantů z vody s využitím pokročilých oxidačních procesů“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2018. http://www.nusl.cz/ntk/nusl-376792.
Der volle Inhalt der QuelleVenská, Petra. „Odstranění organického znečistění z vody s využitím UV záření“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2017. http://www.nusl.cz/ntk/nusl-295686.
Der volle Inhalt der QuellePrehradná, Jana. „Úprava oxidačních vlastností TiAl intermetalik přetavováním povrchu v řízené atmosféře“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231717.
Der volle Inhalt der QuelleBílková, Zuzana. „Studium degradace léčiv s využitím pokročilých oxidačních procesů“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2015. http://www.nusl.cz/ntk/nusl-234378.
Der volle Inhalt der QuelleBurton, Robert M. „Oxidant concentration effects in the hydroxylation of phenol over titanium-based zeolites Al-free Ti-Beta and TS-1“. Thesis, Stellenbosch : University of Stellenbosch, 2006. http://hdl.handle.net/10019.1/2366.
Der volle Inhalt der QuelleThis work focuses on the effects of hydrogen peroxide concentration on the catalytic activity and product selectivity in the liquid-phase hydroxylation of phenol over titanium-substituted zeolites Al-free Ti-Beta and TS-1 in water and methanol solvents. Hydroquinone is typically the desired product, and these solvents employed have previously been shown to be of importance in controlling the selectivity of this reaction. Different volumetric quantities of an aqueous 30 wt-% peroxide solution were added to either water or methanol solutions containing the catalyst and phenol substrate, and the reaction monitored by withdrawing samples over a period of 6-8 hours. For Al-free Ti-Beta catalysed reactions, the peroxide concentration affects the selectivity and activity differently in water and methanol solvents. Using methanol solvent, the selectivity to hydroquinone formation is dominant for all peroxide concentrations (p/o-ratio > 1), and favoured by higher initial peroxide concentrations (> 1.27 vol-%), where p/o-ratios of up to can be reached; in water solvent, increasing the peroxide concentration above this level results in almost unchanging selectivity (p/o-ratio of ca. 0.35). For lower peroxide concentrations in water, the p/o-ratio increases slightly, but never exceeds the statistical distribution of ca. 0.5. Using water as a solvent, higher phenol conversion is obtained as the initial peroxide concentration increases; in methanol the phenol conversion is largely independent of peroxide concentration. As expected for the smaller pore TS-1, higher hydroquinone selectivity is obtained in methanol than for Al-free Ti-Beta, which is consistent with shape-selectivity effects enhanced by the use of this protic solvent. Interestingly, with TS-1 the p/o-ratio is higher at lower phenol conversions, and specifically when the initial peroxide concentration is low (p/o-ratio exceeding 3 were obtained at low phenol conversion), and decreases to a near constant value at higher conversions regardless of the starting peroxide concentration. Thus, low peroxide concentrations favour hydroquinone formation when TS-1 is used as the catalyst. Comparing the performance of the two catalysts using methanol solvent, the phenol conversion on TS-1 is more significantly influenced by higher hydrogen peroxide concentrations than Al-free Ti-Beta. However, with higher initial concentrations the unselective phenol conversion to tars is more severe since the hydroquinone selectivity is not higher at these high peroxide concentrations. The increased tar formation, expressed as tar deposition on the catalyst or as the tar formation rate constant, confirms that the greater amount of free-peroxide present is mainly responsible for the non-selective conversion of phenol. Kinetic modelling of the reaction data with an overall second-order kinetic model gave a good fit in both solvents, and the phenol rate constant is independent of changing hydrogen peroxide concentration for the hydroxylation over Al-free Ti-Beta using water as the solvent (kPhenol = 1.93 x 10-9 dm3/mmol.m2.s). This constant value suggests that the model developed to represent the experimental data is accurate. For TS-1 in methanol solvent the rate constant is also independent of peroxide concentration (kPhenol = 1.36 x 10-8 dm3/mmol.m2.s). The effect of the method of peroxide addition was also investigated by adding discrete amounts over a period of 4.5 hours, and was seen to improve hydroquinone selectivity for reaction on both catalysts, and most significantly for Al-free Ti-Beta in methanol solvent. With TS-1, the mode of peroxide addition had little influence on phenol conversion, but the initial selectivity to hydroquinone was ca. 1.6 times higher than for an equivalent single-portion addition (at a similar phenol conversion). Discrete peroxide addition for hydroxylation in methanol over Al-free Ti-Beta gave greatly improved hydroquinone selectivities compared to the equivalent single-dose addition. Compared to TS-1, the initial selectivity was not as high (p/o-ratios of 0.86 and 1.40 respectively at 10 mol-% phenol conversion), but this can be explained on the basis of geometric limitations in the micropores of TS-1 favouring hydroquinone formation. The final selectivity, however, is marginally higher (using the same mode of peroxide addition, and at the same phenol conversion). Discrete peroxide addition has an additional benefit in that it also reduces the quantity of free-peroxide available for product over-oxidation, and consequently reduces the amount of tars formed. Thus, the interaction of the effects of peroxide concentration and the solvent composition and polarity on the product selectivity and degree of tar formation is important. Particularly with TS-1, lower peroxide concentrations in bulk methanol solvent are highly beneficial for hydroquinone formation, because of the implicit geometric constraints in the micropores, the lower water concentration, and the decreased tar formation associated with high methanol concentrations. This could have significant reactor design implications, as the results obtained here suggest that the reaction should be terminated after approximately 30 minutes to maximise hydroquinone production (under the conditions evaluated in these experiments), even though the corresponding phenol conversions are low (ca. 10 mol-%). The higher hydroquinone selectivities reached at low phenol conversions for the discrete peroxide addition experiments also confirm this. Practically, to enhance the hydroquinone selectivity for reaction over TS-1, the initial phenol-peroxide molar ratio should be ca. 10, methanol should constitute not less than 90 vol-% of the reaction volume, and the peroxide should be added in discrete amounts. For reaction over Al-free Ti-Beta, methanol solvent also enhances the hydroquinone formation as expected. At low phenol conversions (ca. 10 mol-%) hydroquinone is still the preferred product, although in contrast to TS-1 the selectivity increases with phenol conversion, and is higher with higher initial peroxide concentrations. Under the best conditions evaluated here for optimal hydroquinone formation, the initial phenol-peroxide molar ratio should be ca. 2.5, with methanol making up at least 90 vol-% of the total volume. Discrete peroxide addition in methanol solvent for the Al-free Ti-Beta catalysed hydroxylation gives excellent improvements in hydroquinone selectivity (2.5 times higher than water solvent), and the addition in more discrete portions might further improve hydroquinone formation, and should therefore be examined.
Franz, Rudolf. „Výzkum progresivních metod snižování obsahu škodlivých látek ve výfukových plynech vznětových motorů“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-418061.
Der volle Inhalt der QuelleBuchteile zum Thema "Oxidační procesy"
Katsuki, Tsutomu. „Asymmetric Oxidation with Hydrogen Peroxide, an Effective and Versatile Oxidant“. In Pharmaceutical Process Chemistry, 59–76. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527633678.ch3.
Der volle Inhalt der QuelleAbu Bakar, Wan Azelee Wan, Wan Nazwanie Wan Abdullah, Rusmidah Ali und Wan Nur Aini Wan Mokhtar. „Polymolybdate Supported Nano Catalyst for Desulfurization of Diesel“. In Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering, 263–80. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9545-0.ch009.
Der volle Inhalt der QuelleTaber, Douglass F. „Oxidation of Organic Functional Groups“. In Organic Synthesis. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190646165.003.0008.
Der volle Inhalt der QuelleTaber, Douglass F. „Alkene Reactions: The Xu/Loh Synthesis of Vitamin A1“. In Organic Synthesis. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190646165.003.0028.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Oxidační procesy"
Mbedzi, Ndishavhelafhi, Don Ibana, Laurence Dyer und Richard Browner. „The effect of oxidant addition on ferrous iron removal from multi-element acidic sulphate solutions“. In PROCEEDINGS OF THE 1ST INTERNATIONAL PROCESS METALLURGY CONFERENCE (IPMC 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4974413.
Der volle Inhalt der QuelleAnugrah, Rezky Iriansyah, M. Zaki Mubarok und Dessy Amalia. „Study on the leaching behavior of galena concentrate in fluosilicic acid solution using hydrogen peroxide as oxidant“. In PROCEEDINGS OF THE 1ST INTERNATIONAL PROCESS METALLURGY CONFERENCE (IPMC 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4974417.
Der volle Inhalt der QuelleLv, Xiao-Jing, Ning Li und Chun-Sheng Weng. „Research on filling process of fuel and oxidant during detonation based on absorption spectrum technology“. In International Symposium on Optoelectronic Technology and Application 2014, herausgegeben von Jurgen Czarske, Shulian Zhang, David Sampson, Wei Wang und Yanbiao Liao. SPIE, 2014. http://dx.doi.org/10.1117/12.2071439.
Der volle Inhalt der QuelleMarin, Ovidiu, Benjamin Bugeat, Marc Till und Olivier Louedin. „Numerical Simulation of Full Oxy-Fired Oscillating Combustion“. In ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1547.
Der volle Inhalt der QuelleCross, Paul E., und Del Baird. „Phased Implementation of In Situ Chemical Oxidation for a Large TCE DNAPL Source Area at the Portsmouth Gaseous Diffusion Plant, USA“. In The 11th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2007. http://dx.doi.org/10.1115/icem2007-7200.
Der volle Inhalt der QuelleNieckele, Angela O., Monica F. Naccache, Marcos S. P. Gomes und Rafael C. Menezes. „Influence of the Type of Oxidant in the Combustion of Natural Gas Inside an Aluminum Melting Furnace“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15505.
Der volle Inhalt der QuelleMesserle, V. E., A. B. Ustimenko, N. A. Slavinskaya und U. Riedel. „Influence of Coal Rank on the Process of Plasma Aided Gasification“. In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68701.
Der volle Inhalt der QuelleLiao, Wensheng, Weimin Que, Liming Wang und Zhiming Du. „Synergetic Oxidation in Alkaline In-Situ Leaching Uranium: A Preliminary Case Study“. In 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icone2020-16200.
Der volle Inhalt der QuelleNwanna, Emeka Charles, Rigardt Alfred Maarten Coetzee und Tien-Chien Jen. „Investigating the Purge Flow Rate in a Reactor Scale Simulation of an Atomic Layer Deposition Process“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10692.
Der volle Inhalt der QuelleGupta, Ashwani K., und Eugene L. Keating. „Pyrolysis and Oxidative Pyrolysis of Polystyrene“. In ASME 1993 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/cie1993-0055.
Der volle Inhalt der Quelle