Auswahl der wissenschaftlichen Literatur zum Thema „Oxene-transfer“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Oxene-transfer" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Oxene-transfer"

1

Murugesan, Natesan, und Sidney M. Hecht. „Bleomycin as an oxene transferase. Catalytic oxygen transfer to olefins“. Journal of the American Chemical Society 107, Nr. 2 (Januar 1985): 493–500. http://dx.doi.org/10.1021/ja00288a037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kariyawasam, Kalani, Rémy Ricoux und Jean-Pierre Mahy. „Recent advances in the field of artificial hemoproteins: New efficient eco-compatible biocatalysts for nitrene-, oxene- and carbene-transfer reactions“. Journal of Porphyrins and Phthalocyanines 23, Nr. 11n12 (Dezember 2019): 1273–85. http://dx.doi.org/10.1142/s1088424619300222.

Der volle Inhalt der Quelle
Annotation:
In the last few years, the field of artificial hemoproteins has been expanding through two main strategies involving either the incorporation of synthetic metalloporphyrin derivatives into the chiral cavity of a protein or the directed evolution of natural hemoproteins such as myoglobin and cytochromes P450. First, various synthetic water-soluble porphyrins including ions of transition metals such as iron and manganese have been inserted covalently or by supramolecular anchoring into non-specifically designed native proteins or into proteins modified by a minimum number of mutations. The obtained artificial hemoproteins were able to catalyze oxene transfer reactions such as epoxidation of alkenes or sulfoxidation of sulfides and cyclopropanation reactions with good activities and moderate enantioselectivities. Recently, a second approach, based on the design of the active site of already existing native hemoproteins such as myoglobin and cytochromes P450 by directed evolution, has led to new artificial hemoproteins that are able to catalyze oxene transfer reactions with improved activities as well as with abiological reactions. This approach thus provided promising tools for the catalysis of reactions such as intramolecular or intermolecular carbene and nitrene transfer reactions with high efficiencies. In addition, in all cases, after a few rounds of mutagenesis, mutants that were able to catalyze those reactions with a high enantioselectivity could be obtained. Finally, several groups showed that these new artificial metalloenzymes could also be used for the preparative scale-production of compounds with an excellent enantioselectivity, opening new pathways for the industrial synthesis of compounds of pharmaceutical interest.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yuan, Lung-Chi, und Thomas C. Bruice. „Use of an oxaziridine as an oxene transfer agent to manganese(III)tetraphenylporphyrin chloride“. Journal of the Chemical Society, Chemical Communications, Nr. 13 (1985): 868. http://dx.doi.org/10.1039/c39850000868.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Catalano, Carlos E., und Paul R. Ortiz de Montellano. „Oxene transfer, electron abstraction, and cooxidation in the epoxidation of stilbene and 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by hemoglobin“. Biochemistry 26, Nr. 25 (Dezember 1987): 8373–80. http://dx.doi.org/10.1021/bi00399a052.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tung, Hui Chan, Pipat Chooto und Donald T. Sawyer. „Electron-transfer thermodynamics, valence-electron hybridization, and bonding of the meso-tetrakis(2,6-dichlorophenyl)porphinato complexes of manganese, iron, cobalt, nickel, copper, silver, and zinc and of the P+Mn(O) and .bul.P+Fe(O) oxene adducts“. Langmuir 7, Nr. 8 (August 1991): 1635–41. http://dx.doi.org/10.1021/la00056a015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

MURUGESAN, N., und S. M. HECHT. „ChemInform Abstract: BLEOMYCIN AS AN OXENE TRANSFERASE. CATALYTIC OXYGEN TRANSFER TO OLEFINS“. Chemischer Informationsdienst 16, Nr. 21 (28.05.1985). http://dx.doi.org/10.1002/chin.198521114.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

„Cytochrome P 450 : substrate and prosthetic-group free radicals generated during the enzymatic cycle“. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 311, Nr. 1152 (17.12.1985): 579–91. http://dx.doi.org/10.1098/rstb.1985.0165.

Der volle Inhalt der Quelle
Annotation:
During the enzymatic cycle of the cytochromes P 450 , dioxygen binds to the ferrous haemprotein when the resting ferric haemprotein has undergone a one-electron oxidation after substrate binding. A further one-electron reduction generates an intermediate that is isoelectronic with a peroxide dianion coordinated to a ferric iron. Heterolytic cleavage of the O—O bond generates water and a species which is formally an oxene (oxygen atom) coordinated by iron (III). However, on the basis of model reactions and by analogy to the catalases and peroxidases, this active oxidizing intermediate is formulated as an oxo-Fe IV porphyrin π-cation radical. The radical is stabilized by delocalization on the porphyrin macrocycle and the high Oxidation state is achieved by oxidizing both the metal and the porphyrin ring of the haemprotein. Hydrogen atom abstraction from a saturated hydrocarbon substrate generates a substrate free radical, constrained by the protein binding site, and the equivalent of a hydroxyl radical bound to iron(III). Coupling of the ‘hydroxy’ and substrate radicals generates hydroxylated product and resting protein. For olefins an initial electron transfer to oxidized haemprotein gives a substrate cation radical. Further reaction of this radical can give the epoxide, the principal product; an aldehyde or ketone by rearrangement; or an alkylated haemprotein resulting in suicide inhibition.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Oxene-transfer"

1

Kariyawasam, Bowithanthri Kalani. „Nouvelles métalloenzymes artificielles obtenues par couplage covalent de complexes métalliques dans une protéine naturelle (Xylanase A) et dans des protéines artificielles (αReps) Functionalized Artificial Bidomain Proteins Based on an α‑Solenoid Protein Repeat Scaffold: A New Class of Artificial Diels−Alderases Recent advances in the field of artificial hemoproteins: New efficient eco-compatible biocatalysts for nitrene-, oxene- and carbene-transfer reactions Artificial iron hydrogenase made by covalent grafting of Knölker’s complex into xylanase: Application in asymmetric hydrogenation of an aryl ketone in water A new artificial hemoprotein with inducible peroxidase- and monooxygenase-like activities“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS518.

Der volle Inhalt der Quelle
Annotation:
Dans un contexte de développement durable, les enzymes sont des outils biologiques puissants pour catalyser des réactions avec de très grandes efficacités et spécificités. Inspirée des enzymes et de la catalyse organométallique, l’élaboration de métalloenzymes artificielles émerge depuis plusieurs années comme une stratégie de choix pour fournir aux chimistes de nouveaux biocatalyseurs, en accord avec les principes de la chimie verte. Elles sont construites par l’insertion par interactions supramoléculaires ou couplage covalent, d’un ion ou d’un complexe métallique au sein d’une protéine, qui leur apporte un environnement hydrophobe protecteur et chiral. Lors de cette thèse, plusieurs métalloenzymes artificielles ont été construites par couplage covalent de complexes métalliques dans deux protéines hôtes, qui sont la Xylanase A (Xln) et les protéines artificielles de la famille des Reps. Dans un premier temps, une hydrogénase artificielle a été construite dans le mutant XlnS212C par ancrage covalent d’un complexe de fer appelé complexe de Knölker. L’hydrogénase artificielle obtenue, XlnS212CK, s’est avérée capable de catalyser l’hydrogénation par transfert d’hydrure de la trifluoroacétophénone, TFAC, sans excès énantiomérique. Dans un second temps, quatre Diels-Alderases artificielles ont été construites à partir de la protéine bidomaine (A3_A3’) de la famille des αReps. Les deux meilleures Diels-Alderases, qui ont conduit respectivement au meilleur rendement et la meilleure énantiosélectivité dans la réaction de l’azachalcone sur le cyclopentadiène, ont été élaborées respectivement par fixation covalente de complexe de cuivre de ligands phénanthroline et terpyridine dans un mutant F119C de A3_A3’ : (A3_A3’)F119Phen-Cu(II) et (A3_A3’)F119Terpy-Cu(II). Finalement, une nouvelle hémoprotéine artificielle a été construite par couplage covalent de la méso-tétraphénylporphyrine de manganèse Mn(III)TPP-NHMal dans le mutant (A3_A3’)Y26C. L’hémoprotéine artificielle formée BH MnTPP seule ne montre aucune activité catalytique pour l’oxydation de co-substrats par H2O2. Cependant, de manière inattendue, l’addition d’imidazole et d’une autre protéine αRep, bA3-2, qui se fixe de manière spécifique sur A3_A3 et provoque son ouverture, permet non seulement de déclencher l’activité peroxydase de BH MnTPP, mais également une activité monooxygénase qui catalyse la sulfoxydation du thioanisole par H2O2. Il s’agit du premier exemple décrit à ce jour de métalloenzyme artificielle dont l’activité peut être induite par la fixation d’une protéine partenaire
In a context of sustainable development, enzymes are powerful biological tools to catalyze reactions with very high efficiencies and specificities. Inspired by enzymes and organometallic catalysis, the development of artificial metalloenzymes has emerged for several years as a strategy of choice to provide the chemists with new biocatalysts, in accordance with the principles of green chemistry. They are constructed by the insertion by supramolecular interactions or covalent coupling of an ion or a metal complex within a protein, which provides them with a protective and chiral hydrophobic environment. In this thesis, several artificial metalloenzymes were constructed by covalent coupling of metal complexes into two host proteins, Xylanase A (Xln) and artificial proteins of the Reps family. Initially, an artificial hydrogenase was constructed in the XlnS212C mutant by covalent anchoring of an iron complex known as the Knölker complex. The artificial hydrogenase obtained, XlnS212CK, was found to be capable of catalyzing hydride hydrogenation of trifluoroacetophenone, TFAC, without enantiomeric excess. In a second time, four artificial Diel-Alderases were constructed from the bidomain protein (A3_A3') of the αReps family. The two best Diels-Alderases which led respectively to the best yield and the best enantioselectivity in the reaction of azachalcone on cyclopentadiene were developed respectively by covalent attachment of copper complex of phenanthroline and terpyridine ligands in a mutant F119C of A3_A3' (A3_A3')F119Phen-Cu (II) and (A3_A3')F119 Terpy-Cu (II). Finally, a new artificial hemoprotein was constructed by covalent coupling of the manganese meso-tetraphenylporphyrin Mn(III)TPP-NHMal in the (A3_A3')Y26C mutant. The artificial hemoprotein formed BH-MnTPP alone shows no catalytic activity for the oxidation of co-substrates by H2O2. However, unexpectedly, the addition of imidazole and another αRep protein, bA3-2, which binds specifically to A3_A3’ and causes it to be opened, not only triggers the BH-MnTPP peroxidase activity but also a monooxygenase activity which catalyzes the sulfoxidation of thioanisole by H2O2. This is the first example described to date of artificial metalloenzyme whose activity can be induced by the attachment of a partner protein
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie