Auswahl der wissenschaftlichen Literatur zum Thema „Osteochondral lesions of the talus“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Osteochondral lesions of the talus" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Osteochondral lesions of the talus"

1

Savage-Elliott, Ian, Keir A. Ross, Niall A. Smyth, Christopher D. Murawski und John G. Kennedy. „Osteochondral Lesions of the Talus“. Foot & Ankle Specialist 7, Nr. 5 (05.08.2014): 414–22. http://dx.doi.org/10.1177/1938640014543362.

Der volle Inhalt der Quelle
Annotation:
Osteochondral lesions of the talar dome are increasingly diagnosed and are a difficult pathology to treat. Conservative treatment yields best results in pediatric patients, often leaving surgical options for adult populations. There is a paucity of long-term data and comparisons of treatment options. Arthroscopic bone marrow stimulation is a common first-line treatment for smaller lesions. Despite promising short to medium term clinical results, bone marrow stimulation results in fibrocartilagenous tissue that incurs differing mechanical and biological properties compared with normal cartilage. Autologous osteochondral transplantation has demonstrated promising clinical results in the short to medium term for larger, cystic lesions and can restore the contact pressure of the joint. However, concerns remain over postoperative cyst formation and donor site morbidity. Recent developments have emphasized the usefulness of biological adjuncts such as platelet-rich plasma and concentrated bone marrow aspirate, as well as particulate juvenile cartilage, in augmenting reparative and replacement strategies in osteochondral lesion treatment. The purpose of this article is to review diagnosis and treatment of talar osteochondral lesions so that current practice guidelines can be more efficiently used given the available treatment strategies. A treatment paradigm based on current evidence is described.Levels of Evidence: Therapeutic, Level V, Expert Opinion
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hao, Da-Peng, Jian-Zhong Zhang, Zhen-Chang Wang, Wen-Jian Xu, Ji-Hua Liu und Ben-Tao Yang. „Osteochondral Lesions of the Talus“. Journal of the American Podiatric Medical Association 100, Nr. 3 (01.05.2010): 189–94. http://dx.doi.org/10.7547/1000189.

Der volle Inhalt der Quelle
Annotation:
Background: Conventional magnetic resonance imaging (MRI) has been demonstrated to be a valuable tool in diagnosing osteochondral lesions of the talus. No previous study, to our knowledge, has evaluated the diagnostic ability of fat-suppressed fast spoiled gradient-echo (FSPGR) MRI in osteochondral lesions of the talus. We sought to compare three-dimensional fat-suppressed FSPGR MRI with conventional MRI in diagnosing osteochondral lesions of the talus. Methods: Thirty-two consecutive patients with clinically suspected cartilage lesions undergoing three-dimensional fat-suppressed FSPGR MRI and conventional MRI were assessed. Sensitivity, specificity, and accuracy of diagnosis were determined using arthroscopic findings as the standard of reference for the different imaging techniques. The location of the lesion on the talar dome was recorded on a nine-zone anatomical grid on MRIs. Results: Arthroscopy revealed 21 patients with hyaline cartilage defects and 11 with normal ankle joints. The sensitivity, specificity, and accuracy of the two methods for detecting articular cartilage defect were 62%, 100%, and 75%, respectively, for conventional MRI and 91%, 100%, and 94% for three-dimensional fat-suppressed FSPGR MRI. Sensitivity and accuracy were significantly higher for FSPGR imaging than for conventional MRI (P < .05), but there was no difference in specificity between these two methods. According to the nine-zone anatomical grid, the area most frequently involved was the middle of the medial talar dome (16 lesions, 76%). Conclusions: T1-weighted three-dimensional fat-suppressed FSPGR MRI is more sensitive than is conventional MRI in detecting defects of articular cartilage covering osteochondral lesions of the talus. (J Am Podiatr Med Assoc 100(3): 189–194, 2010)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Steele, John R., Travis J. Dekker, Andrew E. Federer, Jordan L. Liles, Samuel B. Adams und Mark E. Easley. „Osteochondral Lesions of the Talus“. Foot & Ankle Orthopaedics 3, Nr. 3 (01.07.2018): 247301141877955. http://dx.doi.org/10.1177/2473011418779559.

Der volle Inhalt der Quelle
Annotation:
Osteochondral lesions of the talus (OLTs) are a difficult pathologic entity to treat. They require a strong plan. Lesion size, location, chronicity, and characteristics such as displacement and the presence of subchondral cysts help dictate the appropriate treatment required to achieve a satisfactory result. In general, operative treatment is reserved for patients with displaced OLTs or for patients who have failed nonoperative treatment for 3 to 6 months. Operative treatments can be broken down into cartilage repair, replacement, and regenerative strategies. There are many promising treatment options, and research is needed to elucidate which are superior to minimize the morbidity from OLTs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Schachter, Aaron K., Andrew L. Chen, Ponnavolu D. Reddy und Nirmal C. Tejwani. „Osteochondral Lesions of the Talus“. Journal of the American Academy of Orthopaedic Surgeons 13, Nr. 3 (Mai 2005): 152–58. http://dx.doi.org/10.5435/00124635-200505000-00002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Easley, Mark E., Daniel L. Latt, James R. Santangelo, Marc Merian-Genast und James A. Nunley. „Osteochondral Lesions of the Talus“. American Academy of Orthopaedic Surgeon 18, Nr. 10 (Oktober 2010): 616–30. http://dx.doi.org/10.5435/00124635-201010000-00005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Roach, Richard. „Osteochondral Lesions of the Talus“. Journal of the American Podiatric Medical Association 93, Nr. 4 (01.07.2003): 307–11. http://dx.doi.org/10.7547/87507315-93-4-307.

Der volle Inhalt der Quelle
Annotation:
Knowledge of osteochondral lesions of the talus parallels that of similar lesions affecting the knee in many respects. Morbidity can be significant, and a variety of diagnostic and surgical techniques have been described. Although these lesions are significant for all patients, in athletic individuals they may bring about the end of their sporting careers. Fragment stability remains critical in the management of these injuries. With advances in diagnostic methods and further specialization in arthroscopy, outcomes will continue to improve. (J Am Podiatr Med Assoc 93(4): 307-311, 2003)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Santrock, Robert D., Matthew M. Buchanan, Thomas H. Lee und Gregory C. Berlet. „Osteochondral lesions of the talus“. Foot and Ankle Clinics 8, Nr. 1 (März 2003): 73–90. http://dx.doi.org/10.1016/s1083-7515(03)00007-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Carney, Dwayne, Monique C. Chambers, Lorraine Boakye, Ned Amendola, Alan S. Yan und MaCalus V. Hogan. „Osteochondral Lesions of the Talus“. Operative Techniques in Orthopaedics 28, Nr. 2 (Juni 2018): 91–95. http://dx.doi.org/10.1053/j.oto.2018.02.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

White, Kevin S., und Andrew K. Sands. „Osteochondral lesions of the talus“. Current Orthopaedic Practice 20, Nr. 2 (April 2009): 123–29. http://dx.doi.org/10.1097/bco.0b013e31819bccd8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

McCullough, Kirk A. „Osteochondral Lesions of the Talus“. Journal of Bone and Joint Surgery 102, Nr. 1 (Januar 2020): e3. http://dx.doi.org/10.2106/jbjs.19.01203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Osteochondral lesions of the talus"

1

Engström, Messén Matilda, und Elvira Moser. „Pre-planning of Individualized Ankle Implants Based on Computed Tomography - Automated Segmentation and Optimization of Acquisition Parameters“. Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297674.

Der volle Inhalt der Quelle
Annotation:
The structure of the ankle joint complex creates an ideal balance between mobility and stability, which enables gait. If a lesion emerges in the ankle joint complex, the anatomical structure is altered, which may disturb mobility and stability and cause intense pain. A lesion in the articular cartilage on the talus bone, or a lesion in the subchondral bone of the talar dome, is referred to as an Osteochondral Lesion of the Talus (OLT). Replacing the damaged cartilage or bone with an implant is one of the methods that can be applied to treat OLTs. Episurf Medical develops and produces patient-specific implants (Episealers) along with the necessary associated surgical instruments by, inter alia, creating a corresponding 3D model of the ankle (talus, tibial, and fibula bones) based on either a Magnetic Resonance Imaging (MRI) scan or a Computed Tomography (CT) scan. Presently, the3D models based on MRI scans can be created automatically, but the 3Dmodels based on CT scans must be created manually, which can be very time-demanding. In this thesis project, a U-net based Convolutional Neural Network (CNN) was trained to automatically segment 3D models of ankles based on CT images. Furthermore, in order to optimize the quality of the incoming CT images, this thesis project also consisted of an evaluation of the specified parameters in the Episurf CT talus protocol that is being sent out to the clinics. The performance of the CNN was evaluated using the Dice Coefficient (DC) with five-fold cross-validation. The CNN achieved a mean DC of 0.978±0.009 for the talus bone, 0.779±0.174 for the tibial bone, and 0.938±0.091 for the fibula bone. The values for the talus and fibula bones were satisfactory and comparable to results presented in previous researches; however, due to background artefacts in the images, the DC achieved by the network for the segmentation of the tibial bone was lower than the results presented in previous researches. To correct this, a noise-reducing filter will be implemented.
Fotledens komplexa anatomi ger upphov till en ideal balans mellan rörlighetoch stabilitet, vilket i sin tur möjliggör gång. Fotledens anatomi förändras när en skada uppstår, vilket kan påverka rörligheten och stabiliteten samt orsaka intensiv smärta. En skada i talusbenets ledbrosk eller i det subkondrala benet på talusdomen benämns som en Osteochondral Lesion of the Talus(OLT). En metod att behandla OLTs är att ersätta den del brosk eller bensom är skadat med ett implantat. Episurf Medical utvecklar och producerar individanpassade implantat (Episealers) och tillhörande nödvändiga kirurgiska instrument genom att, bland annat, skapa en motsvarande 3D-modell av fotleden (talus-, tibia- och fibula-benen) baserat på en skanning med antingen magnetisk resonanstomografi (MRI) eller datortomografi (CT). I dagsläget kan de 3D-modeller som baseras på MRI-skanningar skapas automatiskt, medan de 3D-modeller som baseras på CT-skanningar måste skapas manuellt - det senare ofta tidskrävande. I detta examensarbete har ett U-net-baserat Convolutional Neuralt Nätverk (CNN) tränats för att automatiskt kunna segmentera 3D-modeller av fotleder baserat på CT-bilder. Vidare har de speciferade parametrarna i Episurfs CT-protokoll för fotleden som skickas ut till klinikerna utvärderats, detta för att optimera bildkvaliteten på de CT-bilder som används för implantatspositionering och design. Det tränade nätverkets prestanda utvärderades med hjälp av Dicekoefficienten (DC) med en fem-delad korsvalidering. Nätverket åstadkom engenomsnittlig DC på 0.978±0.009 för talusbenet, 0.779±0.174 för tibiabenet, och 0.938±0.091 för fibulabenet. Värdena för talus och fibula var adekvata och jämförbara med resultaten presenterade i tidigare forskning. På grund av bakgrundsartefakter i bilderna blev den DC som nätverket åstadkom för sin segmentering av tibiabenet lägre än tidigiare forskningsresultat. För att korrigera för bakgrundsartefakterna kommer ett brusreduceringsfilter implementeras
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Andersson, Katarina. „Optimization of the Implantation Angle for a Talar Resurfacing Implant : A Finite Element Study“. Thesis, KTH, Neuronik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-154237.

Der volle Inhalt der Quelle
Annotation:
Osteochondral lesions of the talus (OLTs) are the third most common type of osteochondral lesion and can cause pain and instability of the ankle joint. Episurf Medical AB is a medical technology company that develops individualized implants for patients who are suffering from focal cartilage lesions. Episurf have recently started a project that aims to implement their implantation technique in the treatment of OLTs. This master thesis was a part of Episurf’s talus project and the main goal of the thesis was to find the optimal implantation angle of the Episurf implant when treating OLTs. The optimal implantation angle was defined as the angle that minimized the maximum equivalent (von Mises) strain acting on the implant shaft during the stance phase of a normal gait cycle. It is desirable to minimize the strain acting on the implant shaft, since a reduction of the strain can improve the longevity of the implant. To find the optimal implantation angle a finite element model of an ankle joint treated with the Episurf implant was developed. In the model an implant with a diameter of 12 millimeters was placed in the middle part of the medial side of the talar dome. An optimization algorithm was designed to find the implantation angle, which minimized the maximum equivalent strain acting on the implant shaft. The optimal implantation angle was found to be a sagittal angle of 12.5 degrees and a coronal angle of 0 degrees. Both the magnitude and the direction of the force applied to the ankle joint in the simulated stance phase seemed to influence the maximum equivalent strain acting on the implant shaft. A number of simplifications have been done in the simulation of this project, which might affect the accuracy of the results. Therefore it is recommended that further, more detailed, simulations based on this project are performed in order to improve the result accuracy.
Fokala broskskador på talusbenet är den tredje vanligaste typen av fokala broskskador och kan ge upphov till smärta och instabilitet av fotleden. Episurf Medical AB är ett medicintekniskt företag som utvecklar individanpassade implantat för patienter med fokala broskskador. Episurf har nyligen påbörjat ett projekt där deras teknik ska användas i behandlingen av fokala broskskador på talusbenet. Den här masteruppsatsen var en del i Episurfs talusprojekt och dess huvudmål var att finna den optimala implantationsvinkeln av Episurfs implantat i behandlingen av fokala broskskador på talusbenet. Den optimala implanteringsvinkeln definierades som den vinkel som minimerade den effektiva von Mises-töjningen som verkade på implantatskaftet under stance-fasen i en normal gångcykel. Det är eftersträvansvärt att minimera belastningen på implantatskaftet eftersom en reducering av belastningen kan förbättra implantatets livslängd. En finita element-modell av en fotled behandlad med Episurfs implantat utvecklades för att för att finna den optimala implantationsvinkeln. I modellen placerades ett implantat med en diameter på 12 millimeter på mittendelen av talus mediala sida. En optimeringsalgoritm utformades för att finna implantationsvinkeln som minimerade den effektiva von Mises-töjningen på implantatskaftet. Den funna optimala implantationsvinkeln bestod av en vinkel på 12.5 grader i sagittalplan och en vinkel på 0 grader i koronalplan. Både storleken och riktningen på kraften som applicerats på fotleden under den simulerade stance-fasen av gångcykeln verkade påverka belastningen på implantatskaftet. Ett antal förenklingar har gjorts i projektets simuleringar, vilket kan påverka noggrannheten i resultatet. Därför rekommenderas att ytterligare, mer detaljerade simuleringar baserade på det här projektet görs för att förbättra resultatets noggrannhet.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Qiu, Yu Sheng. „Experimental repair on osteochondral lesions : effect of subchondral bone replacement on the quality of articular surface repair“. Thesis, King's College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312342.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dew, Terry Lee. „The healing of an autogenous osteochondral graft and a full thickness cartilage defect in the canine talus : compared by functional, radiographic and histological assessment /“. Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-08142009-040318/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Martins, Edivaldo Aparecido Nunes. „Estudo da biocompatibilidade do gel de quitosana associada ao fosfato de glicerol para reparação de defeitos osteocondrais induzidos experimentalmente na tróclea do talus de eqüinos“. Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/10/10137/tde-20092012-190058/.

Der volle Inhalt der Quelle
Annotation:
Os estudos na área de engenharia de tecidos aplicada à reparação da cartilagem articular estão voltados ao desenvolvimento de uma matriz biocompatível que permita a diferenciação, proliferação e manutenção de células para produção de cartilagem hialina. A quitosana é um biomaterial e vem sendo estudada como suporte para condrócitos e para liberação controlada de substâncias. O objetivo deste trabalho foi estudar a biocompatibilidade do gel de quitosana associada ao fosfato de glicerol para reparação de defeitos osteocondrais induzidos experimentalmente na tróclea do talus de eqüinos. Foram utilizados cinco cavalos da raça Mangalarga, de três anos de idade, e por artroscopia foi criado um defeito osteocondral na tróclea lateral do talus de cada articulação. De forma aleatória um defeito foi escolhido para implante do gel de quitosana - fosfato de glicerol, e o defeito da articulação contralateral foi mantido vazio, servindo como controle. Para acompanhamento da evolução do processo de reparação da cartilagem articular foram realizados os exames físico, radiográfico e ultrassonográfico; análise do líquido sinovial (física, celularidade, quantificação de proteína, condroitim sulfato e ácido hialurônico); e análise da cartilagem articular (histológica e produção de proteoglicanos). Os resultados obtidos de todas as avaliações realizadas foram semelhantes entre os defeitos tratados e controle. O gel de quitosana fosfato de glicerol é biocompatível com o ambiente articular e pode ser indicado para futuras aplicações como suporte de células e para liberação controlada de medicamentos.
The tissue engineering studies applied to articular cartilage repair are focused on the development of scaffold biocompatibility allowing the differentiation, proliferation and cells maintenance providing production of the hyaline cartilage. Chitosan is a biomaterial that has been evaluated as a scaffold for chondrocyts implant and also as a drug-delivery control material. The aim of this work was to evaluate the chitosan glycerol phosphate gel biocompatibility in experimentally induced equine talus osteochondral defect. Five three years old Mangalarga breed horses were submitted to arthroscopy for osteochondral defect production on the lateral troclea of the talus in both tibiotarsal joints by arthroscopy. In a random form one defect was chosen for chitosan-glycerol phosphate gel implant, and the defect of the opposed joint was kept empty and used as a control. For the assessment of the articular cartilage repair process was performed the physic, radiographic and ultrassonographic exams; the synovial fluid analyze (physic, cellularity, protein quantification, chondroitin sulphate and hialuronan); and the articular cartilage analyze (hystologic and proteoglicans production). The results obtained in all evaluations performed were similar between the treated and control defects. The chitosan glycerol phosphate gel is biocompatible with the articular environment and can be indicate for future applications as an scaffold for cells support and drug-delivery control system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Shearer, Carl Thomas. „The natural history of stage 5 osteochondral talar lesions“. Thesis, 1996. http://hdl.handle.net/2429/4625.

Der volle Inhalt der Quelle
Annotation:
Objective To describe the natural history of conservatively managed stage 5 osteochondral talar lesions. Background Osteochondral talar lesions (OUT) are a well recognized cause of chronic post traumatic ankle pain. In 1959 Berndt and Harty (1) described a 4 stage OLT classification scheme which has been universally adopted by the orthopedic and sports medicine communities. However, it has recently been recognized that the majority (77%) of chronic OLT exist as a radiolucent defect (subchondral cystic lesion) that does not fit into this classification scheme (2). This radiolucent defect has been classified as a stage 5 OLT(2) and is felt to represent avascular necrosis of lower stage lesions as a result of failed healing (2,3,4). The natural history of stage 5 OLT has not been described. Methodology Twenty-five subjects (26 ankles) with conservatively managed stage 5 OLT were reassessed at 2 or more years post diagnosis (mean 39 months). Five (6 ankles) of the 25 subjects opted for surgical management after a failed trial of conservative treatment. Their data was included only up to the point of the end of failed conservative management. Pain at rest, pain to walk, pain to run, and activity level were assessed at follow-up and retrospectively at the time of diagnosis using a 100 mm retrospective visual analogue scale (VAS) (end points no pain and the worst pain from this injury, or full activity and most limited activity level from this injury). Mean VAS pain scores at follow-up and diagnosis were compared via repeated measure Hotellings T squared. Mean VAS activity level scores at follow-up and diagnosis were compared via repeated measure t-test. The overall clinical result at follow-up was rated excellent, good, fair or poor based on a combination of symptom persistence, sport limitation, and pain frequency. CT scan and plain Xray were obtained at follow-up on 19/25 and 20/25 subjects respectively. The CT scans at diagnosis (where available, n=ll) and follow-up were compared via repeated measure t-test for changes in lesion size. Plain X-rays were examined for the presence or absence and degree of degenerative changes. Osteophytes, sclerosis and narrowing were each considered sufficient to diagnose degenerative change. The degree of degenerative change was determined according to a scale based on the size of the largest osteophyte, the presence or absence of sclerosis, and the presence or absence of focal or diffuse narrowing. Main results VAS results demonstrated a significant decrease in pain to run (29 mm = 29% of the worst pain to run from this injury, p=.005) and a significant decrease in pain to walk (23.5 mm = 23.5 % of the worst pain to walk from this injury, p=.009). Pain at rest decreased and activity level increased, however, neither was statistically significant. The overall clinical result was good or excellent in 50%, fair in 15% and poor in 35%. Lesions tended to increase in size, however this was not statistically significant. There was no correlation between changes in lesion size and clinical results. Mild degenerative changes were found in 13/20 ankles with OLT. All (10/10) subjects with asymmetric degenerative changes between their 2 ankles had the higher grade of degenerative change on the side with the OLT. This suggested a relationship between stage 5 OLT and the development of degenerative changes. However these degenerative changes were not found to be related to the clinical result. Lateral lesions tended to do better than medial lesions and adults tended to do better than juveniles (<20 yr. age at diagnosis). Conclusion At a mean follow-up of 39 months conservatively managed stage 5 OLT were found to significantly improve clinically with respect to pain to run and pain to walk. The overall clinical result was good or excellent in 50 %, fair in 15 % and poor in 35%. Radiographically the lesions tended to increase in size (trend only), however changes in lesion size were not found to correlate with clinical result. Mild degenerative changes were common and appear to be related to the presence of stage 5 OLT. The presence or absence of theses degenerative changes does not appear to be related to the clinical result.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ferreira, Carlos Antonio. „Osteochondral Autologous Transplantation technique for the treatment of ankle lesions: Assessment of clinical outcome“. Dissertação, 2015. https://repositorio-aberto.up.pt/handle/10216/90182.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ferreira, Carlos Antonio. „Osteochondral Autologous Transplantation technique for the treatment of ankle lesions: Assessment of clinical outcome“. Master's thesis, 2015. https://repositorio-aberto.up.pt/handle/10216/90182.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Quarch, Verena Mafalda Antonia. „Osteochondrale Transplantation am Kniegelenk – Schicksal der Entnahmedefekte nach Implantation von TruFit®-Zylindern bei großen Knorpeldefekten“. Doctoral thesis, 2013. http://hdl.handle.net/11858/00-1735-0000-001F-7227-B.

Der volle Inhalt der Quelle
Annotation:
Aufgrund einer möglichen Entnahmemorbidität sind Knorpelschäden am Knie von mehr als 3 cm ² Größe bei der autologen osteochondralen Transplantation (OCT) als kritisch zu betrachten. In dieser Studie wurde untersucht, ob die Entnahmemorbidität beo großen Knorpelschädendurch durch den Einsatz von OBI TruFit Plugs reduziert werden kann. Wir führten die autologe osteochondrale Transplantation bei insgesamt 37 Patienten durch und die Knorpel-Knochen-Zylinder wurden aus dem dorsalen medialen femoralen Kondylus entfernt. Die Defekte an der Entnahmestelle wurde bei 21 Patienten (mit einer durchschnittlichen Defektgröße von 5,5 cm²) mit künstlichen TruFit Plugs gefüllt, bei 16 Patienten (mit einer durchschnittlichen Defektgröße von 4,6 cm2) wurden die Defekte der Entnahmestellen unbehandelt gelassen. Im Durchschnitt wurden die Patienten in der Studiengruppe (mit TruFit Plugs behandelt) nach 12,8 (± 1,8) Monaten postoperativ und nach 25,2 (± 1,8) Monate erneut nachuntersucht; in der Kontrollgruppe (unbehandelt gelassene Entnahmestellen) wurden dieNachuntersuchungen nach 13,8 (± 4,3) Monate durchgeführt sowie nach 58,9 (± 4,0) Monaten. In der Studiengruppe verbesserten sich die Ergebnisse von Tegner-Score, WOMAC, VAS und Knee-Society-Score von präoperativ 3,2 (± 0,8), 60,9 (± 41,6), 133,6 (± 27,1) und 4,8 (± 2,3) auf 3,9 (± 0,6), 35,5 ( ± 27,1), 177,8 (± 16,6) und 3,3 (± 2,9) Punkten zum Zeitpunkt des zweiten Follow-up; die Kontrollgruppe zeigte präoperativ Score-Ergebnisse von 2,8 (± 0,9), 73,3 (± 50,2), 123,8 (± 41,5 ) und 5,3 (± 2,7) Punkten und verbesserte diese auf 3,6 (± 0,8), 41,4 (± 28,8), 179,3 (± 17,5) und 3,1 (± 2,0) Punkte zum Zeitpunkt des zweiten Follow-up. Je kleiner der anfängliche Knorpeldefekt in der Studiengruppe war, desto besser wurden die WOMAC Score-Werte (p < 0,05). Die MRI-Auswertung führte zu einer Verbesserung der Gesamtpunktzahl im modifizierten Henderson in der Studiengruppe an den Entnahmestellen von 19,2 (± 3,3) auf 13,7 (± 2,1) Punkte und an der Empfängerstelle von 12,2 (± 2,4) auf 12 (± 1,7) Punkte (p <0,001), die Score-Werte für die die Kontrollgruppe zeigte an den Entnahmestellen 18,3 (± 3,4) und 15,4 (± 4,4) Punkte sowie für die Empfängerstellen 11,1 (± 1,8) und 13,7 (± 2,6) Punkte (p = 0,0015). OCT ist eine wirksame Therapie auch bei großen Knorpeldefekten> 3 cm ². Die Rückenflosse medialen Femurkondylus ist ein geeigneter Spender Website, zeigt eine niedrige Entnahmemorbidität und eine hohe Regenerationsfähigkeit. Durch das Ausfüllen der Mängel mit TruFit Implantate keine klinischen Verbesserungen gefunden als Entnahmemorbidität bereits niedrig ist sowieso. Allerdings nahm die Regeneration von Defekten mit TruFit Implantate gefüllt mehr als 2 Jahren.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Michalak, Milosch. „Therapie osteochondraler Defekte des Kniegelenks unter Verwendung des Knorpel-Knochen-Ersatzmaterials (TruFit®) in Kombination mit einer einzeitigen autologen Knorpelzelltransplantation im Langzeittierversuch“. Doctoral thesis, 2015. http://hdl.handle.net/11858/00-1735-0000-0022-5FB0-A.

Der volle Inhalt der Quelle
Annotation:
Knorpeldefekte des Kniegelenks zeichnen sich durch eine sehr begrenzte spontane Heilungstendenz aus und führen im Verlauf häufig zur Arthrose. Trotz intensiver Forschungsbemühungen konnte bisher keine neue Therapieoption eine zufrieden-stellende Alternative zu den bisherigen Therapien hervorbringen. Eine ACI in Kombination mit einem künstlich hergestellten Knorpel-Knochen-Ersatzmaterial scheint jedoch großes Potential für die Therapie von Knorpel-Knochen-Schäden zu besitzen. Im vorliegenden Langzeittierversuch mit Kaninchen wurde eine einzeitige ACI mit einem biphasischen Ersatzmaterial (TruFit®) und platelet-rich-plasma (PRP) kombiniert. Zu diesem Zweck wurde in der medialen Femurkondyle ein critical-size-Defekt mit einem Durchmesser von 4,5 mm gesetzt. In der ersten Versuchsgruppe blieb der Defekt unbehandelt (Leer). Bei der zweiten Gruppe wurde die Defekthöhle mit einem TruFit®-Zylinder aufgefüllt (TFP). Gruppe drei erhielt zusätzlich PRP (TFP+PRP) und Gruppe vier wurde darüber hinaus mit einer einzeitigen ACI kombiniert (TFP+PRP+C), bei der Chondrozyten mit Hilfe eines speziellen Kollagenase-Schnellverdaus isoliert werden konnten. Die Auswertung der Knorpel-Knochen-Regeneration erfolgte nach 12 Monaten durch eine Mikroradiographie, eine intravitale Fluoreszenzmarkierung des Knochens und durch Toluidinblau-O- und Safranin-O-Färbungen. Verwendet wurden die Scores nach Wakitani und O’Driscoll. Dabei konnte gezeigt werden, dass eine TruFit®-Therapie die Knochenregeneration positiv beeinflussen kann. Die Zugabe von PRP bewirkte die Bildung von zahlreichen dünnen Trabekeln mit einer erhöhten Anzahl trabekulärer Verbindungen, allerdings auch eine schlechtere Rekonvaleszenz der subchondralen Knochenschicht. Bezüglich der Knorpelheilung schnitt die Gruppe TFP+PRP+C am besten ab, wobei die Unterschiede nicht signifikant waren. Insgesamt zeigten alle Versuchsgruppen eine unzureichende osteochondrale Regeneration, so dass für die Therapie am Menschen zunächst weitere Studien nötig sind, die sowohl ossär als auch chondral eine verbesserte Heilungspotenz demonstrieren können. Bisher fehlen groß angelegte Studien um Therapieempfehlungen bezüglich des Ersatzmaterials, der genauen Durchführung der einzeitigen ACI und Zusätzen wie Wachstumsfaktoren zu machen.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Osteochondral lesions of the talus"

1

Matthews, Stuart J. E. Fractures of the talus and peritalar dislocations. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199550647.003.012060.

Der volle Inhalt der Quelle
Annotation:
♦ Talar fractures are uncommon injuries and the outcome is very dependent on the tenuous blood supply♦ Fixation with absolute stability must be achieved♦ Osteochondral and process fractures are sometimes difficult to appreciate on plain x-rays. Clinical examination and a high degree of suspicion will help to identify these problems early.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Osteochondral lesions of the talus"

1

Lasanianos, Nick G., und Peter V. Giannoudis. „Osteochondral Lesions of the Talus“. In Trauma and Orthopaedic Classifications, 467–70. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6572-9_107.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Saxena, Amol. „Osteochondral Lesions of the Talus“. In Special Procedures in Foot and Ankle Surgery, 85–101. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4103-7_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

van Dijk, P. A. D., und C. N. van Dijk. „Osteochondral Lesions of the Talus“. In Sports Injuries of the Foot and Ankle, 133–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-58704-1_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Peterson, Kyle S., und Christopher F. Hyer. „Osteochondral Lesions of the Talus“. In Complications in Foot and Ankle Surgery, 365–74. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53686-6_26.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Saxena, Amol. „Osteochondral Lesions of the Talus“. In Sports Medicine and Arthroscopic Surgery of the Foot and Ankle, 95–111. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4106-8_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Saxena, Amol. „Osteochondral Lesions of the Talus“. In International Advances in Foot and Ankle Surgery, 261–72. London: Springer London, 2012. http://dx.doi.org/10.1007/978-0-85729-609-2_26.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ross, Keir A., Niall A. Smyth und John G. Kennedy. „Approach to Osteochondral Lesions of the Medial Talus“. In Talar Osteochondral Defects, 67–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-45097-6_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Parker, Lee, Andy J. Goldberg und Dishan Singh. „Osteochondral Lesions of the Talus (O.L.T.)“. In European Surgical Orthopaedics and Traumatology, 3725–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-34746-7_252.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Canata, Gian Luigi, und Valentina Casale. „Arthroscopic Debridement of Osteochondral Lesions of the Talus“. In Cartilage Lesions of the Ankle, 27–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46332-1_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

McCollum, Graham. „Management of Cystic Osteochondral Lesions of the Talus“. In Cartilage Lesions of the Ankle, 53–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46332-1_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Osteochondral lesions of the talus"

1

Walther, Markus, Hubert-Gabriel Hörterer, Anke Röser und Oliver Gottschalk. „Systematic review and meta-analysis of the AMIC procedure using Chondro Gide® for osteochondral lesions of the talus“. In Deutscher Kongress für Orthopädie und Unfallchirurgie. Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1717294.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

CITAK, MUSA, JENS GEERLING, DANIEL KENDOFF, MARTINUS RICHTER, TOBIAS HÜFNER und CHRISTIAN KRETTEK. „ISO-C 3D NAVIGATED DRILLING OF OSTEOCHONDRAL DEFECTS OF THE TALUS: A CADAVER STUDY“. In Proceedings of the Scientific Workshop on Medical Robotics, Navigation and Visualization. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702678_0016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Takai, Erica, X. Edward Guo, Helen H. Lu, Michelle A. LeRoux, Priya Raina, Gerard A. Ateshian und Clark T. Hung. „Strategy for Tissue Engineering of Osteochondral Constructs“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33595.

Der volle Inhalt der Quelle
Annotation:
Damage to articular cartilage is a common condition affecting the joints of millions of people. This is a major problem considering the poor regenerative capacity of adult articular cartilage and the disability and pain that accompanies these injuries [13]. There exists a range of options that have been applied in clinical practice, with variable degrees of success, for repair of focal lesions and damage of the articular surface, including tissue adhesives [1,6,11,12,18], enzymatic treatments [8] and laser solder welding [21], autograft cell/tissue transfer via osteoperiosteal grafts [17], osteochondral grafts (mosaicplasty) [10] and Carticel [4,5]. The poor healing capacity of articular cartilage [13], potential for donor site pain and morbidity in autograft procedures, risk of disease transmission in allograft procedures, and the limited longevity of arthroplasty systems (i.e., ∼15 years for a total knee arthroplasty), has generated considerable research efforts to develop cell-based therapies for articular cartilage repair and replacement.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lagemaat, M. W., L. G. E. Cox, M. L. Reilingh, C. C. van Donkelaar, B. van Rietbergen, L. Blankevoort, C. N. van Dijk und K. Ito. „Fluid Pressure May Lead to Subchondral Bone Cyst Development via Mechanoregulated Bone Remodeling“. In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19582.

Der volle Inhalt der Quelle
Annotation:
Ankle trauma associated with an osteochondral defect (OD) of the talus often leads to subchondral bone cysts (Fig. 1, left). These cysts are associated with persistent ankle pain, thereby limiting the patients’ mobility [1]. Histology suggests that bone cyst development may occur in different stages, since some cysts are found to contain fluid, while others contain soft tissues. In addition, talar cysts may grow or shrink in time, and develop a sclerotic rim. The exact mechanism behind the development of talar cysts is unclear, but it has been proposed that fluid intrusion from the joint space through the OD plays a key role [1,2]. Pressurization of this fluid may have an osteolytic effect on the surrounding bone, thereby enlarging the cyst cavity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tampieri, A., M. Sandri, T. D’Alessandro, M. Banobre-Lopez und J. Rivas. „Innovative Biomimetic Hybrid Composites to Repair Multifunctional Anatomical Region“. In ASME 2010 5th Frontiers in Biomedical Devices Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/biomed2010-32059.

Der volle Inhalt der Quelle
Annotation:
The development of biomimetic materials for osteochondral tissue substitution and repair can be the start for a revolution in the classical procedures of orthopaedic surgery. The persisting problems, linked to the absence of a complete functional recovery of the articulation and to the stabilization and protraction of the half-life of an articular prosthesis can be overcome by the new class of osteochondral substitutes. The characteristics of the artificial bone tissue are drastically different from those of the natural one and this is mainly due to the absence of the peculiar self-organizing interaction between apatite crystals and proteic matrix. At this purpose a biomimetic approach was used in which apatitic phases are directly nucleated on different macromolecular matrices, which act as template and induce peculiar physico-chemical features in the mineral phase to create a substitute for osteochondral lesions. In particular a biologically inspired approach was applied to nucleate bone-like hydroxyapatite (HA) nanocrystals on self-assembling collagen fibers. Biohybrid composite materials were obtained mimicking composition, structure and morphology of human osteochondral interfaces. [1–4]
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Nagel, Thomas, Sascha Müller, Uwe-Jens Görke, Carol Muehlemann und Markus A. Wimmer. „Depth Dependent Strain Analysis of Articular Cartilage Under Impaction Loading“. In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176644.

Der volle Inhalt der Quelle
Annotation:
Lesions in the cartilage of the knee can lead to degenerative arthritis of the joint. Therefore, procedures such as osteochondral grafting are used to repair the cartilage. Osteochondral grafting procedures are of interest, because the lesion is replaced with true hyaline cartilage. This procedure involves press-fitting a cylindrical bone-cartilage plug by impaction to repair the damaged cartilage area. Recently, it has been shown that impact insertion of osteochondral grafts generates damaging loads that cause chondrocyte death, particularly in the superficial zone [1]. Using high speed video analysis, it has been shown that the highest local deformations occur within the superficial zone of the osteochondral plug [2,3]. However, the exact strain condition of the tissue during impaction and any depth dependent strain differences remain unknown. Assuming uniaxial load conditions of an ideal cylinder exposed to high strain rates, the stress-strain response of cartilage plugs during the impaction process is reported in this study. We hypothesized that the highest strain levels would occur in the superficial zone. Based on the experimental results, the fundamental material effects substantial for the load case under consideration can be studied. Consequently, suitable material models for subsequent numerical simulations can be established.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Roach, Brendan L., Andrea R. Tan, Aaron M. Stoker, James L. Cook, Keith J. Yeager, Gerard A. Ateshian und Clark T. Hung. „Fabrication of Tissue-Engineered Cartilage Grafts With Anatomic Surface Contours for Repair of Large Focal Defects“. In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14657.

Der volle Inhalt der Quelle
Annotation:
Articular cartilage exhibits a poor healing response to injury that necessitates surgical intervention to repair or replace damaged tissue. Treatment options, however, are dependent on the location and size of the defect site. For small focal defects (<2 cm 2), microfracture is the primary method of treatment [8] despite the production of biologically inferior cartilage. For lesions greater than 10 cm 2 where the articular cartilage loss and morphology of the condyle is distorted, a fresh osteoarticular allograft is most likely to succeed [3], while posing a significant surgical challenge related to the technical demands in restoring congruency of the articular surface (i.e., attaining a flush fit of the graft with the surrounding host cartilage tissue). This requires matching of the donor joint size to provide grafts with similar anatomical surface contours. As there is insufficient supply of suitable cartilage grafts to meet the clinical demand, the development of tissue engineered osteochondral grafts would have significant clinical impact for treatment of cartilage lesions and eventually entire articular surfaces.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Meyer, Eric G., Daniel I. Isaac, Tammy L. Haut Donahue, Loïc M. Déjardin und Roger C. Haut. „Comparisons of the Joint Responses to Surgical Transection and Traumatic Rupture of the ACL in a Rabbit Model“. In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53526.

Der volle Inhalt der Quelle
Annotation:
Long-term participation in vigorous physical activity increases the risk of acute and chronic injuries to the knee. Two specific types of injury strongly associated with subsequent knee osteoarthritis (OA) are cruciate ligament damage and meniscal tears. Many clinical studies have discussed the high frequency of noncontact ACL injuries, for example, from jump landings. Axial compressive loading of the knee during landing from a jump can generate approximately 6–8 times bodyweight. With the tibial plateau having an inherent posterior slope of 10–15°, these loads can produce an anterior shift of the tibia during jump landings that result in isolated rupture of the anterior cruciate ligament (ACL) in the laboratory.1 These studies have shown acute damages in the articular cartilage and underlying subchondral and trabecular bone in the human cadaver joint.2 Clinically, in over 80% of ACL injury cases, characteristic osteochondral lesions occur in the posterolateral aspect of the tibia and/or anterolateral aspect of the lateral femoral condyle, potentially due to these levels of joint compressive loads.3
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie