Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Oscillator flows“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Oscillator flows" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Oscillator flows"
Portillo, Daniel J., Eugene Hoffman, Matt Garcia, Elijah LaLonde, Christopher Combs und R. Lyle Hood. „The Effects of Compressibility on the Performance and Modal Structures of a Sweeping Jet Emitted from Various Scales of a Fluidic Oscillator“. Fluids 7, Nr. 7 (21.07.2022): 251. http://dx.doi.org/10.3390/fluids7070251.
Der volle Inhalt der QuelleShardt, Orest, Hassan Masoud und Howard A. Stone. „Oscillatory Marangoni flows with inertia“. Journal of Fluid Mechanics 803 (19.08.2016): 94–118. http://dx.doi.org/10.1017/jfm.2016.507.
Der volle Inhalt der QuelleKovacic, Ivana, Matthew Cartmell und Miodrag Zukovic. „Mixed-mode dynamics of certain bistable oscillators: behavioural mapping, approximations for motion and links with van der Pol oscillators“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, Nr. 2184 (Dezember 2015): 20150638. http://dx.doi.org/10.1098/rspa.2015.0638.
Der volle Inhalt der QuelleLUO, ALBERT C. J., und MOZHDEH S. FARAJI MOSADMAN. „SINGULARITY, SWITCHABILITY AND BIFURCATIONS IN A 2-DOF, PERIODICALLY FORCED, FRICTIONAL OSCILLATOR“. International Journal of Bifurcation and Chaos 23, Nr. 03 (März 2013): 1330009. http://dx.doi.org/10.1142/s0218127413300097.
Der volle Inhalt der QuelleVodinchar, Gleb. „Hereditary Oscillator Associated with the Model of a Large-Scale αω-Dynamo“. Mathematics 8, Nr. 11 (19.11.2020): 2065. http://dx.doi.org/10.3390/math8112065.
Der volle Inhalt der QuelleSerrar, Abderrahim, Mohamed El Khlifi und Azeddine Kourta. „Characterisation and comparison of unsteady actuators: a fluidic oscillator and a sweeping jet“. International Journal of Numerical Methods for Heat & Fluid Flow 32, Nr. 4 (04.10.2021): 1237–54. http://dx.doi.org/10.1108/hff-07-2021-0474.
Der volle Inhalt der QuelleKHEIRANDISH, F., und M. AMOOSHAHI. „RADIATION REACTION AND QUANTUM DAMPED HARMONIC OSCILLATOR“. Modern Physics Letters A 20, Nr. 39 (21.12.2005): 3025–34. http://dx.doi.org/10.1142/s0217732305018384.
Der volle Inhalt der QuelleMa, Zhao Wei, Tiang Jiang Hu, Han Zhou, Guang Ming Wang und Dai Bing Zhang. „Modeling of Fish Adaptive Behaviors in Unsteady Flows“. Applied Mechanics and Materials 461 (November 2013): 313–19. http://dx.doi.org/10.4028/www.scientific.net/amm.461.313.
Der volle Inhalt der QuelleBILLINGHAM, JOHN. „Modelling the response of a vibrating-element density meter in a two-phase mixture“. Journal of Fluid Mechanics 340 (10.06.1997): 343–60. http://dx.doi.org/10.1017/s0022112097005600.
Der volle Inhalt der QuelleCang, Shijian, Yueyue Shan und Zenghui Wang. „Conservative dynamics in a novel class of 3D generalized thermostatted systems“. Chaos: An Interdisciplinary Journal of Nonlinear Science 32, Nr. 8 (August 2022): 083143. http://dx.doi.org/10.1063/5.0101570.
Der volle Inhalt der QuelleDissertationen zum Thema "Oscillator flows"
Barbagallo, Alexandre. „Model reduction and closed-loop control of oscillator and noise-amplifier flows“. Palaiseau, Ecole polytechnique, 2011. https://pastel.hal.science/docs/00/65/49/30/PDF/Barbagallo_PhDThesis.pdf.
Der volle Inhalt der QuelleCe travail est consacré au contrôle en boucle fermée des perturbations se développant linéairement dans des écoulements laminaires et incompressibles de types oscillateurs et amplificateurs de bruit. La loi de contrôle, calculée selon la théorie du contrôle LQG, est basée sur un modèle d'ordre réduit de l'écoulement obtenu par projection de Petrov-Galerkin. La stabilisation d'un écoulement de cavité de type oscillateur est traitée dans une première partie. Il est montré que la totalité de la partie instable de l'écoulement (les modes globaux instables) ainsi que la relation entrée-sortie (action de l'actionneur sur le capteur) de la partie stable doivent être captées par le modèle réduit afin de stabiliser le système. Les modes globaux, modes POD et modes BPOD sont successivement évalués comme bases de projection pour modéliser la partie stable. Les modes globaux ne parviennent pas à reproduire le comportement entrée-sortie de la partie stable et par conséquent ne peuvent stabiliser l'écoulement que lorsque l'instabilité du système est initialement faible (nombre de Reynolds proche de la criticité). En revanche, les modes POD et plus particulièrement BPOD sont capable d'extraire la dynamique entrée-sortie stable et permettent de stabiliser efficacement l'écoulement. La seconde partie de ce travail est consacrée à la réduction de l'amplification des perturbations sur une marche descendante. L'influence de la localisation du capteur et de la fonctionnelle de coût sur la performance du compensateur est étudiée. Il est montré que la troncature du modèle réduit peut rendre le système bouclé instable. Finalement, la possibilité de contrôler une simulation non-linéaire avec un modèle linéaire est évaluée
Salmon, Mathieu. „closed-loop control of finite amplitude perturbations : application to sub- and super-critical flow-bifurcations“. Electronic Thesis or Diss., Paris, ENSAM, 2024. http://www.theses.fr/2024ENAME072.
Der volle Inhalt der QuelleCurrent control optimisation methods struggle to stabilize a base flow in the case of finite amplitude perturbations. A boundary called edge of chaos separates into two regions the phase space of a flow which transitions subcritically to turbulence. The turbulent basin of attraction incorporates the perturbations whose energy is sufficient to trigger transition to turbulence, the laminar basin of attraction is the set of initial perturbations which are relaminarized. Such situation with two coexisting local attractors can also be encountered in flow cases outside the scope of transition to turbulence. A cylinder flow at Re = 100 exhibits a globally unstable base flow and a stable limit-cycle. Two basins of attraction emerge from the local stabilization of the base flow by a linear controller optimized on the linearized Navier-Stokes equations. We seek in this study to increase the basin of attraction of the base flow. The novelty of this work lies in the choice of the functional to be optimised with control. Indeed, the optimisation targets the energy of a perturbation located on the boundary of the two basins of attraction. We consider subcritical transition to turbulence using the well-known SSP model of Waleffe, a reduced-order model of the Navier-Stokes equations with only four degrees of freedom. The control methods elaboratored in this work are effective to induce a growth of the ”laminar” basin of attraction. In the cylinder flow, the robustness of an initial controller to finite amplitude perturbations is increased in a chosen direction of the phase space
Wang, Jianhong. „Oscillatory flows round combinations of cylinders“. Thesis, University of Edinburgh, 1998. http://hdl.handle.net/1842/13196.
Der volle Inhalt der QuelleWybrow, M. F. „Oscillatory flows about elliptic and circular cylinders“. Thesis, University of East Anglia, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389229.
Der volle Inhalt der QuelleWijetunge, Janaka Jayasekera. „Velocity measurements in oscillatory and steady flows“. Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627385.
Der volle Inhalt der QuelleAl-Asmi, Khalfan. „Vortex shedding in oscillatory flow“. Thesis, University of Surrey, 1992. http://epubs.surrey.ac.uk/842864/.
Der volle Inhalt der QuelleDick, Jennifer Ellen. „Sediment transport in oscillatory flow“. Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235836.
Der volle Inhalt der QuelleStephens, Gerard Groves. „Suspension polymerisation in oscillatory flow“. Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627184.
Der volle Inhalt der QuelleTait, Nicole Lynn. „Recovery factors in zero-mean internal oscillatory flows“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1995. http://handle.dtic.mil/100.2/ADA306233.
Der volle Inhalt der Quelle"December 1995." Thesis advisor(s): Ashok Gopinath, Oscar Biblarz. Bibliography: p. 61. Also available online.
Krishna, Vikas. „Numerical simulation of vortex shedding in oscillatory flows“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1995. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq25859.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Oscillator flows"
G, Friedman, Simon T. W und United States. National Aeronautics and Space Administration., Hrsg. Fluid mechanics experiments in oscillatory flow. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Den vollen Inhalt der Quelle findenAmin, Norsarahaida. Oscillation-induced mean flows and heat transfer. Norwich: University of East Anglia, 1989.
Den vollen Inhalt der Quelle findenCoward, Adrian V. Stability of oscillatory two phase Couette flow. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1993.
Den vollen Inhalt der Quelle findenT, Papageorgiou Demetrios, und Langley Research Center, Hrsg. Stability of oscillatory two phase coutette flow. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Den vollen Inhalt der Quelle findenCobbin, Adrian Matthew. Viscous forces on cylindrical bodies in attached turbulent oscillatory flows. Manchester: University of Manchester, 1996.
Den vollen Inhalt der Quelle findenG, Allan Brian, und Institute for Computer Applications in Science and Engineering., Hrsg. Closed-loop separation control using oscillatory flow excitation. Hampton, Va: ICASE, National Aeronautics and Science Administration, Langley Research Center, 2000.
Den vollen Inhalt der Quelle findenG, Allan Brian, und Institute for Computer Applications in Science and Engineering., Hrsg. Closed-loop separation control using oscillatory flow excitation. Hampton, Va: ICASE, National Aeronautics and Science Administration, Langley Research Center, 2000.
Den vollen Inhalt der Quelle findenG, Allan Brian, Institute for Computer Applications in Science and Engineering. und Langley Research Center, Hrsg. Closed-loop separation control using oscillatory flow excitation. Hampton, Va: Institute for Computer Applications in Science and Engineering, Langley Research Center, 2000.
Den vollen Inhalt der Quelle findenCirovic, Srdjan. Characterizing flow-induced oscillation in a mechanical trachea. Ottawa: National Library of Canada, 1996.
Den vollen Inhalt der Quelle findenSarpkaya, Turgut. In-line and transverse forces on smooth and rough cylinders in oscillatory flow at high Reynolds numbers. Monterey, Calif: Naval Postgraduate School, 1986.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Oscillator flows"
James, J., G. Joseph, A. Magaña und B. Mena. „Oscillatory Granular Flows“. In Progress and Trends in Rheology V, 276–77. Heidelberg: Steinkopff, 1998. http://dx.doi.org/10.1007/978-3-642-51062-5_128.
Der volle Inhalt der QuelleLi, Sicheng, und Jinjun Wang. „Frequency Effect on Properties of Turbulent/Non-turbulent Interface in Separated and Reattaching Flows Past an Oscillating Fence“. In IUTAM Bookseries, 182–93. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-78151-3_14.
Der volle Inhalt der QuelleWesterhof, Nicolaas, Nikolaos Stergiopulos und Mark I. M. Noble. „Oscillatory Flow Theory“. In Snapshots of Hemodynamics, 41–43. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6363-5_8.
Der volle Inhalt der QuelleWesterhof, Nicolaas, Nikolaos Stergiopulos, Mark I. M. Noble und Berend E. Westerhof. „Oscillatory Flow Theory“. In Snapshots of Hemodynamics, 47–50. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91932-4_8.
Der volle Inhalt der QuelleHolzbecher, Ekkehard O. „Oscillatory Convection“. In Modeling Density-Driven Flow in Porous Media, 129–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58767-2_7.
Der volle Inhalt der QuelleBearman, P. W., X. W. Lin und P. R. Mackwood. „Prediction of vortex-induced oscillation of cylinders in oscillatory flow“. In Hydroelasticity in Marine Technology, 3–16. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203751503-2.
Der volle Inhalt der QuelleMottaghi, Sohrob, Rene Gabbai und Haym Benaroya. „Lagrangian Flow-Oscillator Models“. In An Analytical Mechanics Framework for Flow-Oscillator Modeling of Vortex-Induced Bluff-Body Oscillations, 95–142. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26133-7_5.
Der volle Inhalt der QuelleMottaghi, Sohrob, Rene Gabbai und Haym Benaroya. „Eulerian Flow-Oscillator Models“. In An Analytical Mechanics Framework for Flow-Oscillator Modeling of Vortex-Induced Bluff-Body Oscillations, 189–240. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26133-7_7.
Der volle Inhalt der QuelleRibberink, Jan S., Jebbe J. van der Werf und Tom O’Donoghue. „Sand motion induced by oscillatory flows: sheet flow and vortex ripples“. In ERCOFTAC Series, 3–14. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6218-6_1.
Der volle Inhalt der QuelleArwatz, Gilad, Ilan Fono und Avi Seifert. „Suction and Oscillatory Blowing Actuator“. In IUTAM Symposium on Flow Control and MEMS, 33–44. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6858-4_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Oscillator flows"
Shakouchi, Toshihiko. „Gas Absorption, Aeration, by Fluidic Oscillator Operated by Gas-Liquid Two-Phase Flow“. In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45132.
Der volle Inhalt der QuelleChen, Chiko, Jing-Tang Yang und Chien-Hung Ho. „A Novel Asymmetric Microfluidic Oscillator“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79269.
Der volle Inhalt der QuelleMozgovoi, Yury D., und Sergei A. Khritkin. „Radiation of multibeam microwave generator on electron-oscillator flows“. In 2017 Eighteenth International Vacuum Electronics Conference (IVEC). IEEE, 2017. http://dx.doi.org/10.1109/ivec.2017.8289678.
Der volle Inhalt der QuelleMorimoto, Yuichiro, Kenji Kawamata, Haruki Madarame und Koji Okamoto. „Bifurcation of Water Column Oscillator Behavior Simulating Reactor Safety System: 1st Report, Experiment“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32555.
Der volle Inhalt der QuelleMozgovoi, Yury D., und Sergei A. Khritkin. „Phase focusing and synchronization of microwave generator with electron-oscillator flows“. In 2017 Eighteenth International Vacuum Electronics Conference (IVEC). IEEE, 2017. http://dx.doi.org/10.1109/ivec.2017.8289645.
Der volle Inhalt der QuelleCivrais, Clément H. B., Craig White und René Steijl. „Influence of anharmonic oscillator model for flows over a cylindrical body“. In 2ND INTERNATIONAL CONFERENCE ON ADVANCED EARTH SCIENCE AND FOUNDATION ENGINEERING (ICASF 2023): Advanced Earth Science and Foundation Engineering. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0187445.
Der volle Inhalt der QuelleGomez, Mateo, Mikhail N. Slipchenko, Steven F. Son und Terrence R. Meyer. „Burst-Mode Noncollinear Optical Parametric Oscillator“. In Laser Applications to Chemical, Security and Environmental Analysis. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/lacsea.2022.ltu5b.3.
Der volle Inhalt der QuelleMudunuru, M. K., M. Shabouei und K. B. Nakshatrala. „On Local and Global Species Conservation Errors for Nonlinear Ecological Models and Chemical Reacting Flows“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52760.
Der volle Inhalt der QuelleFuchiwaki, Masaki, und Surya Raghu. „Flow Structure Formed by a Sweeping Jet Ejected Into a Main Flow“. In ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fedsm2018-83045.
Der volle Inhalt der QuelleLuo, Albert C. J., und Mehul T. Patel. „Complex Motions in a Periodically Forced Oscillator With Multiple Discontinuities“. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34872.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Oscillator flows"
Ayoul-Guilmard, Q., F. Nobile, S. Ganesh, M. Nuñez, R. Tosi, C. Soriano und R. Rosi. D5.5 Report on the application of multi-level Monte Carlo to wind engineering. Scipedia, 2022. http://dx.doi.org/10.23967/exaqute.2022.3.03.
Der volle Inhalt der QuelleTelionis, D. P., und T. E. Diller. Heat transfer in oscillatory flow: Final report. Office of Scientific and Technical Information (OSTI), November 1986. http://dx.doi.org/10.2172/6908819.
Der volle Inhalt der QuelleRestrepo, Juan M. Particle and Blood Cell Dynamics in Oscillatory Flows Final Report. Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/953697.
Der volle Inhalt der QuelleSeume, J., G. Friedman und T. W. Simon. Fluid mechanics experiments in oscillatory flow. Volume 1. Office of Scientific and Technical Information (OSTI), März 1992. http://dx.doi.org/10.2172/10181069.
Der volle Inhalt der QuelleHowle, Laurens E. Enhancement of Oscillatory Flap Propulsors for Low Speed Flows in Water. Fort Belvoir, VA: Defense Technical Information Center, Juli 2010. http://dx.doi.org/10.21236/ada545931.
Der volle Inhalt der QuelleInc., Kellogg Brown and Root. L51989 Submarine Pipeline On-Bottom Stability-Volume 1-Analysis and Design Guidelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Dezember 2002. http://dx.doi.org/10.55274/r0011168.
Der volle Inhalt der QuelleSchilling, O., und M. Latini. Weighted Essentially Non-Oscillatory Simulations and Modeling of Complex Hydrodynamic Flows Part 1. Regular Shock Refraction. Office of Scientific and Technical Information (OSTI), Juni 2004. http://dx.doi.org/10.2172/15014460.
Der volle Inhalt der QuelleRosa, M. P., und M. Z. Podowski. Modeling and numerical simulation of oscillatory two-phase flows, with application to boiling water nuclear reactors. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/107760.
Der volle Inhalt der QuelleLatini, M., und O. Schilling. Weighted Essentially Non-Oscillatory Simulations and Modeling of Complex Hydrodynamic Flows. Part 1. Regular Shock Refraction. Office of Scientific and Technical Information (OSTI), Januar 2005. http://dx.doi.org/10.2172/875932.
Der volle Inhalt der QuelleNobile, F., Q. Ayoul-Guilmard, S. Ganesh, M. Nuñez, A. Kodakkal, C. Soriano und R. Rossi. D6.5 Report on stochastic optimisation for wind engineering. Scipedia, 2022. http://dx.doi.org/10.23967/exaqute.2022.3.04.
Der volle Inhalt der Quelle