Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Orthogonal time of flight“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Orthogonal time of flight" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Orthogonal time of flight"
Dawson, J. H. J., und M. Guilhaus. „Orthogonal-acceleration time-of-flight mass spectrometer“. Rapid Communications in Mass Spectrometry 3, Nr. 5 (Mai 1989): 155–59. http://dx.doi.org/10.1002/rcm.1290030511.
Der volle Inhalt der QuelleGuilhaus, M., D. Selby und V. Mlynski. „Orthogonal acceleration time-of-flight mass spectrometry“. Mass Spectrometry Reviews 19, Nr. 2 (2000): 65–107. http://dx.doi.org/10.1002/(sici)1098-2787(2000)19:2<65::aid-mas1>3.0.co;2-e.
Der volle Inhalt der QuelleBimurzaev, Seitkerim, Nakhypbek Aldiyarov, Yerkin Yerzhigitov, Akmaral Tlenshiyeva und Ruslan Kassym. „Improving the resolution and sensitivity of an orthogonal time-of-flight mass spectrometer with orthogonal ion injection“. Eastern-European Journal of Enterprise Technologies 6, Nr. 5 (126) (28.12.2023): 43–54. http://dx.doi.org/10.15587/1729-4061.2023.290649.
Der volle Inhalt der QuelleBelov, Mikhail E., Michael A. Buschbach, David C. Prior, Keqi Tang und Richard D. Smith. „Multiplexed Ion Mobility Spectrometry-Orthogonal Time-of-Flight Mass Spectrometry“. Analytical Chemistry 79, Nr. 6 (März 2007): 2451–62. http://dx.doi.org/10.1021/ac0617316.
Der volle Inhalt der QuelleHuang, Rongfu, Bochao Zhang, Dongxuan Zou, Wei Hang, Jian He und Benli Huang. „Elemental Imaging via Laser Ionization Orthogonal Time-of-Flight Mass Spectrometry“. Analytical Chemistry 83, Nr. 3 (Februar 2011): 1102–7. http://dx.doi.org/10.1021/ac1029693.
Der volle Inhalt der QuelleIbrahim, Yehia, Mikhail E. Belov, Aleksey V. Tolmachev, David C. Prior und Richard D. Smith. „Ion Funnel Trap Interface for Orthogonal Time-of-Flight Mass Spectrometry“. Analytical Chemistry 79, Nr. 20 (Oktober 2007): 7845–52. http://dx.doi.org/10.1021/ac071091m.
Der volle Inhalt der QuelleDodonov, A. F., V. I. Kozlovski, I. V. Soulimenkov, V. V. Raznikov, A. V. Loboda, Zhou Zhen, T. Horwath und H. Wollnik. „High-Resolution Electrospray Ionization Orthogonal-Injection Time-of-Flight Mass Spectrometer“. European Journal of Mass Spectrometry 6, Nr. 6 (Dezember 2000): 481–90. http://dx.doi.org/10.1255/ejms.378.
Der volle Inhalt der QuelleHuang, Rongfu, Yiming Lin, Lingfeng Li, Wei Hang, Jian He und Benli Huang. „Two-Dimensional Separation in Laser Ionization Orthogonal Time-of-Flight Mass Spectrometry“. Analytical Chemistry 82, Nr. 7 (April 2010): 3077–80. http://dx.doi.org/10.1021/ac902981j.
Der volle Inhalt der QuelleClowers, Brian H., Mikhail E. Belov, David C. Prior, William F. Danielson, Yehia Ibrahim und Richard D. Smith. „Pseudorandom Sequence Modifications for Ion Mobility Orthogonal Time-of-Flight Mass Spectrometry“. Analytical Chemistry 80, Nr. 7 (April 2008): 2464–73. http://dx.doi.org/10.1021/ac7022712.
Der volle Inhalt der QuelleHashimoto, Yuichiro, Izumi Waki, Kiyomi Yoshinari, Tsukasa Shishika und Yasushi Terui. „Orthogonal trap time-of-flight mass spectrometer using a collisional damping chamber“. Rapid Communications in Mass Spectrometry 19, Nr. 2 (2005): 221–26. http://dx.doi.org/10.1002/rcm.1781.
Der volle Inhalt der QuelleDissertationen zum Thema "Orthogonal time of flight"
Papanastasiou, Dimitris. „Space velocity correlation in orthogonal time-of-flight mass spectrometry“. Thesis, Manchester Metropolitan University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423073.
Der volle Inhalt der QuelleSelby, David Sean School of Chemical Sciences UNSW. „Matrix assisted laser desorption/ionization orthogonal acceleration time-of-flight mass spectrometry: development and characterization of a new instrument“. Awarded by:University of New South Wales. School of Chemical Sciences, 2002. http://handle.unsw.edu.au/1959.4/18784.
Der volle Inhalt der QuelleWilliams, C. M. „Development of an orthogonal acceleration time-of-flight mass spectrometer : structural and quantitative applications in mass spectrometry“. Thesis, Swansea University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636619.
Der volle Inhalt der QuelleRuotolo, Brandon Thomas. „Development of matrix assisted laser desorption ionization-ion mobility-orthogonal time-of-flight mass spectrometry as a tool for proteomics“. Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/2203.
Der volle Inhalt der QuellePaxton, Thanai. „Ultra-high sensitivity unambiguous sequencing on a novel geometry quadrupole orthogonal-acceleration time of flight mass spectrometer, the Q-TOF“. Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322004.
Der volle Inhalt der QuelleWestberg, Michael. „Time of Flight Based Teat Detection“. Thesis, Linköping University, Department of Electrical Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19292.
Der volle Inhalt der QuelleTime of flight is an imaging technique with uses depth information to capture 3D information in a scene. Recent developments in the technology have made ToF cameras more widely available and practical to work with. The cameras now enable real time 3D imaging and positioning in a compact unit, making the technology suitable for variety of object recognition tasks
An object recognition system for locating teats is at the center of the DeLaval VMS, which is a fully automated system for milking cows. By implementing ToF technology as part of the visual detection procedure, it would be possible to locate and track all four teat’s positions in real time and potentially provide an improvement compared with the current system.
The developed algorithm for teat detection is able to locate teat shaped objects in scenes and extract information of their position, width and orientation. These parameters are determined with an accuracy of millimeters. The algorithm also shows promising results when tested on real cows. Although detecting many false positives the algorithm was able to correctly detected 171 out of 232 visible teats in a test set of real cow images. This result is a satisfying proof of concept and shows the potential of ToF technology in the field of automated milking.
Le, Sellier Francois 1974. „Discrete real-time flight plan optimization“. Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/50629.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 117-118).
Worldwide, the continuously growing air traffic induces a need for new ATM concepts to be defined. One possibility is using a more decentralized system predicated mainly around free routings (Free Flight), for a more flexible management of airspace. The present study first highlights the discrepancies and inefficiencies of the current best flightplan optimizing software that use the Cost Index concept before departure. It then investigates techniques to perform enhanced flight-plan optimizations en-route, with algorithms that are less complex than using the Cost Index. The long-haul flight leg that is considered through the simulations is London (UK) - Boston (MA, USA), flown on a constant flight level. This study shows that running another optimization at the Top of Climb point reduces the average delay at destination from 6.9 minutes to 5.0 minutes. Then, the more futuristic method of considering discrete flight-plan optimizations, while en-route using updated weather forecasts, provides results that are more interesting. If the weather forecasts and the optimizations are done simultaneously every 3-hour or 1.5-hour, the average delay respectively becomes 2.6 minutes or 2.0 minutes. The second part of this work investigates ways of performing a Linear Program to fly a route close to a 4D-trajectory. This study provides ways of determining the exact weight values for the different state variables used in the cost function to minimize.
by Francois Le Sellier.
S.M.
Pettersson, Lucas. „Localization with Time-of-Flight cameras“. Thesis, KTH, Numerisk analys, NA, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273788.
Der volle Inhalt der QuelleTime-of-flight (ToF)-kameror blir en allt vanligare sensor i mobiltelefoner. Dessa sensorer kan producera djupmätningar i ett rutnät med relativt hög frekvens. Med hjälp av dessa djupmätningar kan ett punktmoln som representerar den fångade scenen produceras. Tidigare forskning har gjorts med hjälp av ToF- eller LIDAR-bilder för att lokalisera kameran. Här undersöks flera metoder för att lokalisera kameran med hjälp av ett punktmoln och en triangulering av en modell. Algoritmerna bestod till största delen av ICP-varianter samt en relativt ny metod som heter Corrective Gradient Refinement (CGR). Resultaten som erhållits från genererade data indikerar att vissa av metoderna är lämplig för realtidsapplikationer och felet på positioneringen är jämförbart med dem som hittades i tidigare resultat.
Tran, Le Chung. „Complex orthogonal space-time processing in wireless communications“. Access electronically, 2006. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20060726.133841/index.html.
Der volle Inhalt der QuelleBouziane, R. „Real-time optical orthogonal frequency division multiplexing transceivers“. Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1383794/.
Der volle Inhalt der QuelleBücher zum Thema "Orthogonal time of flight"
Liang, Guan Yong, und Tjhung Tjeng Thiang, Hrsg. Quasi-orthogonal space-time block code. London: Distributed by World Scientific, 2007.
Den vollen Inhalt der Quelle findenAllāh, Imilī Naṣr. Flight against time. Charlottetown, P.E.I: Ragweed Press, 1987.
Den vollen Inhalt der Quelle findenAllāh, Imilī Naṣr. Flight against time. Charlottetown, P.E.I: Ragweed Press, 1987.
Den vollen Inhalt der Quelle findenAllāh, Imilī Naṣr. Flight against time. Austin, Tex: Center for Middle Eastern Studies, University of Texas at Austin, 1997.
Den vollen Inhalt der Quelle findenLe Tran, Chung, Tadeusz A. Wysocki, Alfred Mertins und Jennifer Seberry. Complex Orthogonal Space-Time Processing in Wireless Communications. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-29544-2.
Der volle Inhalt der QuelleTran, Le Chung. Complex orthogonal space-time processing in wireless communications. New York: Springer, 2011.
Den vollen Inhalt der Quelle findenHansard, Miles, Seungkyu Lee, Ouk Choi und Radu Horaud. Time-of-Flight Cameras. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4658-2.
Der volle Inhalt der QuelleKunstmuseum, Bergen, und Listasfn Reykjavikur, Hrsg. Time: Suspend your flight. Bergen: Bergen Kunstmuseum, 2000.
Den vollen Inhalt der Quelle findenKight, Pat. The flight of time. Corvallis, Or: printed by Cascade Printing, 1988.
Den vollen Inhalt der Quelle findenCotter, Robert J., Hrsg. Time-of-Flight Mass Spectrometry. Washington, DC: American Chemical Society, 1993. http://dx.doi.org/10.1021/bk-1994-0549.
Der volle Inhalt der QuelleBuchteile zum Thema "Orthogonal time of flight"
Fjeldsted, John C. „Accurate Mass Measurements With Orthogonal Axis Time-of-Flight Mass Spectrometry“. In Liquid Chromatography Time-of-Flight Mass Spectrometry, 1–15. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470429969.ch1.
Der volle Inhalt der QuelleKrutchinsky, A. N., I. V. Chernushevich, A. V. Loboda, W. Ens und K. G. Standing. „Measurements of Protein Structure and Noncovalent Interactions by Time-of-Flight Mass Spectrometry with Orthogonal Ion Injection“. In Mass Spectrometry in Biology & Medicine, 17–30. Totowa, NJ: Humana Press, 2000. http://dx.doi.org/10.1007/978-1-59259-719-2_2.
Der volle Inhalt der QuelleTolimieri, Richard, und Myoung An. „Orthogonal projection theorem“. In Time-Frequency Representations, 135–39. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-4152-2_9.
Der volle Inhalt der QuelleDewilde, Patrick, und Alle-Jan van der Veen. „Orthogonal Embedding“. In Time-Varying Systems and Computations, 337–62. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-2817-0_12.
Der volle Inhalt der QuelleSchwab, Manfred. „Time of Flight“. In Encyclopedia of Cancer, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27841-9_5818-2.
Der volle Inhalt der QuelleShekhar, Shashi, und Hui Xiong. „Time of Flight“. In Encyclopedia of GIS, 1156. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_1384.
Der volle Inhalt der QuelleGómez, Víctor. „Orthogonal Projection“. In Multivariate Time Series With Linear State Space Structure, 1–60. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28599-3_1.
Der volle Inhalt der QuelleKim, Seong-Eun, und Dennis L. Parker. „Time-of-Flight Angiography“. In Magnetic Resonance Angiography, 39–50. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-1686-0_2.
Der volle Inhalt der QuelleBronger, Torsten. „Time-of-Flight Analysis“. In Advanced Characterization Techniques for Thin Film Solar Cells, 203–29. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527636280.ch9.
Der volle Inhalt der QuelleLechner, Ruep E. „Time-of-Flight Spectrometry“. In Neutrons in Soft Matter, 203–68. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470933886.ch8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Orthogonal time of flight"
Zollars, Michael D., und Richard G. Cobb. „Simplex Methods for Optimal Control of Unmanned Aircraft Flight Trajectories“. In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5031.
Der volle Inhalt der Quellevan Paridon, Andrew, Marko Bacic und Peter T. Ireland. „Kalman Filter Development for Real Time Proper Orthogonal Decomposition Disc Temperature Model“. In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56330.
Der volle Inhalt der QuellePrince, Jerry L. „Tomographic Imaging of Vector Fields“. In Signal Recovery and Synthesis. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/srs.1995.rtua1.
Der volle Inhalt der QuelleRaman, Deepa Anantha, Bruno Comesaña Cuervo, Viktória Jurcáková, Arnau Busom Vidal, Estelle Crouzet, Antoni Eritja Olivella, Juan Gracia García-Lisbon et al. „A 3-axis stabilisation platform to improve experiment conditions in parabolic flights“. In Symposium on Space Educational Activities (SSAE). Universitat Politècnica de Catalunya, 2022. http://dx.doi.org/10.5821/conference-9788419184405.132.
Der volle Inhalt der QuelleLesoinne, Michel, und Charbel Farhat. „Re-Engineering of an Aeroelastic Code for Solving Eigen Problems in All Flight Regimes“. In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0171.
Der volle Inhalt der QuelleHollberg, L., Steven Chu, John E. Bjorkholm, Alex Cable und A. Ashkin. „Laser cooling and confining of atoms“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/oam.1985.wv2.
Der volle Inhalt der QuelleMORELLI, EUGENE. „Nonlinear aerodynamic modeling using multivariate orthogonal functions“. In Flight Simulation and Technologies. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3636.
Der volle Inhalt der QuellePashilkar, A., und S. Pradeep. „Unsteady aerodynamic modelling using multivariate orthogonal polynomials“. In 24th Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-4014.
Der volle Inhalt der QuelleChavez, Octavio V., Sezsy Y. Yusuf und Mohammad M. Lone. „Application of Multivariate Orthogonal Functions to Identify Aircraft Flutter Modes“. In AIAA Atmospheric Flight Mechanics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-0695.
Der volle Inhalt der QuelleMorelli, Eugene A. „Transfer Function Identification using Orthogonal Fourier Transform Modeling Functions“. In AIAA Atmospheric Flight Mechanics (AFM) Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-4749.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Orthogonal time of flight"
Copley, John R. D. Neutron time-of-flight spectroscopy. Gaithersburg, MD: National Institute of Standards and Technology, 1998. http://dx.doi.org/10.6028/nist.ir.6205.
Der volle Inhalt der QuelleDietrick, Robert A. Hypersonic Flight: Time To Go Operational. Fort Belvoir, VA: Defense Technical Information Center, Februar 2013. http://dx.doi.org/10.21236/ad1018856.
Der volle Inhalt der QuelleZare, Richard N., Matthew D. Robbins, Griffin K. Barbula und Richard Perry. Hadamard Transform Time-of-Flight Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, Januar 2010. http://dx.doi.org/10.21236/ada564594.
Der volle Inhalt der QuelleChiang, I.-Hung, Adam Rusek und M. Sivertz. Time of Flight of NSRL Beams. Office of Scientific and Technical Information (OSTI), Oktober 2005. http://dx.doi.org/10.2172/1775544.
Der volle Inhalt der QuelleWatson, Thomas B. Proton Transfer Time-of-Flight Mass Spectrometer. Office of Scientific and Technical Information (OSTI), März 2016. http://dx.doi.org/10.2172/1251396.
Der volle Inhalt der QuelleZare, Richard N., Matthew D. Robbins, Griffin K. Barbula und Richard Perry. Hadamard Transform Time-of-Flight Mass Spectrometry. Fort Belvoir, VA: Defense Technical Information Center, Januar 2010. http://dx.doi.org/10.21236/ada589689.
Der volle Inhalt der QuelleKponou, A., A. Hershcovitch, D. McCafferty und F. Usack. A TIME-OF-FLIGHT SPECTROMETER FOR SuperEBIS. Office of Scientific and Technical Information (OSTI), Januar 1994. http://dx.doi.org/10.2172/1151297.
Der volle Inhalt der QuelleYip, K. Polarization with various Time-of-Flight cuts. Office of Scientific and Technical Information (OSTI), Januar 2006. http://dx.doi.org/10.2172/1157488.
Der volle Inhalt der QuelleH. FUNSTEN. IMAGING TIME-OF-FLIGHT ION MASS SPECTROGRAPH. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/768176.
Der volle Inhalt der QuelleCandy, James, und Karl Fisher. Time-of-Flight Estimation for Nondestructive Evaluation. Office of Scientific and Technical Information (OSTI), Januar 2021. http://dx.doi.org/10.2172/1762882.
Der volle Inhalt der Quelle