Auswahl der wissenschaftlichen Literatur zum Thema „Organoruthenium compounds Optical properties“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Organoruthenium compounds Optical properties" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Organoruthenium compounds Optical properties":

1

Humphrey, Mark G., Bryce Lockhart-Gillett, Marek Samoc, Brian W. Skelton, Vicki-Anne Tolhurst, Allan H. White, Adele J. Wilson und Brian F. Yates. „Synthesis, structure and optical limiting properties of organoruthenium–chalcogenide clusters“. Journal of Organometallic Chemistry 690, Nr. 6 (März 2005): 1487–97. http://dx.doi.org/10.1016/j.jorganchem.2004.12.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Parveen, Shahida, Kelvin K. H. Tong, Muhammad Khawar Rauf, Mario Kubanik, Muhammad Ashraf Shaheen, Tilo Söhnel, Stephen M. F. Jamieson, Muhammad Hanif und Christian G. Hartinger. „Coordination Chemistry of Organoruthenium Compounds with Benzoylthiourea Ligands and their Biological Properties“. Chemistry – An Asian Journal 14, Nr. 8 (14.02.2019): 1262–70. http://dx.doi.org/10.1002/asia.201801798.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Tschan, Mathieu J. L., Younes Makoudi, Frédéric Chérioux, Frank Palmino, Isabelle Fabre-Francke, Saïd Sadki und Georg Süss-Fink. „Grafting of Organoruthenium Oligomers on Quartz Substrates: Synthesis, Electrochemistry, Optical Properties, and AFM Investigations“. Chemistry of Materials 19, Nr. 15 (Juli 2007): 3754–62. http://dx.doi.org/10.1021/cm070908p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Botta, C., R. Bosisio, G. Bongiovanni, A. Mura und R. Tubino. „Optical properties of oligothiophene inclusion compounds“. Synthetic Metals 84, Nr. 1-3 (Januar 1997): 535–36. http://dx.doi.org/10.1016/s0379-6779(97)80849-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mudryi, A. V., A. I. Patuk, I. A. Shakin, A. E. Kalmykov, S. F. Marenkin und A. M. Raukhman. „Optical properties of AIIBV semiconductor compounds“. Materials Chemistry and Physics 44, Nr. 2 (Mai 1996): 151–55. http://dx.doi.org/10.1016/0254-0584(95)01668-k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Schoenes, J., und W. Reim. „Magneto-optical properties of uranium compounds“. Journal of Magnetism and Magnetic Materials 54-57 (Februar 1986): 1371–76. http://dx.doi.org/10.1016/0304-8853(86)90860-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ismail, Lamia A., Mohammad Y. Alfaifi, Serag Eldin I. Elbehairi, Reda F. M. Elshaarawy, Emad M. Gad und W. N. El-Sayed. „Hybrid organoruthenium(II) complexes with thiophene-β-diketo-benzazole ligands: Synthesis, optical properties, CT-DNA interactions and anticancer activity“. Journal of Organometallic Chemistry 949 (September 2021): 121960. http://dx.doi.org/10.1016/j.jorganchem.2021.121960.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Knyazev, Yu V., und Yu I. Kuz’min. „Optical Properties of YFe2 and TbFe2 Compounds“. Physics of the Solid State 62, Nr. 7 (Juli 2020): 1132–35. http://dx.doi.org/10.1134/s1063783420070094.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lange, P., H. Neff, M. Fearheiley und K. J. Bachmann. „Optical Properties of CuInSe2 and Related Compounds“. Journal of The Electrochemical Society 132, Nr. 9 (01.09.1985): 2281–83. http://dx.doi.org/10.1149/1.2114335.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hidaka, Chiharu, und Takeo Takizawa. „Optical properties of Sr1−xEuxGa2S4 mixed compounds“. Journal of Physics and Chemistry of Solids 69, Nr. 2-3 (Februar 2008): 358–61. http://dx.doi.org/10.1016/j.jpcs.2007.07.016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Organoruthenium compounds Optical properties":

1

Humphrey, Mark Graeme. „Aspects of organometallic chemistry, particularly metal alkynyl and cluster chemistry“. Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09SD/09sdh9267.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Includes bibliographical references. Details research carried out into the nonlinear optical properties of metal alkynyls, chiefly organoruthenium complexes, showing that these complexes can be designed to have very large NLO coefficients. Also demonstrates the utility of spectroscopic, electrochemical and copmutational aids as predictive tools for NLO materials. Also examines cluster synthesis, reactivity and physical properties using ruthenium clusters and hard-donor ligands, affording a series of cluster complrxes that provide structural models for industrially-important hydrotreating intermediates.
2

Lawrence, Heather Bunting Elizabeth. „Organometallic compounds with non-linear optical properties“. Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.276835.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

de, Almeida Katia Júlia. „Optical and Magnetic Properties of Copper(II) Compounds“. Doctoral thesis, KTH, Teoretisk kemi, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4743.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This thesis encloses quantum chemical calculations and applications of a response function formalism recently implemented within the framework of density functional theory. The optical and magnetic properties of copper(II) molecular systems are the main goal of this work. In this work, the visible and near-infrared electronic transitions, which have shown a key role in studies on electronic structure and structure-function relationships of copper compounds, were investigated in order to explore the correlation of the positions and intensities of these transitions with the geometrical structures and their molecular distortions. The evaluation of solvent effects on the absorption spectra were successfully achieved, providing accurate and inedit computational insight of these effects for copper(II) complexes. Electron Paramagnetic Resonance (EPR) parameters, that is, the electronic g tensor and the hyperfine coupling constants, are powerful spectroscopic properties for investigating paramagnetic systems and were thoroughly analysed in this work in different molecular systems. Relativistic corrections generated by spin-orbit interactions or by scalar relativistic effects were taken into account in all calculations. In addition, we have designed a methodology for accurate evaluation of the electronic g tensors and hyperfine coupling tensors as well as for evaluation of solvent effects on these properties. It is found that this methodology is able to provide reliable and accurate results for EPR parameters of copper(II) molecular systems. The spin polarization effects on EPR parameters of square planar copper(II) complexes were also considered, showing that these effects give rise to significant contributions to the hyperfine coupling tensor, whereas the electronic g tensor of these complexes are only marginally affected by these effects. The evaluation of the leading-order relativistic corrections to the electronic g tensors of molecules with a doublet ground state has been also taken into account in this work. As a first application of the theory, the electronic g tensors of dihalogen anion radicals X$_2^-$ (X=F,~Cl,~Br,~I) have been investigated and the obtained results indicate that the spin--orbit interaction is responsible for the parallel component of the g tensor shift, while both the leading-order scalar relativistic and spin--orbit corrections are of minor importance for the perpendicular component of the g tensor in these molecules since they effectively cancel each other. Overall, both optical and magnetic results show quantitative agreements with experiments, indicating that the methodologies employed form a practical way in study of copper(II) molecular systems including those of biological importance.
QC 20100714
4

de, Almeida Katia Júlia. „Optical and magnetic properties of copper(II) compounds /“. Stockholm : Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4743.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Rachford, Aaron A. „Designing and investigating molecular bistability in ruthenium dimethylsulfoxide complexes /“. View abstract, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3286186.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hissink, Catharina Everdina. „Silicon-Bridged donor-acceptor compounds: synthesis and nonlinear optical properties“. [S.l. : [Groningen] : s.n.] ; [University Library Groningen] [Host], 1996. http://irs.ub.rug.nl/ppn/148933343.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wijngaard, Jan Hendrik. „Magnetic and magneto-optical properties of some transition metal compounds“. [S.l. : [Groningen : s.n.] ; University Library Groningen] [Host], 1990. http://irs.ub.rug.nl/ppn/297971859.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gunes, Mustafa. „Optical and electronic properties of nitrogen containing III-V compounds“. Thesis, University of Essex, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.528840.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The main aim of this project is to carry out a critical and in depth study of electrical, optical and magneto transport properties of nitrogen containing III-V compounds such as bulk InN, In-rich Inl-xGaxK, GaN/lnN/Ga)J and n- and p- modulation doped Galni'1As QWs. Various experimental results presented and discussed provide fundamental important physical and electronic understanding which does not exist in the current literature such as a Superconductivity Phase transition in Mg-doped and unintentionally doped InN and also magnetotransport properties of modulation doped dilute nitrides. The plausible mechanisms are discussed in detail to explain the existence of the superconductivity in Mg and undoped InN samples. The optical properties of MBE grown III-nitrides and III-V-nitrides samples were investigated using steady state photoluminescence, Raman spectroscopy and spectral photoconductivity techniques while electrical properties were determined with Hall and magnetotransport measurements at low temperature T=1.6 K. The composition dependence of Longitudinal Optical (LO) phonon energies in undoped and Mg doped Inl_xGaxN samples are determined using two independent techniques in the range of Ga fraction from x=O to x=56%. The techniques used are the Raman and the temperature dependent momentum relaxation measurements at high temperatures where LO phonon scattering dominates the transport. The first study of spectral photoconductivity in Mg-doped indium rich GaxIn1_xK is presented. Spectral photoconductivity have three broad peaks at hw =0.65, 1.0 and l.4 eV. It is claimed that Indium segregation in the material might have occurred giving rise to three broad peaks in the photoconductivity spectra. The temperature dependence of the photoconductivity peaks suggest strongly that minority carrier trapping occurs in the material and the trapping energy of Erh=103±15meV is comparable to the Mg activation energy for InN .
9

Tong, Ka Lap. „Electrical and optical properties of triphenylamine-based compounds and devices“. HKBU Institutional Repository, 2006. http://repository.hkbu.edu.hk/etd_ra/718.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Exley, James Richard. „Electrical and optical properties of novel phthalocyanine compounds for sensor devices“. Thesis, Sheffield Hallam University, 1995. http://shura.shu.ac.uk/7110/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
UV/visible spectrophotometry measurements, together with measurement of the temperature dependence of ac parameters G (conductance), C (capacitance) and tan (dielectric loss) for 20Hz 162K) relates to the distance of singlet states below the conduction band. The low temperature activation energy indicates hopping conduction between localised states close to the Fermi level. Visible optical absorption and transmission spectra are obtained for 50nm thick sublimed films of heavy fraction rare-earth [HF(pc)(pc*)], gadolinium [Gd(pc)(pc*)] and thulium [Tm(pc)(pc*)] bisphthalocyanine compounds when they have undergone the postdeposition treatments of voltage-cycling to blue, voltage cycling to red and annealing at 393K for one hour; also for untreated fluorochromium phthalocyanine. The different post-deposition treatments produce different effects on the absorption spectra; in the case of annealing, this is attributed to the phase changes occurring in the films. The changes due to the voltage cycling are believed to be a result of oxidation processes taking place in the materials. Absorption data are also analysed in order to obtain information regarding the dispersion of refractive index and dielectric constants within optical frequency range. Absorption data are analysed in terms of a well known power law, and a value of 2.3eV is found for the optical gap E0. in HF (pc)(pc*)

Bücher zum Thema "Organoruthenium compounds Optical properties":

1

M, Roundhill D., und Fackler John P, Hrsg. Optoelectronic properties of inorganic compounds. New York: Plenum Press, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sokolov, Vi͡acheslav I. Chirality and optical activity in organometallic compounds. New York: Gordon and Breach Science Publishers, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

V i atcheslav I. Sokolov. Chirality and optical activity in organometallic compounds. New York: Gordon and Breach Science Publishers, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wakaki, Moriaki. Physical properties and data of optical materials. Boca Raton, FL: CRC Press, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wakaki, Moriaki. Physical properties and data of optical materials. Boca Raton: CRC Press, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

1932-, Weber Marvin J., Hrsg. Selected papers on photoluminescence of inorganic solids. Bellingham, Wash: SPIE Optical Engineering Press, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

R, Vij D., Hrsg. Luminescence of solids. New York: Plenum Press, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Yamashita, Masahiro. Material Designs and New Physical Properties in MX- and MMX-Chain Compounds. Vienna: Springer Vienna, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Zhao, Yue. Smart light-responsive materials: Azobenzene-containing polymers and liquid crystals. Hoboken, N.J: Wiley, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

1958-, Kuzyk Mark G., und Dirk Carl William 1954-, Hrsg. Characterization techniques and tabulations for organic nonlinear optical materials. New York: Marcel Dekker, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Organoruthenium compounds Optical properties":

1

Steinemann, S. G., W. Wolf und R. Podloucky. „Color and Optical Properties“. In Intermetallic Compounds - Principles and Practice, 231–44. Chichester, UK: John Wiley & Sons, Ltd, 2002. http://dx.doi.org/10.1002/0470845856.ch12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Roundhill, D. Max. „Optical Sensors with Metal Ions“. In Optoelectronic Properties of Inorganic Compounds, 317–47. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6101-6_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Amirtharaj, P. M., und J. H. Burnett. „Optical properties of MCT“. In Narrow-gap II–VI Compounds for Optoelectronic and Electromagnetic Applications, 133–79. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4613-1109-6_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kershaw, Stephen V. „Metallo-Organic Materials for Optical Telecommunications“. In Optoelectronic Properties of Inorganic Compounds, 349–406. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6101-6_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Shi, S. „Nonlinear Optical Properties of Inorganic Clusters“. In Optoelectronic Properties of Inorganic Compounds, 55–105. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6101-6_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bundesmann, C., R. Schmidt-Grund und M. Schubert. „Optical Properties of ZnO and Related Compounds“. In Transparent Conductive Zinc Oxide, 79–124. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-73612-7_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gray, Gary M., und Christopher M. Lawson. „Structure-Property Relationships in Transition Metal-Organic Third-Order Nonlinear Optical Materials“. In Optoelectronic Properties of Inorganic Compounds, 1–27. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6101-6_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Eklund, P. C., M. H. Yang und G. L. Doll. „Optical Properties of Donor-Type Graphite Intercalation Compounds“. In Intercalation in Layered Materials, 257–70. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-5556-5_20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

van der Voort, D. „Luminescence of the Eu3+ Ion in Calcium Compounds“. In Optical Properties of Excited States in Solids, 693. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3044-2_32.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Geserich, H. P. „Optical Investigations of One-Dimensional Inorganic Metals“. In Electronic Properties of Inorganic Quasi-One-Dimensional Compounds, 111–38. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-015-6926-2_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Organoruthenium compounds Optical properties":

1

Zawadzka, A., P. Plociennik, J. Strzelecki, Z. Lukasiak, K. Bartkiewicz, A. Korcala und B. Sahraoui. „Optical properties of metallophthalocyanine compounds thin films“. In 2012 14th International Conference on Transparent Optical Networks (ICTON). IEEE, 2012. http://dx.doi.org/10.1109/icton.2012.6253720.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Barachevsky, Valery A. „Photochromic organic compounds with polyfunctional properties“. In ICONO '98: Laser Spectroscopy and Optical Diagnostics--Novel Trends and Applications in Laser Chemistry, Biophysics, and Biomedicine, herausgegeben von Andrey Y. Chikishev, Victor N. Zadkov und Alexei M. Zheltikov. SPIE, 1999. http://dx.doi.org/10.1117/12.340018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Tutt, Lee W., Stephen W. McCahon und Marvin B. Klein. „Optimization of optical limiting properties of organometallic cluster compounds“. In Orlando '90, 16-20 April, herausgegeben von Rudolf Hartmann, M. J. Soileau und Vijay K. Varadan. SPIE, 1990. http://dx.doi.org/10.1117/12.21681.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Diaz-Garcia, Maria A., Gema Rojo und Fernando Agullo-Lopez. „Third-order nonlinear optical properties of phthalocyanines and related compounds“. In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, herausgegeben von Mark G. Kuzyk. SPIE, 1998. http://dx.doi.org/10.1117/12.328179.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Shwetha, G., und V. Kanchana. „Optical properties of halide and oxide compounds including the excitonic effects“. In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4873004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

von Rottkay, Nik, Terry J. Richardson, Michael Rubin, J. Slack, Enrico Masetti und G. Dautzenberg. „Effective medium approximation of the optical properties of electrochromic cerium-titanium oxide compounds“. In Optical Science, Engineering and Instrumentation '97, herausgegeben von Carl M. Lampert, Claes G. Granqvist, Michael Graetzel und Satyen K. Deb. SPIE, 1997. http://dx.doi.org/10.1117/12.279205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Stenzel, Olaf, Andrei Lebedev, Raiko Jaehnig, Hartmut Kupfer, Thomas Pfeifer und Steffen Wilbrandt. „Optical properties of heterogeneous thin solid films formed from inorganic and organic compounds“. In International Symposium on Optical Science and Technology, herausgegeben von Akhlesh Lakhtakia, Werner S. Weiglhofer und Russell F. Messier. SPIE, 2000. http://dx.doi.org/10.1117/12.390575.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Jans, Jan C., J. Petruzzello, J. M. Gaines und Diego J. Olego. „Determination of the optical properties of II-VI compounds by spectroscopic ellipsometry“. In Physical Concepts of Materials for Novel Optoelectronic Device Applications II, herausgegeben von Fabio Beltram und Erich Gornik. SPIE, 1993. http://dx.doi.org/10.1117/12.162742.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bandrovskaya, I. K., I. P. Sharkany, Yu D. Shershun, Z. I. Batori-Tartsi und S. Y. Hertz. „Optical properties of the bacteriorhodopsin films containing N, S, and Br compounds“. In Holography, Correlation Optics, and Recording Materials, herausgegeben von Oleg V. Angelsky. SPIE, 1993. http://dx.doi.org/10.1117/12.165367.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Papadopoulos, Manthos G., Aggelos Avramopoulos, George Maroulis und Theodore E. Simos. „The Linear and Non-Linear Optical Properties of Some Noble Gas Compounds“. In Computational Methods in Science and Engineering. AIP, 2007. http://dx.doi.org/10.1063/1.2827015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Organoruthenium compounds Optical properties":

1

Lee, S. J. Optical and magneto-optical properties of single crystals of RFe{sub 2} (R = Gd, Tb, Ho, and Lu) and GdCo{sub 2} intermetallic compounds. Office of Scientific and Technical Information (OSTI), Februar 1999. http://dx.doi.org/10.2172/348925.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie